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Abstract: To deal with low recognition accuracy and large time-consumption for dim, small targets in
a smart micro-light sight, we propose a lightweight model DS_YOLO (dim and small target detec-
tion). We introduce the adaptive channel convolution module (ACConv) to reduce computational
redundancy while maximizing the utilization of channel features. To address the misalignment
problem in multi-task learning, we also design a lightweight dynamic task alignment detection head
(LTD_Head), which utilizes GroupNorm to improve the performance of detection head localization
and classification, and shares convolutions to make the model lightweight. Additionally, to improve
the network’s capacity to detect small-scale targets while maintaining its generalization to multi-scale
target detection, we extract high-resolution feature map information to establish a new detection
head. Ultimately, the incorporation of the attention pyramid pooling layer (SPPFLska) enhances the
model’s regression accuracy. We conduct an evaluation of the proposed algorithm DS_YOLO on four
distinct datasets: CityPersons, WiderPerson, DOTA, and TinyPerson, achieving a 66.6% mAP on the
CityPersons dataset, a 4.3% improvement over the original model. Meanwhile, our model reduces
the parameter count by 33.3% compared to the baseline model.

Keywords: dim and small target detection; micro-light sight; lightweight; task alignment

1. Introduction

Micro-light sight, serving as the primary equipment for night hunting, is crucial
for night-time observation and targeting. This paper aims to integrate target detection
technology into smart micro-light sight (see Figure 1), and addressing challenges such as
low recognition accuracy and large time-consumption for dim and small targets, thereby
driving the intelligent optimization of micro-light sight.

One of the main problems in the science of computer vision is object detection, which
attempts to identify all items of interest by figuring out their categories and locations [1].
Nowadays, object detection is widely used in both military and civilian contexts, including
autonomous driving [2–4], video surveillance [5,6], and human–computer interaction [7,8].
Dim and small target detection, as a crucial technology within object detection, has recently
drawn attention from researchers. Objects at longer distances often exhibit characteristics
of small objects. SPIE defines small objects as those with fewer than 80 pixels in a 256 × 256
pixel image [9]. Due to their limited pixel count and less prominent features, small objects
exhibit lower detection rates and higher false alarm rates compared to larger objects. Thus,
dim and small target recognition continues to be a difficult study topic. The main challenges
in detecting dim and small targets [10] include:
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• Insufficient features: Small-scale objects cover fewer pixels, retaining less information.
The feature representation is weak, and in typical application scenarios of object
detection technology, small-scale object instances are accompanied by problems such
as low resolution and blurred background.

• Information loss: After multiple convolution and pooling operations in convolutional
neural networks, inevitable semantic information loss of small-scale objects occurs.
Meanwhile, feature maps contain more unnecessary background information in small-
scale objects, weakening the feature representation of small-scale objects.

• Complex background: In urban streets, parks, and other scenes, various complex
backgrounds may exist around objects, including buildings, trees, vehicles, etc. These
backgrounds can interfere with object detection.

• Difficult detection and localization: Due to their small size, the position of small-scale
objects has more possibilities, such as corners or overlapping areas with other objects.
Additionally, it can be challenging to distinguish small-scale objects in complicated
scene surfaces from noise clutter and accurately locate their boundaries, which means
that higher precision is required for positioning during detection.

When tackling these issues, it is critical to take into account the limited computational
resources in practical applications. Therefore, efficient algorithms need to be designed to
accomplish the task of detecting dim and small targets under limited resources. In this work,
we propose three lightweight and efficient modules alongside innovative architectural
designs, leading to the development of a novel network, DS_YOLO. The following are this
work’s main contributions:

(1) We propose a lightweight dynamic task alignment detection head (LTD_Head) to
address the misalignment issue between classification and localization tasks during
prediction, caused by differences in feature spatial distribution. This aims to better co-
ordinate classification and localization tasks, resulting in more accurate and consistent
prediction outcomes.

(2) We introduce an additional detection layer into the network architecture to extract
detailed deep features of dim and small objects, addressing the issue of informa-
tion loss while improving the network’s generalization capability for multi-scale
object detection.

(3) We propose an adaptive channel convolution module (ACConv), which reduces
parameters and computational load significantly by calculating only the channels
with larger weights (selected by SE module), thereby reducing redundant feature
computation and improving network efficiency.

(4) We introduce a large separable kernel attention module into the pyramid feature
layer to help the model dynamically adjust the weights of feature mappings. This
allows the model to focus more on the feature regions that are more important for the
current task.

Knob

Objective Lens

Stand

Ocular Lens

Figure 1. Self-developed micro-light sight.
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2. Related Works
2.1. Traditional Object Detection Methods

The three primary steps of traditional object detection algorithms are feature extrac-
tion, classification, and region proposal (sliding window). The process of choosing a subset
of data with particular area features from datasets in domains like machine learning is
commonly referred to as region proposal. Feature extraction involves obtaining from initial
data representative features for use in further data analysis and machine learning tasks.
Classification mostly entails data analysis and learning. Decision trees are usually used in
region proposal. Feature extraction is carried out using methods like the HOG (historical
oriented gradient), deformable part models [11] and local binary patterns (LBPs) [12]. The
HOG divides the image into small connected regions (cells), calculates the histogram of
gradient directions within each cell, and then normalizes and combines these histograms
to form the feature vector of the image. DPM is a part-based object detection method
that captures object shape variations by decomposing the object into multiple deformable
parts. Each part is represented by a linear support vector machine (SVM) model based
on HOG features and is connected through elastic links. LBP is an operator for texture
description that generates binary patterns by comparing each pixel with its neighboring
pixels. Subsequently, classifiers like SVM [13] and AdaBoost [14] are used to classify the
extracted features. SVM finds an optimal hyperplane that maximizes the margin between
different classes. This hyperplane separates the data points of different classes, ensuring
that the data points are as far from the hyperplane as possible. AdaBoost creates a strong
classifier by combining multiple weak classifiers, such as decision stumps. Weak classifiers
are those that perform slightly better than random guessing when applied individually.
Felzenszwalb et al. proposed using deformable part models to handle variations in target
feature. Selecting search ensures variation in the search process and boosts efficiency by
combining segmentation and exhaustive search [15]. Oxford-mlk combines the benefits of
cascaded support vector machines and oriented gradient feature histograms to detect [16].
Nlpr-hogllbp proposes a context-based object detection method that improves detection
performance by considering the relationship between the object and its surrounding en-
vironment. Additionally, the paper introduces an enhanced HOG-LBP feature, which
combines HOG and LBP to improve the accuracy of object detection [17]. A self-learning
pedestrian dependability detection system was suggested by Liu et al. [18]; the main inno-
vation lies in proposing a self-learning framework for pedestrian detection. This framework
can adapt any offline-trained detector to specific scenes, achieving better performance. Af-
ter locating the motion regions in the scene, features are extracted from the motion regions
using support vector machines. Lastly, in the classification stage, self-learning is used to
rectify targets that were incorrectly classified.

2.2. Deep Learning Object Detection Methods

In general, there are two types of neural network object detection algorithms. One is a
one-stage algorithm that directly outputs the target location and category. The YOLO, first
proposed by Redmon et al. [19], is a typical representative of the one-stage algorithm. Since
then, the algorithm has evolved continuously, and has successively derived several versions
such as YOLOv2 [20], YOLOv3 [21], YOLOv4 [22], YOLOv5 [23], YOLOv7 [24], etc.; each of
them have different optimizations and enhancements in detection accuracy and speed.
The second sort is the two-stage algorithm, which produces region suggestions initially
followed by performing classification and localization. Representative examples of this
category include region-based Faster R-CNN and Fast R-CNN [25].

The YOLO networks use the whole picture as input, and output the regression target
box’s class and location. This significantly improves detection speed. YOLOv1 pioneered
the transformation of object detection into a regression problem, predicting bounding
boxes and class probabilities directly through a single neural network model. YOLOv2
introduced anchor boxes and passthrough layers, enhancing the detection capability for
small objects. YOLOv3 adopted multi-scale prediction and feature pyramid network (FPN),
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improving detection accuracy for objects of different sizes. YOLOv4 made multiple im-
provements in data augmentation, loss functions, and network architecture, enhancing
performance and generalization ability. YOLOv5 primarily optimized network structure
and loss functions, introducing new techniques such as adaptive anchor box calculation
and positive sample matching strategies. YOLOv6 added new strategies for handling
large-scale data processing and further refined anchor box handling. YOLOv7 introduced
advanced technologies including the efficient latent attention network (ELAN), reparame-
terized convolution, and dynamic label assignment. By combining the outputs from several
layers, Gong et al. [26] presented an enhanced feature-fusion-based detection approach
that improves both recognition speed and accuracy. The convolutional block attention mod-
ule, that Woo et al. [27] developed, improves channel and spatial information and, hence,
increases the feature extraction capacity. Hu et al. [28] proposed the squeeze-and-excitation
(SE) module, which explicitly models the interdependence between convolutional feature
channels. The Swin-Transformer module, which outputs multi-scale feature information
by using distinct downsampling feature maps from successive stages, was introduced
by Liu et al. [29]. Chen et al. [30] constructed hierarchical residual connectivity within
residual blocks to express multi-scale features at finer granularity levels. A pedestrian
detection algorithm based on small sample datasets was proposed by Xu et al. [31]. They
increased the dataset size using patch data augmentation methods. This method improved
the model’s overall performance without changing the existing dataset and network size.
A transformer-based multi-scale feature fusion detection network was created by Chen and
Guo [32]. The transformer improves pedestrian detection during the detection stage by
capturing global information and successfully addresses long-distance reliance mechanisms
among picture pixels. The attained detection accuracy was 78.5%.

2.3. Small Object Detection Methods

One common issue with existing detection frameworks is the recognition of small
targets. Within the domain of detecting tiny faces, Bai et al. [33] proposed using a super-
resolution network to upsample blurry low-resolution images into finely detailed high-
resolution images, aiming to enhance spatial information in advance. Later, a multi-task gen-
erative adversarial network was suggested by Bai et al. [34] to restore detailed information
for more precise detection. Despite their impressive performance, they experience a heavy
computational load because of the introduction of additional super-resolution networks.

The existing models either exhibit low recognition rates for dim and small targets or
cannot be effectively deployed due to the large computational complexity and parameter size.

3. Methodology
3.1. Overall Architecture

The four primary parts of the DS_YOLO algorithm are the input, backbone, neck,
and head. The DS_YOLO is shown in Figure 2. The feature extraction and feature fusion
networks were redesigned based on the characteristics of small targets. Specifically, we
developed a dedicated detection layer tailored for dim and small objects, enhancing the
fusion of information across different stages. To ensure the model’s generalization capability
and robustness, we retained the detection layer for large objects. This method preserves
the accuracy of general size object detection while simultaneously increasing the accuracy
of small object detection. Next, a novel convolutional module, ACConv, is designed to
extract representative channel features for deeper computation, with the remaining channel
features serving as supplementary information for subtle details. This not only ensures
detection accuracy but also drastically lowers the computing burden and quantity of
parameters. For the misalignment between target classification and detection tasks, the
LTD_Head is proposed as a lightweight dynamic task alignment detection head. It utilizes
interactive features to align classification and detection tasks, thereby improving detection
accuracy. The model becomes lighter by dramatically reducing the number of parameters
through the utilization of shared convolution. Lastly, an innovative design is applied to the
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SPPF module to create the SPPFLska module, addressing semantic conflicts at the pixel
level that arise when combining different-sized pooling layers. This prevents the loss of
important feature information.

Figure 2. The structure of DS_YOLO.

3.2. Adaptive Channel Convolution (ACConv)

We observed a high degree of similarity between feature maps from different channels.
However, it is challenging to determine whether these highly similar features are redundant
or contain important details. Therefore, we designed a plug-and-play segmentation-based
convolution operation module called ACConv, which selects representative channel fea-
tures for deeper computation, instead of directly removing uncertain redundant features.
This method lowers memory usage and processing burden in addition to effectively pre-
venting the model from overfitting due to learning redundant information. Specifically,
we compute the weights of each channel, where F represents the input features. After
computing the channel weights through the SE module, we multiply these weights by the
original input features:

F′ = SE(F)
⊗

F (1)
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We sort the input feature maps based on the channel weights, dividing them into represen-
tative part Cp channels and uncertain redundant part (C − Cp) channels, where the size of
Cp is determined according to the specific application requirements:

Cp = C/div (2)

The only FLOPs of ACConv are

FLOPs = h × w × k2
c × C2

p + (kp − 1)× (w/stride)2 + C2
p (3)

Through deeper computation, intrinsic information is extracted from the representative part,
while the uncertain redundancy remains untouched, preserving subtle hidden details, as
shown in Figure 3. Simply removing the remaining (C − Cp) channels would deviate from
our goal of reducing redundant features, turning ACConv into a convolution with fewer
channels. By only selecting partial channels for convolution, the number of parameters
in each convolutional kernel can be greatly decreased. This implies that the number of
weights that must be kept in the model will be significantly decreased, thereby saving
storage space, reducing the quantity of parameters, and lowering computational costs. This
implies that we can deploy the model on smaller devices or run the model more efficiently
in resource-constrained environments, which is particularly useful for mobile devices,
embedded systems, or edge computing scenarios.

Figure 3. The structure of the ACConv module. SENet utilizes a channel attention mechanism.
After computing the weights for each channel to obtain F′, it selects the top-ranked channels F2 for
convolutional operations, while the remaining channels F1 undergo average pooling. Subsequently,
the features from these two parts are separated, processed, and concatenated to generate a new
feature representation.

3.3. Lightweight Task Align Dynamic Detect Head (LTD_Head)

The classification task focuses on learning to discriminate features, while the localiza-
tion task works on accurately locating the whole object and its boundaries. The classification
and localization tasks’ distinct learning methods mean that when predicting through two
independent branches, there may be some misalignment because of differences in the
geographical distribution of the traits that were learned from the two tasks. To address this
issue, we drew inspiration from the task-oriented object detection (TOOD) [35] concept
and designed the LTD_Head.

Specifically, each element Inputi from the feature list Input is sequentially passed into
the LTD_Head module. Firstly, through the feature extractor, the module uses several
convolutional layers to learn task-interaction characteristics, resulting in the interaction
feature Feati. To better decompose the tasks of target localization and target classification,
the decomposition weights wi for each task are computed based on Feati:

wtask
i = σ(sconv2(δ(sconv1(Feati)))), ∀i ∈ {1, 2, ..., N} (4)
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Here, sconv1 and sconv2 represent stacked convolutions, mapping features to a lower-
dimensional feature space to enhance the model’s nonlinear expressive capability. δ rep-
resents ReLU, σ represents sigmoid, and N denotes the incoming feature list’s size, i.e.,
the number of input features. Interacting features inevitably introduce certain feature
conflicts between two different tasks. Therefore, specific features for each classification
or localization task are calculated separately, by multiplying their respective weights and
interacting features Feati, to obtain the decomposed features for each task:

Feattask
i = Feati

⊗
wtask

i (5)

Next, we compute the spatial probability map (prob) for performing alignment in the
classification task:

Probi = σ(conv2(δ(conv1(Featcls
i )))) (6)

where conv1 and conv2 represent regular 2D convolutions, followed by adjusting the
classification prediction task using the spatial probability map to obtain the aligned results:

Zcls
i = Probi ∗ Feattask

i (7)

For the localization task, we calculate the spatial offset map for the interaction feature Feati,
resulting in the localization task result as shown in Equation (8):

Zbox
i = s(conv3(dy(Featbox

i , o f f set))) (8)

dy represents dynamic convolution, conv3 represents ordinary 2D convolution, s repre-
sents scaling, the ultimate outcome is derived by concating the outputs from these two
distinct tasks. This module reduces the model parameter volume by using multiple shared
convolutions, making the model lighter, and adopts group normalization to enhance the
performance of detection head localization and classification. Then, in the localization
branch, LTD_Head uses DyDCNV2 and interactive feature generation to obtain offsets
and masks to achieve accurate object localization. Meanwhile, in the classification branch,
LTD_Head utilizes interactive features for dynamic feature selection to enhance the manifes-
tations of the classification task, making the model more efficient and accurate in practical
applications. The structure is shown in Figure 4.

Figure 4. The structure of the LTD_Head module.

3.4. Spatial Pyramid Pooling-Faster with Large Separable Kernel (SPPFLska)

In traditional convolutional neural networks, pooling layers typically use fixed pooling
levels and fixed pooling sizes. This approach leads to information loss for images of
different sizes, thus affecting the model’s accuracy. The SPPF spatial pyramid pooling
method can adaptively pool input images of different sizes, thereby better preserving
image information. However, during the pyramid pooling process, reducing computational
complexity comes at the cost of inadequate capture of fine details in images. Combining
different sizes of pooling levels can also lead to semantic conflicts at the pixel level, thereby
erasing some important feature information.

Therefore, this method introduces the large separable kernel attention module [36],
which splits the depth convolutional layer’s 2D convolution kernel into cascaded one-
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dimensional convolution kernels in the horizontal and vertical directions. This eliminates
the need for extra blocks and permits the use of deep convolutional layers with huge
convolution kernels in the attention module, and reduces computational complexity and
memory usage. This module helps the model dynamically adjust the weights of feature
maps, facilitating the model to focus more on feature regions that are more crucial for the
job at hand. Combining the spatial pyramid pooling method allows for feature extraction
on various scales, increasing the model’s capacity for perception. This enables it to better
capture important information at different scales and positions within images, thus raising
the accuracy and robustness of the model. The computation for the parameter volume of
the attention calculation module LSKA is Equation (9), indicating that this is a low-cost
attention mechanism.

Param = C × (2d − 1)× 2 + C × [
k
d
]× 2 + C × C (9)

As the convolution kernel’s size grows, SPPFLska tends to focus more on the shape of
objects rather than the texture. Figure 5 provides an illustration of the SPPFLska module.

The final output feature F′′ is represented by the following equation, where cat stands
for concatenation, dwd for dilated depthwise convolution, dw for standard depthwise
convolution, and sp for SPPF:

F′ = conv(dwd2(dw2(sp(F)))) (10)

F′′ = conv(cat(F′, sp(F))) (11)
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Figure 5. The structure of the SPPFLska module.

4. Experimental Results and Analysis
4.1. Experimental Settings and Dataset

The experimental setup consists of the PyTorch neural network framework and the
Ubuntu 20.04 operating system. Refer to Table 1 for further details about the experimental
setup in detail. Table 2 contains the parameters that were used in the training process.

The experiment is conducted on the CityPersons, WiderPerson, DOTA, and TinyPerson
datasets. CityPersons [37] is a subset of the Cityscape dataset, and for each frame in the
finely annotated subset of 5000 frames, CityPersons has created high-quality bounding box
annotations for pedestrians. A total of 1575 photos are used for testing, 500 for validation,
and 2975 for training. The CityPersons dataset documents various scenes from several
cities and countries in Europe. The pictures are 2048 × 1024 in resolution. Additionally,
the dataset includes labels for four categories: pedestrian, rider, sitting person, and other
person. These are uniformly categorized as the “person” class for training purposes.
WiderPerson [38] images are annotated with five types of annotations. This dataset contains
densely populated pedestrians with varying degrees of occlusion, challenging model
detection performance in complex outdoor backgrounds. The WiderPerson dataset, which
includes photos chosen from a variety of scenes rather than just traffic situations, is the
benchmark dataset for recognizing pedestrians in outdoor environments. In this paper,
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9000 publicly annotated images are proportionally divided into 1800 photos for validation
and 7200 images for training. Before conducting experiments, irrelevant data that may
interfere with person detection in the original dataset are removed, and all remaining
person targets are classified into the same category. A comprehensive benchmark for object
detection in aerial photos is the DOTA [39] dataset, containing thousands of images and
annotated instances across 15 categories. It is intended to aid in the study and advancement
of object detection techniques from an aerial perspective, which are frequently employed
in monitoring and remote sensing applications. TinyPerson is a small object detection
dataset proposed in the context of maritime rapid rescue. TinyPerson contains 1610 labeled
images and 759 unlabeled images (both primarily from the same video set), with a total of
72,651 annotations.

Table 1. Experimental configuration.

Name Parameter

Operating system Linux
Programing language Python3.8

CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz
GPU NVIDIA GeForce RTX 2080

Pytorch 1.11.0
CUDA 11.6

Table 2. The training hyperparameters in the experiment.

Hypeparameters Value

Epoch 300
Batch size 8

Initial learning rate 0.01
Optimizer SGD

4.2. Evaluation Metrics

The tests assess the models’ detection performance using mean mAP, precision, recall,
parameters, and GFLOPs.

(1) mAP represents the average precision for each category of detection, calculated by
the following formula:

mAP =
1
c

c

∑
i=1

∫ 1

0
Pi(Ri)dRi (12)

In this case, c stands for the total count of detection categories. i is a representation of the
number of findings. mAP is the mean of AP across all categories. mAP@0.5 indicates the
average precision at an IoU threshold of 0.5, and mAP@0.5:0.95 represents the average
precision across IoU thresholds from 0.5 to 0.95 in steps of 0.05.

(2) Precision represents the accuracy of the model in detecting targets:

P =
TP

TP + FP
× 100% (13)

FP denotes the number of false positive samples that were mistakenly projected as negative,
and TP is the number of true positive samples that were anticipated as positive.

(3) Recall evaluates the model’s capacity to accurately recognize genuine positives:

R =
TP

TP + FN
× 100% (14)

(4) Params indicates how many parameters the model has in memory (unit: M).
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(5) GFLOPs is short for “Giga Floating Point Operations Per Second”, signifying the
quantity of floating-point operations carried out in a second, typically in the billions. This
parameter is generally used to measure the performance of computing systems.

4.3. Experimental Results and Analysis
4.3.1. Ablation Experiment

The YOLOv8n algorithm serves as the baseline in this section. Several improvement
strategies proposed in this paper are evaluated through ablation experiments, aimed at
gaining a deeper understanding of their effects on detection performance. There are six
groups of ablation experiments carried out, using mAP, Params, Precision, GFLOPs, and
Recall as metrics for evaluation. In these experiments, ✓ indicates the adoption of the
respective method. The results of the ablation experiments performed on the CityPersons
dataset are shown in Table 3.

Table 3. Ablation experiment.

Model SPPFLska ACConv LTD_HEAD Add One
Head

mAP@0.5/% P R Params/M

Baseline 62.28 77.34 53.51 3.01
Exp1 ✓ 63.29 82.13 50.76 3.21
Exp2 ✓ 62.46 78.49 53.14 2.82
Exp3 ✓ 63.11 77.86 52.18 1.94
Exp4 ✓ 64.30 78.72 54.28 2.92
Exp5 ✓ ✓ ✓ ✓ 66.60 79.5 56.71 2.03

The data in Table 3 indicate that on the CityPersons dataset, Exp1 improves the
average precision mean mAP@0.5 by 1.01% by incorporating a large separable kernel at-
tention mechanism into the SPPF module. By incorporating large kernels, the SPPFLska
module can successfully capture long-range dependencies while maintaining a reduced
computational footprint. On the baseline model, Exp2 adds an adaptive channel convo-
lution module, resulting in a notable decline in computational complexity and parameter
count, with a 0.18 M parameter reduction in comparison to the baseline model. After
computing the features from the input, weights are assigned to each feature, selecting
those deemed most significant as representative features for convolutional computation.
The remaining features are utilized as supplementary detail features, as illustrated in
Figure 6. The mAP@0.5 value increases by 0.2%, indicating a slight improvement in detec-
tion accuracy while lightening the network. Task alignment detection is a method employed
in the domain of recognizing objects to optimize two subtasks: target classification and
localization. In one-stage object detection algorithms, heads with two parallel branches are
typically used, which could lead to some level of spatial misalignment between the two
tasks’ results. Exp3 introduces a lightweight task-aligned detection head, leading to a nearly
1% increase in mAP@0.5 value, highlighting the importance of alignment between classifi-
cation and localization tasks in detection tasks. Exp4 incorporates a tiny object detecting
layer for detecting small objects, showing significant improvement with a 2.02% increase
when comparing in mAP@0.5 to the baseline model. Exp5, the DS_YOLO, integrates all
the aforementioned improvements, resulting in a gain of 2.16% in precision, 3.2% in recall,
and 4.32% in mAP@0.5. The above results show that combining the four improvement
modules can significantly increase detection precision while lowering the number of pa-
rameters and processing complexity, and the combined effect is superior to individual use.
Figure 7 illustrates the training process visualization, with training epochs represented by
the horizontal axis. The recall curve and mAP@0.5 curve of Exp5 are consistently above
the other curves, and the parameter count of the network has been significantly reduced to
2.03M, confirming the effectiveness of the DS_YOLO network. Since the dataset does not
include annotations for the background and only has annotations for the human category,
the FN and TN metrics will be artificially high and low, respectively. Therefore, we mainly
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compare the TP and FP metrics. As shown in Figure 8, compared to the baseline model,
our model shows an increase in TP by 0.05 and a decrease in FP by 0.05. This indicates an
improvement in the model’s ability to correctly identify positive samples and a reduction
in the rate of incorrectly identifying positive samples.

(a) (b)

Figure 6. The top-left image represents the original picture. (a) The feature maps inputted into
ACConv, with the feature maps encircled in red boxes selected as representative features. (b) The
feature maps outputted by the ACConv module.

(a) mAP@50 (b) mAP@50-95

(c) Precise (d) Recall

Figure 7. Parameter curve graph.
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(a) (b)

Figure 8. Panel (a) shows the confusion matrix of the baseline model, while panel (b) shows the
confusion matrix of our model. In the matrices, the top-left corner represents the TP metric, the
bottom-left corner represents the FP metric, the top-right corner represents the FN metric, and the
bottom-right corner represents the TN metric.

4.3.2. Comparison of Different Detection Algorithms

Comparative studies were performed by comparing the DS_YOLO with other pop-
ular YOLO object identification algorithms to more thoroughly assess the performance
of the DS_YOLO such as Faster-RCNN [40] and SSD [41], as well as YOLOv3 [21],
YOLOv4-Tiny [42], YOLOv5s [23], YOLOv7-Tiny [43], and YOLOv8n. In order to ensure
fairness in detection performance, all experiments were conducted with the same number
of epochs on the same device. Table 4 displays the outcomes of the comparisons conducted
on the CityPersons dataset.

Table 4. Comparative experiments on the CityPersons dataset.

Model mAP@0.5/% P/% R/% Params GFLOPs

Faster-RCNN 39.5 69.4 63.6 136.8 370.0
RepLoss 39.1 50.3 46.9 112.2 183
ALFNet 43.1 55.9 48.7 23.5 171

GoogleNet 42.63 63.6 47.3 5 2
SSD 33.3 51.7 56.8 26.3 8.5

RetinaNet 41.3 52.1 47.2 34.3 37.4
DETR 43.4 56.0 48.2 41 86

YOLOv3 40.6 49.7 50.6 61.9 66.3
YOLOv4-tiny 30.2 65.4 51.3 6.4 21.8

YOLOv5s 53.4 67.7 50.3 7.2 16.6
YOLOv7-tiny 54.6 71.2 48.9 6.0 13.2

YOLOv8n 62.3 77.3 53.5 3.0 8.9
DS_YOLO(ours) 66.6 79.5 56.7 2.0 6.4

From Table 4, it is evident that Faster-RCNN, SSD, YOLOv3, and YOLOv4-Tiny have
lower detection accuracy compared to other networks, failing to meet the accuracy require-
ments for detection. Additionally, these models have higher computational complexity
and longer inference times, making them unsuitable for rapid detection tasks. In contrast,
the improved DS_YOLO algorithm strikes a more suitable equilibrium between detection
speed, parameter count, and model accurateness when compared to YOLOv5s, YOLOv7-
tiny, and YOLOv8n. This demonstrates its advantage in detecting dim and small objects, as
targeted in this study. Compared to the baseline models, the DS_YOLO achieves a 4.32%
increase in accuracy on the CityPersons dataset, while reducing parameter count by 0.97 M.
The GFLOPs are also reduced to 6.4, with a marginal improvement in accuracy and speed
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of recognition. This indicates the algorithm’s strong feature perception and extraction
capabilities for dim and small targets.

4.3.3. Generalization Experiment

This paper also conducts comparative experiments on the WiderPerson, DOTA, and
TinyPerson dataset to verify the generalization of the model in detecting dim and small tar-
gets in complex environments. As Table 5 shows, the DS_YOLO continues to demonstrate
excellent performance on the WiderPerson and DOTA datasets, achieving a 1.01% improve-
ment over the baseline model on WiderPerson and a 1.69% improvement on the DOTA
dataset. It outperforms other mainstream detection algorithms and exhibits strong general-
ization capabilities. In summary, the results analysis indicates that our model, DS_YOLO,
achieves a balance between detection performance and model computational complexity
in dim and small object detection tasks, demonstrating overall excellent performance.

Table 5. Comparative experiments on the WiderPerson, DOTA, and TinyPerson datasets.

Model
WiderPerson Dataset DOTA Dataset TinyPerson Dataset

mAP@0.5/% Params GFLOPs mAP@0.5/% Params GFLOPs mAP@0.5/% Params GFLOPs

Faster-
RCNN 61.5 136.8 370.0 54.1 136.8 370.0 5.1 136.8 370.0

RepLoss 61.2 112.2 183 65.2 112.2 183 3.6 112.2 183
ALFNet 60.1 23.5 171 72.1 23.5 171 44 23.5 171

GoogleNet 59 5 2 49.5 5 2 6.2 5 2
SSD 57.4 26.3 8.5 50.1 26.3 8.5 3.7 26.3 8.5

RetinaNet 52.0 34.3 37.4 29.9 34.3 37.4 3.9 34.3 37.4
DETR 49.8 41 86 53.5 41 86 6.3 41 86

YOLOv3 60.3 61.9 66.3 60.0 61.9 66.3 16.3 61.9 66.3
YOLOv4-

tiny 64.1 6.4 21.8 64.4 6.4 21.8 10.9 6.4 21.8

YOLOv5s 68.2 7.2 16.6 67.9 7.2 16.6 11.3 7.2 16.6
YOLOv7-

tiny 70.6 6.0 13.2 70.1 6.0 13.2 13.2 6.0 13.2

YOLOv8n 74.6 3.0 8.9 81.2 3.0 8.9 18.1 3.0 8.9
DS_YOLO 75.57 2.0 6.4 82.8 2.0 6.4 18.9 2.0 6.4

4.4. Detection Result
4.4.1. Detection Result Comparison on Datasets

A contrast of the detection performance of the initial model and the model suggested
in this work is shown in Figure 9. The input images for detecting are displayed in the
first row, the original model’s detection results are shown in the second row, and the
suggested model’s recognition results are shown in the third row. It is evident from the
detection images that the first baseline network model has low confidence ratings and
missed detections. In contrast, our proposed DS_YOLO model can accurately identify and
predict bounding boxes for weak pedestrians missed by the baseline network, resulting
in relatively more accurate detections and improved confidence scores. This visualization
demonstrates that the improved network enhances the detection performance of weak
pedestrian targets on complex road surfaces.

4.4.2. Detection Result on Micro-Light Sight

The micro-light data are collected by a micro-light detector in the smart micro-light
sight. The response wavelength range of this detector is 380–940 nm, encompassing a
broad spectrum from visible to near-infrared light. This allows the images to retain rich
detail and contrast even under micro-light conditions, although the images may still appear
somewhat dim. Additionally, due to the long focal length and narrow field of view of
the smart micro-light sight, the targets in the collected images tend to be small and dim.
In this section, we used our models trained on the previously mentioned public datasets
to detect images collected by the smart micro-light sight. Figure 10 shows the detection
results of DS_YOLO on images captured by the smart micro-light sight. It is evident that
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the ability of detection for small and dim targets against complex backgrounds is excellent,
with virtually no missed detections, even in densely populated scenes.

Ours

(b)

(a)

YOLOv8n

Original

Ours

YOLOv8n

Original

Ours

YOLOv8n

Original

Original

Original

Original

Original

(c)

Figure 9. (a,b) Comparison of dim and small pedestrian detection results. (c) Comparison of remote
sensing small object detection results.

The base model was successfully deployed on the RK3588 chip, with an inference
time of approximately 40 ms. Our subsequent task is to optimize the model deployment
to achieve real-time performance, which appears to be highly feasible. When deploying a
trained model onto hardware, the supported operators of the hardware significantly impact
the deployment workload and time. Some operators in this model are not supported by
Rockchip’s chips, necessitating the creation or optimization of custom operators. This
situation is similar for other chips, where the deployment workload and final model perfor-
mance are significantly impacted by the operators supported by the specific hardware.
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Original

Micro-light 

sight

Original

Original

Micro-light 

sight

Micro-light 

sight

Figure 10. Detection result for micro-light sight every 50 frames.

5. Conclusions

In this work, we presented a detection method that is lightweight and designed to
identify small and dim objects with complicated backgrounds, named DS_YOLO. We
innovatively improved the network architecture to address small-scale targets, and intro-
duced large-kernel convolution attention into the pyramid pooling module, to avoid the
information about small things from gradually disappearing during computation, thereby
better capturing vital information about small-scale targets in images. Additionally, the
proposed lightweight task alignment detection head (LTD_Head) and adaptive channel
convolution (ACConv) increased task identification accuracy while drastically lowering
the model’s computational overhead and parameter count. Our methodology beats pre-
vious state-of-the-art methods in terms of both quantity and quality, as demonstrated by
experimental data, while maintaining comparable parameters, thus alleviating the trade-off
between performance improvement and parameter reduction. Our ultimate goal is to
deploy the model on hardware for practical use, so the core of our future work will focus
on addressing issues related to the deployment process. Given that the current base model
deployment is successful but slightly falls short of achieving real-time performance, it is
highly likely that our model can achieve real-time capabilities. When deploying the trained
model onto hardware, the operators supported by the hardware will significantly impact
the deployment workload and time. Some operators in this model are not supported by
the Rockchip chip, necessitating the creation or optimization of custom operators. This
situation is similar with other chips, where the deployment workload and final model
performance are significantly affected by the operators supported by the specific hardware.
Therefore, in our future work, we will convert the trained model into a format that is
readable and executable by the hardware, followed by continuous optimization based on
practical considerations.
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