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Abstract: Image inpainting aims to restore the damaged information in images, enhancing their
readability and usability. Ancient paintings, as a vital component of traditional art, convey profound
cultural and artistic value, yet often suffer from various forms of damage over time. Existing ancient
painting inpainting methods are insufficient in extracting deep semantic information, resulting in the
loss of high-frequency detail features of the reconstructed image and inconsistency between global
and local semantic information. To address these issues, this paper proposes a Generative Adversarial
Network (GAN)-based ancient painting inpainting method using multi-layer feature enhancement
and frequency perception, named MFGAN. Firstly, we design a Residual Pyramid Encoder (RPE),
which fully extracts the deep semantic features of ancient painting images and strengthens the
processing of image details by effectively combining the deep feature extraction module and channel
attention. Secondly, we propose a Frequency-Aware Mechanism (FAM) to obtain the high-frequency
perceptual features by using the frequency attention module, which captures the high-frequency
details and texture features of the ancient paintings by increasing the skip connections between the
low-frequency and the high-frequency features, and provides more frequency perception information.
Thirdly, a Dual Discriminator (DD) is designed to ensure the consistency of semantic information
between global and local region images, while reducing the discontinuity and blurring differences
at the boundary during image inpainting. Finally, extensive experiments on the proposed ancient
painting and Huaniao datasets show that our proposed method outperforms competitive image
inpainting methods and exhibits robust generalization capabilities.

Keywords: ancient painting inpainting; generative adversarial networks; multi-layer feature
enhancement; frequency perception

1. Introduction

As a treasure of traditional art, ancient painting, with its unique aesthetic concepts and
expressive methods, not only reflects the people’s pursuit of harmonious coexistence with
nature, but also contains deep philosophical thinking and spiritual support. The creation
of ancient paintings often combines poetry, calligraphy, painting, printing and other art
forms, showing the rich connotation and artistic charm of traditional culture [1]. However,
many artworks are exposed to various risks of damage due to physical damage, biological
erosion, and other environmental factors. Such damage compromises the integrity of the
works, diminishes their artistic expression, and erodes their historical significance. To this
end, ancient painting inpainting has emerged as a basic task in computer vision which
aims to restore the missing parts of an image and repair damaged areas, thereby preserving
the visual and historical integrity of the artwork [2,3].

Traditional image inpainting primarily relies on pixel diffusion and pixel block repair
methods. Typical algorithms include the variation segmentation-based repair method [4], the
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curvature-driven diffusion repair method [5,6], and the fast nearest neighbour algorithm [7].
Segmentation-based methods [4] can usually only repair the image within a relatively small
area of the missing area, and are limited by the pixel information around the missing area,
which makes it difficult to repair real-world images with complex textures and art. It is
difficult to repair real-world images with complex texture detail information. Pixel block-
based repair methods [7] are better than diffusion-based methods, but their computational
volume increases significantly, and they can only repair missing regions similar to those
in the training set, and the repair effect relies heavily on the original dataset. Although
the digital inpainting method [8] has improved inpainting efficiency to a certain extent,
there are still limitations in maintaining the original style and artistry, and it is difficult to
completely restore the original appearance and charm of the work. In short, traditional
image inpainting methods [4–7] rely on manual techniques, which are insufficient to meet
the needs of contemporary society for efficiency and large-scale processing capabilities.

Recently, with the continuous development of deep learning [9], image inpainting
methods [10,11] based on deep learning have achieved remarkable results. Compared
with traditional image inpainting methods, Generative Adversarial Network (GAN [12])-
based image inpainting methods have good robustness and generalization ability. Among
them, Conditional GAN [13] is able to control the generation process more accurately
by introducing conditional variables, and provides a new technological path for ancient
paintings inpainting. Xue et al. [14] proposed an end-to-end network SAPGAN for the
inpainting of ancient paintings, which is the first model to generate ancient paintings from
start to finish without conditional inputs. SAPGAN consists of two GANs for generating
edge images and edge-to-paint conversion. Yang et al. [15] proposed an ancient painting
perception method based on a semantic segmentation approach and designed a novel
ancient painting perceptual parsing model to make full use of the intrinsic features of
ancient painting images. Based on the multi-scale features of objects in ancient paintings, it
enables the model to learn appropriate perceptual fields to extract contextual information.
Peng et al. [16] proposed a transfer method from ancient photographs to ancient paintings,
incorporating a contour-enhanced translation branch designed to efficiently facilitate the
transition from photographs to paintings. The results demonstrate that this method can
effectively transform real ancient pictures into paintings. Sun et al. [1] proposed an
edge-guided ancient painting inpainting method based on the use of multi-scale channel
attention residual blocks to learn different levels of image features, and the design of
the self-attention module to improve the attention to the edge and detail features of the
image. However, the consistency of semantic information between global and local areas
is not fully considered, which leads to inconsistency between the restored image and the
original painting.

Although the above methods improve the inpainting capability of ancient paintings
to a certain extent, each painter has their unique style and brushwork, and the inpainting
needs to accurately mimic the style of the original painter to maintain the consistency of
the artwork. Existing methods do not fully utilize the high-level semantic information of
ancient painting images, resulting in restored images with poor detail and inconsistencies
between local and global styles.

The contributions of this paper can be summarized as:

(1) Innovative Deep Semantic Feature: ExtractionWe introduce a Residual Pyramid
Encoder (RPE) network tailored for extracting deep semantic features from ancient
paintings. This network innovatively combines a deep feature extraction module with
channel attention mechanisms, significantly enhancing the processing of image details
and facilitating the identification and reconstruction of missing image segments.

(2) Detail and Texture Feature Reconstruction: We propose a Frequency-Aware Mecha-
nism (FAM) that employs a frequency attention module to capture high-frequency
perceptual features. By strategically integrating skip connections between low- and
high-frequency components, FAM reconstructs the intricate details and textures of
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ancient paintings, effectively addressing the common challenge of high-frequency
detail loss in image painting.

(3) Dual Discriminator for Semantic Consistency: To ensure the restored image preserves
the semantic integrity of the original in both global structure and local details, we
present a dual discriminator approach. This mechanism guarantees semantic consis-
tency across the entire image and local regions during the inpainting process, reducing
boundary discontinuities and blur.

(4) Empirical Validation and Generalization: Our experimental and visualization results,
conducted on both the proposed ancient painting dataset and the Huaniao dataset, as
well as the publicly available CelebAHQ dataset, demonstrate that our method surpasses
competitive image inpainting methods, exhibiting robust generalization capabilities.

2. Related Work
2.1. Ancient Painting Inpainting

Ancient painting is an important part of traditional art, and its inpainting requires
not only exquisite skills but also a deep cultural heritage [2,3]. Traditional inpainting
methods [17] mainly include manual inpainting, copying and color replenishment, which
rely on the experience and aesthetics of the restorer. The restorer will carefully analyse
the damage to the painting. With the advancement of technology, image inpainting meth-
ods [18–21] have introduced digital techniques, such as high-resolution scanning, digital
image processing and 3D printing. These technologies can capture and analyze the details
of the paintings more precisely, providing a more scientific basis for image inpainting.

Deep learning possesses the capability to autonomously discern and distil key image
characteristics, which are essential for tasks such as recognition, classification, and image
inpainting. It has made significant progress in image inpainting [18,19]. Currently, the most
cutting-edge techniques for image inpainting are deep learning-based methods, which
use the proficiency of neural networks to accurately locate and reconstruct damaged or
missing image fragments. Common frameworks for these techniques include applying
Convolutional Neural Networks (CNNs [20]) to extract underlying features from images,
supplemented by Generative Adversarial Networks (GANs [21]) to construct indistin-
guishable inpainting areas. In addition, some methods use Recurrent Neural Networks
(RNNs [22]) and Transformer structures to handle sequence prediction problems, especially
when restoring image sequences or time series data. Dutta et al. [23] present an interactive
deep network for image restoration. The use of patch interaction terms and quantum-based
Hamiltonian operators for non-localized images significantly improves the task of image
restoration for each item. The application of deep learning in image inpainting not only
improves the accuracy and efficiency of inpainting, but also reduces the reliance on large
amounts of labeled data through self-supervised or semi-supervised learning, making the
inpainting process more flexible and adaptable.

In the specialized subfield of image inpainting, ancient painting inpainting, deep
learning is used to automatically identify and repair damaged parts of paintings, effectively
improving the efficiency and accuracy of inpainting work. Zhao et al. [24] developed a
multi-channel encoder to capture semantic features at different scales and then applied
these fine-grained features to the inpainting of ancient paintings. This method has the
problem of high-frequency detail information loss in image restoration, which leads to
inconsistency between the restored image and the surrounding area. Zhou et al. [25]
enhanced the accuracy of color inpainting in missing areas by extracting color data from
deep features. Additionally, they introduced a multi-stage feature refinement framework
that effectively transfers feature information from undamaged to damaged areas. However,
the lack of depth semantic information leads to poor fusion of deep semantic features
and detail features of images. Deng et al. [26] proposed a structure-guided model to use
structure to fill in complex and diverse damaged contents for the inpainting of ancient
paintings. In this manner, the consistency of semantic information between global and local
areas is not fully considered.
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Although the above methods improve the image inpainting effect to a certain extent,
they are not good at dealing with the problems of insufficient extraction of deep semantic
information, loss of high-frequency detail features and inconsistency of semantic infor-
mation between global and local areas. In order to solve the above problems, this paper
makes an improvement. Firstly, a Residual Pyramid Encoder (RPE) network is designed to
fully extract the deep semantic features and detail features of landscape painting images
and strengthen the ability to deal with image details. In addition, this paper proposes a
frequency-aware mechanism to capture and reconstruct the details and texture features of
ancient paintings, and provide more perceptual information to solve the problem of high-
frequency detail loss in image restoration. Finally, this paper designs a dual discriminator
to ensure that the semantic information of the global and local regions is consistent during
the restoration process.

2.2. Generative Adversarial Networks

Generative Adversarial Networks (GANs [12]) enable the network to generate high-
quality and realistic samples by introducing a unique adversarial training mechanism.
GANs have achieved remarkable results in many fields, such as image, speech, and text
generation, and have become one of the key technologies in deep learning [27]. In ancient
painting inpainting, the application of GANs shows great potential. Ancient paintings are
known for their unique artistic style and deep cultural heritage, but with time, many works
have suffered damage, fading, and breakage. Traditional inpainting methods [17] often rely
on manual copying and empirical judgement, which is not only time-consuming and labor-
intensive, but also makes it difficult to ensure that the inpainting effect is consistent with
the style of the original painting. Existing CNN-based methods [24–26] cannot generate
realistic texture details.

The application of GANs in this field is mainly reflected in their ability to generate
high-quality inpainting samples [28]. The generator extracts and reconstructs features by
progressively reducing and recovering the spatial dimensions of the image. U-Net [29]
utilizes its symmetric U-shape structure and hopping connections to preserve image details
and contextual information, while Transformer [30] handles global dependencies through
a self-attentive mechanism. The generator learns the deep features and artistic style of
ancient paintings and is able to generate restored images that are consistent with the style
of the original paintings. The discriminator is responsible for evaluating the quality of the
generated images and guiding the generator to optimize them by comparing them with real
samples. In the continuous adversarial learning process, the generator gradually improves
the authenticity and artistry of its generated images, and ultimately achieves the effect of
fake to real. In addition, GANs are able to handle a variety of complex damage situations
in the inpainting process, such as irregular broken areas and color degradation.

3. Methods
3.1. MFGAN Architecture

The model architecture of the MFGAN for ancient painting inpainting is depicted in
Figure 1. The MFGAN comprises a multi-layer residual pyramid generator and a dual
discriminator. Among them, the multi-layer residual pyramid generator is composed of a
residual pyramid encoder and a multi-layer decoder. The residual pyramid encoder fully
extracts the deep semantic features and detail features of the ancient painting image by
effectively combining the deep feature extraction module and the channel attention module,
and strengthens the ability to deal with the details of the image. Meanwhile, a frequency-
aware mechanism is introduced in the encoder network, and makes use of the frequency
attention module to obtain the high-frequency perceptual features of the image, and
capture and reconstruct the details and texture features of ancient paintings by increasing
the skip connection between low and high frequencies and providing more perceptible
information to solve the problem of high-frequency detail loss in image inpainting. The dual
discriminator consists of a global discriminator and a local discriminator to safeguard the
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semantic consistency of the restored image. During the training process of this network, the
multi-layer residual pyramid generator and the dual discriminator constantly interact with
each other and, finally, reach a balance to obtain semantically and visually superior images.

Figure 1. Overall architecture diagram of MFGAN including generator and discriminator.

3.2. Multi-Layer Residual Pyramid Generator

To delve into the profundity of semantic features, existing methods often attempt
to deepen the network, addressing the issue of superficiality in information retrieval.
However, this method may lead to some problems, such as slow convergence of the
network and increased error. Consequently, this paper introduces a multi-layer residual
pyramid generator designed to extract deep semantic features from images, comprising
a Residual Pyramid Encoder (RPE) and a multi-layer decoder. At the same time, the
Frequency-Aware Mechanism (FAM) uses a frequency attention module to obtain the high-
frequency perception features of the image and solve the loss of high-frequency details in
image inpainting.

3.2.1. Residual Pyramid Encoder

To solve the deficiency of ancient painting images in the acquisition of deep semantic
information, this paper designs a Residual Pyramid Encoder (RPE) network, which fully
extracts the deep semantic features and detail features of ancient painting images by effec-
tively combining the deep feature extraction module and the channel attention module. As
shown in Figure 2, RPE is designed to enhance the capacity for handling intricate image de-
tails and to facilitate the detection and reconstruction of missing image segments. The depth
of RPE is six layers, which captures feature maps from the highest layer to the lowest layer,
labeled f1 to f6. Each layer of RPE integrates convolutional blocks and residual modules to
support feature extraction and refinement of image details, enhancing the feature extraction
capability of the image. Each layer of residual block uses a depth-separable convolution
operation and residual connection, which reduces the parameters and calculation of the
model and improves the image inpainting efficiency. When processing high-resolution
images in time, the image inpainting efficiency will not change much.

The residual modules consist of a Bottleneck block and an Attention block. The
Bottleneck block splits the input feature map channel into left and right parts equally.
The right half of the split is convolved by 1 × 1 convolution to transform the channel
dimension to half of the output channel, and the feature scale is balanced by a BN layer
and a Silu activation function. The left half extracts fine-grained features through a deep
convolutional structure, and then the outputs of the left and right paths are spliced together,
and the channel dimension is reduced by deep separable convolution.
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Figure 2. Architecture of the residual pyramid encoder.

The Bottleneck block enhances the overall learning ability of the network to learn
richer and more abstract feature representations, thus capturing the details and texture
information in ancient paintings. Meanwhile, the Attention block is used to strengthen the
importance between channels and dynamically adjust the channel weights, which enables
the network to focus more on the feature channels that have a significant impact on image
inpainting, and enhances the RPE encoder’s ability to process local features. The Bottleneck
block is represented by

F1
1 = Conv3(Conv1(Conv1(Conv3(F))))⊕ F (1)

F2
1 = Silu(BN(Conv1(F))) (2)

F1 = PW Conv1

(
DW Conv3

(
Concat

(
F1

1 , F2
1

)))
(3)

where F is the input feature of the previous residual module, DW Conv3 is a 3 × 3 deep con-
volution, PW Conv 1 is a 1 × 1 point-by-point convolution, Concat is a splicing operation,
Silu is an activation function, and BN is a batch normalization operation.

After extracting the deep semantic features of the image through the Bottleneck
block, the Attention module is then used to enable the network to focus more on the
feature channels that have a significant impact on image inpainting and enhance the image
inpainting capability. The Attention block can be represented as:

F2 = Softmax(Conv1(F1))⊗ F1 (4)

Fout = Conv1(Conv1(F2))⊕ F1 (5)
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where Softmax is the activation function, Conv1 is the 1 × 1 convolution module, ⊗ is
element-by-element multiplication, and ⊕ is element-by-element addition.

3.2.2. Frequency-Aware Mechanism

To reconstruct the details and texture features of ancient painting images and maintain
the consistency and coherence between the repaired area and the surrounding area, this
paper proposes a Frequency-Aware Mechanism (FAM), which uses the frequency attention
module to enhance the frequency perception ability of the model, and uses frequency-
based skip connections to improve the extraction ability of high-frequency information.
The frequency-aware mechanism module is shown in Figure 3. Features are dissected
into an array of frequency bands through the application of a Discrete Wavelet Transform
(DWT [31]). By utilizing the Haar wavelet analysis technique, the input features are
separated into four distinct frequency components LL, LH, HL, and HH. In the frequency
domain, the texture and details of the painting are presented in the form of different
frequency components, with the high-frequency components usually associated with
details and edges, while the low-frequency components are associated with the overall
structure and smooth regions. By designing novel encoders, different frequency features
can be selectively enhanced or suppressed to highlight or smooth specific texture features.
To this end, we design skip-connected frequency-aware mechanisms to more accurately
predict and repair missing parts, maintaining the naturalness and realism of the image.

Figure 3. Frequency attention module.

DWT facilitates the breakdown of an image’s signal across a spectrum of distinct
frequency bands, where the LL component represents the approximate information of
the image and contains the main structural and appearance features, and LH, HL, and
HH represent the high-frequency components in the image and contain details and edge
features. The four frequency components are represented by the following equation:

(LLi, LHi, HLi, HHi) = DWT(Fi) (6)
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where Fi is the feature obtained from the i-th residual module of the encoder, DWT de-
notes the Discrete Wavelet Transform, and LLi, LHi, HLi, and HHi are four components of
different frequencies.

Then, the Frequency Attention Module (FAM) uses the deep convolution of 3 × 3 and
two 1 × 1 to obtain fine-grained frequency feature information, which is multiplied with
the original input features to obtain the individual channel weights. The original style of
painting is preserved through residual connection, which helps to alleviate the problems of
gradient disappearance and explosion, thus improving the stability and convergence of
the model. Thus, the network can identify and enhance the channels containing important
texture and detail features. The acquisition of high-frequency features and low-frequency
features can be expressed by

HF1 = Cat(LH, HL, HH) (7)

HF = Conv1(SiLU(Conv1(DWConv3)))⊗ HF1 (8)

LF = Conv1(SiLU(Conv1(DWConv3)))⊗ LL (9)

where HF denotes the obtained high-frequency features, LF denotes the obtained low-
frequency features, Cat denotes the splicing operation, DWConv3 denotes the 3 × 3 depth
convolution, Conv1 denotes the 1 × 1 convolution operation, and SiLU is the activa-
tion function.

Finally, as shown in Figure 1, we use the skip connection with the LL component in the
encoding stage to ensure that accurate and realistic image features are captured throughout
the feature extraction process. This approach effectively utilizes the global information of
the LL component to maintain the details and integrity of feature extraction. Secondly, we
introduce the skip connection with LH, HL, and HH components in the decoding stage to
ensure that the utilization of high-frequency features is effectively strengthened throughout
the feature reconstruction process, restoring more realistic texture details.

3.3. Multi-Layer Decoder

The model structure of the multi-layer decoder (MD) is shown in Figure 4. The multi-
layer decoder first takes the semantic feature map f6 of the highest layer in the residual
pyramid encoder as the input to the decoder. Next, the feature map f5 in the residual
pyramid encoder is combined with the decoded feature map f6 to obtain a new feature map
F6. After that, these feature maps are sequentially used as inputs to the decoder and they
are decoded to obtain the restored images F5, F4, F3, F2, and F1 at different scales. Finally,
the multi-layered residual pyramid generator model is optimized using pyramidal loss, i.e.,
the output images at different scales are optimized by computing the normalized chemical
distance between the output image and the original image at each scale to progressively
refine the final output.

Figure 4. Multi-layer decoder architecture.
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3.4. Dual Discriminator

To ensure that the restored image maintains the same semantic information as the
original painting in terms of global structure and local details, we designed a dual discrimi-
nator to avoid the semantic fragmentation that may occur in traditional methods, while
reducing the blurriness of the restored area and improving the visual quality of the image.

As shown in Figure 1, a Dual Discriminator (DD) contains a global discriminator
and a local discriminator. The global discriminator operates by receiving both the entire
reconstructed image and the original image as inputs, aiming to produce a similarity
probability value that reflects the overall consistency between the restored and the authentic
images in terms of semantics, color, and other visual aspects. On the other hand, the local
discriminator is designed to process the specific missing segments of both the restored
and the real images, generating a similarity probability value for these areas. This output
measures the likeness of the missing regions between the reconstructed and the actual
images, ensuring that the details in these localized areas are also accurately reflected. It
serves to ensure that the boundary has the same color. Unlike traditional discriminators,
the input in the dual discriminator can be not only square missing regions but also irregular
missing regions. The design ensures the overall consistency and regional consistency of the
generated image. Table 1 illustrates the architecture of the global discriminator, comprising
five convolutional layers and a single fully connected layer, culminating in the generation
of a 1 × 1024 dimensional feature vector. Table 2 presents the configuration of the local
discriminator, including four convolutional layers and one fully connected layer, similarly
yielding a 1 × 1024 dimensional feature vector.

Table 1. Global discriminator network architecture.

Layer Kernel Stride Output Channels Activation Function

Conv 5 × 5 2 64 ReLU
Conv 5 × 5 2 128 ReLU
Conv 5 × 5 2 256 ReLU
Conv 5 × 5 2 512 ReLU
Conv 5 × 5 2 512 ReLU
FC - - 1024 Sigmoid

Table 2. Local discriminator network architecture.

Layer Kernel Stride Output Channels Activation Function

Conv 5 × 5 2 64 ReLU
Conv 5 × 5 2 128 ReLU
Conv 5 × 5 2 256 ReLU
Conv 5 × 5 2 512 ReLU
FC - - 1024 Sigmoid

3.5. Loss Function

In the adversarial training process of the generator and discriminator, the loss function [32]
plays a crucial role. The generator within the network is responsible for creating smaller
images that correspond to the missing parts of the original. These smaller images, along
with the application of an embedding mask over the voids, are then integrated to form the
fully restored image, effectively concealing the areas that were previously absent. Therefore,
the global L1 loss is considered to be added to constrain the overall consistency of the image,
while TV loss is introduced to reduce the image noise and maintain the smoothness of the
boundary for the boundary prominence problem of the repaired region. The generator
losses include the adversarial loss, local L1 loss, global L1 loss, and TV loss as follows:

Loss(G) = uadv Lossadv +uL−L1 LossL−L1 +uG−L1 LossG−L1 +uTV LossTV (10)
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where Lossadv, LossL−L1, LossG−L1, and LossTV are the adversarial loss, local L1 loss, global
L1 loss, and TV loss. uadv, uL−L1, uG−L1 and uTV correspond to the weights of the four loss
functions, respectively. The TV loss helps to maintain the local smoothness and coherence,
while the global L1 loss ensures that the overall image consistency is preserved, and
important details, including the artist’s unique style, are not lost. This hybrid loss function
strategy aims to strike a balance between the competing goals of spatial smoothness and
detail preservation.

4. Experimental Setup
4.1. Datasets

We constructed two themed ancient painting datasets for ancient painting inpainting.
The ancient painting dataset includes 5798 ancient paintings with ancient themes, covering
ancient paintings from multiple historical periods, including different styles, such as ink
painting. All image works are scanned and quality-screened to ensure image resolution
and clarity. The size of each image is uniformly 256 × 256 pixels. The training set accounts
for 80%, which is 4638 images, and the test set accounts for 20%, which is 1160 images.
The huaniao painting dataset contains 95 Huaniao paintings with flower and bird themes.
These paintings also come from different historical periods and styles. The size of each
image is also unified to 1024 × 1024 pixels. This dataset is also divided into an 80% training
set and a 20% test set, 76 and 19 images, respectively. We used a specific script to generate
the mask image. This script can adjust the image to the specified size, and automatically
generate multiple masks, pairing different mask images for each image, and finally form
an image, mask pair.

To verify the generalization of our method, we also employ the publicly available Cele-
bAHQ dataset [33] for further validation. CelebAHQ is a high-quality dataset comprising
30,000 face images, all uniformly resized to 256 × 256 pixels. Following standard prac-
tice, we allocated 80% of the dataset to the training set, which amounts to 24,000 images,
and reserved 20% for the test set, totaling 6000 images. To ensure fairness, all numeri-
cal experimental results in this experiment are obtained by training and testing with the
same dataset.

4.2. Experimental Setup

The system platforms used in this experiment are torch2.0.0, CUDA11.8, and the RTX
4090 (24 GB) graphics card. The parameters are set to a batch size of 16. The experiment is
divided into three phases: 100 epochs for T1, 100 epochs for T2, and 200 epochs for T3. The
hyperparameter is 0.00001, the learning rate is 0.0001, and Adam is used as the optimizer.

4.3. Evaluation Metrics

In this experiment, we used the Mean Absolute Error (MAE), the Peak Signal-to-
Noise Ratio (PSNR), the Structural Similarity Index Measure (SSIM [34]), and the Learned
Perceptual Image Patch Similarity (LPIPS [35]) as model performance evaluation indicators.

MAE is a simple image quality evaluation metric that is calculated. MAE is expressed by

MAE =
1
N

N

∑
i=1

|xi − yi| (11)

where xi and yi are the pixel values in the original image and reconstructed image, respec-
tively, and N represents the total number of pixels.

PSNR calculation is based on the mean square error (MSE). MSE is expressed by

MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

[I(i, j)− K(i, j)]2 (12)
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where I(i, j) and K(i, j) are the pixel values of images I and K at position (i, j), respectively.
M represents the height of the image or dataset, and N represents the width of the image
or dataset. Once the value of MSE is available, PSNR is expressed by

PSNR = 10 · log10

(
MAX2

I
MSE

)
(13)

where, MAXI is the maximum possible value of the image pixel.
SSIM can expressed by

SSIM = [l(x, y)c(x, y)s(x, y)] =

(
2µxµy + C1

)(
2τxy + C2

)(
µ2

x + µ2
y + C1

)(
τ2

x + τ2
y + C2

) (14)

where l(x, y), c(x, y), and s(x, y), respectively, represent the similarity of luminance, con-
trast, and structure. ux and uy are the average values of x and y, respectively, τx and
τy are their standard deviations, τxy is their covariance, and C1 and C2 are constants to
maintain stability.

LPIPS is an advanced measurement method for measuring the visual similarity be-
tween images. When evaluating the quality of generated images, LPIPS provides an
evaluation method that is closer to human visual perception. It solves the problem that
traditional crispy chicken measurements cannot reflect differences in human visual percep-
tion. The lower the value, the smaller the perceived difference between the two images. It
is expressed by

LPIPS(x, y) = ∑
l

wl∥ fl(x)− fl(y)∥2
2 (15)

where fl(x) and fl(y) are features extracted from images x and y through the pre-trained
deep neural network at layer l, ∥·∥ is between fl(x) and fl(y) Euclidean distance, wl is
the weight of the l-th layer, and the summation is performed on the selected l-layer
feature layer.

5. Experiments
5.1. Experiments on Ancient Painting Dataset
5.1.1. Quantitative Comparison

To validate the effectiveness of our method, we conducted a comparison experiment
on the ancient painting dataset, using four models for validation comparison PI [36],
RFR [37], EC [38], and FcF [39]. The results of the experiment are shown in Table 3. The
proposed models are quantitatively evaluated using PSNR, SSIM, MSE, and LPIPS as
evaluation metrics. As can be seen from Table 3, the PSNR and SSIM values of the PI model
are the lowest, which is because the PI model is insufficient in extracting deep semantic
information, resulting in the loss of the high-frequency detail features of the reconstructed
images. The insufficient extraction of detail features leads to a poor image restoration effect.
The performance of the EC and LG models in China landscape painting image restoration
has been improved. The LG model produces better PSNR and SSIM because it uses a large
receptive field network to repair the overall structure and local texture details and a small
receptive field local refinement network to eliminate artifacts. However, the acceptance
area of the local refinement network is small, which means that when the damaged area
is large, it cannot capture the global information, resulting in inconsistency between the
global and local semantic information. It leads to a more serious plaque effect and a
higher LPIPS value. Although the EC and FcF models have improved the performance of
ancient painting restoration, it can be seen from the visual comparison of the five methods
in Figure 5 that compared with other methods, the proposed method has achieved the
best results, and the training has stabilized at the 300–400 epoch stage. In addition, our
MFGAN, with a size of 15 M, demonstrates a promising inference time of approximately
65 ms for each image of size 256 × 256. In comparison, the RFR [37] model, which has a



Electronics 2024, 13, 3309 12 of 18

size of 33 M, requires an inference time of 95 ms. As a result, our method not only has a
lower computational cost but also a faster run time, indicating its potential for practical
applications. The PSNR and SSIM indicators reached the highest values of 34.59 and 0.929.
This is because MFGAN uses the RPE residual encoder to effectively combine the deep
feature extraction module and the channel attention mechanism to fully extract the deep
semantic features and detail features of the ancient painting images. Furthermore, MFGAN
incorporates the frequency perception mechanism to capture and reconstruct the details
and texture features of the ancient paintings by increasing the skip connection between low
frequency and high frequency, and effectively restoring the high-frequency details. Finally,
this paper uses the double discriminator network to ensure that the semantic information
of the restored image is consistent with that of the original painting in terms of global
structure and local details, thus ensuring that the semantic information of the global and
local areas of the image is consistent during the restoration process.

Table 3. Comparison of different models on the ancient painting dataset.

Model PSNR↑ SSIM↑ MSE↓ LPIPS↓

PI [36] 32.41 0.892 0.0009 0.0762
RFR [37] 33.42 0.921 0.0008 0.0720
EC [38] 33.53 0.913 0.0007 0.0523
FcF [39] 33.72 0.914 0.0008 0.0532
MFGAN (Ours) 34.59 0.929 0.0006 0.0512

Figure 5. Comparative visualization of five methods on PSNR metrics.

5.1.2. Qualitative Comparison

Figure 6 shows the visualization results of different methods on the ancient painting
dataset. It can be seen from the figure that Figure 6c,d have loss of detail features in the
image inpainting process, Figure 6e,f have noise and distortion in the inpainting process,
whereas the proposed method generates a higher-quality restored image in comparison to
the other methods, and the image inpainting effect is more prominent in terms of the edge
details, which achieves the best inpainting effect.
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Figure 6. Image inpainting results of different methods on the ancient painting dataset. (a) is the
groundtruth image, (b) is the input image, and (c–g) are the image inpainting results for PI, RFR, EC,
FcF and the proposed method, respectively.

5.2. Experiments on the Huaniao Painting Dataset
5.2.1. Quantitative Comparison

To verify the generalization of the models in this paper, we conducted a comparison
experiment on the Huaniao dataset, using four mainstream models for validation and
comparison. The results of the experiment are shown in Table 4. From Table 4, it can be
seen that our method reaches the maximum value in the PSNR and SSIM metrics, which are
22.85 and 0.835, respectively, and the minimum value in MSE and LPIPS, which are 0.0042
and 0.0976, respectively. From the comparison results of the five methods on the Huaniao
dataset in Figure 7, it can be seen that, before 100 epochs, the MFGAN model’s PSNR value
is lower than EC and FcF, and with increase in training times, the MFGAN method obtains
the highest PSNR accuracy with a large difference, which fully demonstrates the excellent
performance of our method in the image inpainting of ancient paintings, and substantially
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improves the task of image inpainting of ancient paintings. The PSNR value of our method
is still on the rise at 400 epochs and reaches saturation at about 500 epochs of training.

Table 4. Comparison of different models on the Huaniao painting dataset.

Model PSNR↑ SSIM↑ MSE↓ LPIPS↓

PI [36] 19.15 0.723 0.0182 0.1896
RFR [37] 20.12 0.745 0.0151 0.1637
EC [38] 19.52 0.724 0.0154 0.1756
FcF [39] 21.34 0.793 0.0095 0.1874
MFGAN (Ours) 22.85 0.835 0.0042 0.0976

Figure 7. Comparative visualization of five methods on PSNR metrics for the Huaniao dataset.

5.2.2. Qualitative Comparison

Figure 8 shows the visualization results of the different methods on the ancient paint-
ing dataset. As can be seen from Figure 8, the methods of Figure 8c,d have a certain degree
of blurring, the method of Figure 8e has a discontinuity in the inpainting at the image
boundary, the method of Figure 8f has improved the details of image inpainting but still has
problems such as noise, while the experimental results of our method are better compared
to the other image inpainting methods, demonstrating semantically and color-consistent
inpainting results, and achieving excellent inpainting results in terms of image details and
edge texture.
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Figure 8. Cont.
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Figure 8. Image inpainting results of different methods on the Huaniao painting dataset. (a) is the
groundtruth image, (b) is the input image, (c–g) are the ancient inpainting results for PI, RFR, EC,
FcF and the proposed method, respectively.

5.3. Experiments on CelebAHQ Dataset

In order to verify the generalization of our method, we conducted a comparative
experiment on the CelebAHQ dataset, and the experimental results are shown in Table 5.
As can be seen from Table 5, compared with the other competitive methods, our method
obtains the highest PSNR and SSIM values, which are 23.52 and 0.855, respectively. Com-
pared with PI, RFR, EC, and FcF, the PSNR score of our MFGAN is improved by 3.23,
2.26, 2.04, and 1.24, respectively. At the same time, the lowest LPIPS value of 0.0534 was
obtained. From the experimental results, it can be seen that the proposed MFGAN has also
achieved excellent performance in high-quality face image inpainting, which proves the
strong generalization of our method.

Table 5. Comparison of different models on the CelebAHQ dataset [33].

Model PSNR↑ SSIM↑ MSE↓ LPIPS↓

PI [36] 20.29 0.773 0.0171 0.1357
RFR [37] 21.26 0.783 0.0142 0.1105
EC [38] 21.48 0.817 0.0129 0.0842
FcF [39] 22.28 0.834 0.0075 0.0714
MFGAN (Ours) 23.52 0.855 0.0054 0.0534

5.4. Ablation Study

Effect of Residual Pyramid Encoder (RFE). Table 6 presents an evaluation of the
impact of the various components discussed in this study. From the following table,
it can be seen that the use of the residual pyramid encoder structure RFE ensures the
semantic consistency of the restored images of ancient paintings, effectively combines the
deep feature extraction module and the channel attention module, fully extracts the deep
semantic features of the images of ancient paintings, strengthens the ability to process the
details of the images, and helps to identify and reconstruct the missing parts of the images.
The PSNR metrics and the SSIM metrics are, respectively, improved by 1.8 and 0.049. It can
be seen from Figure 9b that there is local ambiguity in the image inpainting without using
the RFE module.
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Table 6. Ablation study of different modules of this paper on the Huaniao painting dataset.

Model PSNR↑ SSIM↑ MSE↓ LPIPS↓

Baseline 18.78 0.746 0.0068 0.2071
w/o RFE 21.05 0.786 0.0052 0.1301
w/o MD 21.32 0.753 0.0054 0.1221
w/o FAM 20.76 0.812 0.0051 0.1201
w/o DD 20.73 0.801 0.0049 0.1015
MFGAN (Ours) 22.85 0.835 0.0042 0.0976

Effect of Multi-layer Decoder (MD). Using the multi-layer decoder structure MD,
the filling content of the missing regions of different images at each scale is refined by
calculating the normalized distance between the output image and the original image at
each scale to progressively refine the final output. As can be seen in Figure 9c, the lack
of use of the MD module suffers from the disadvantage of incomplete inpainting results,
proving the effectiveness of the MD module in image inpainting.

Figure 9. Comparison of results before and after using the RFE module, where (a) is the input image,
(b) is the restored image without using the RFE module, (c) is the restored image without using
the MD module, (d) is the restored image without using the FAM module, (e) is the restored image
without using the DD module, and (f) is the restored image using the proposed method.

Effect of Frequency-Aware Mechanism (FAM). Using the FAM mechanism, the fre-
quency attention module is used to obtain high-frequency perceptual features of the image,
capture and reconstruct the details and texture features of ancient paintings by increasing
the skip connections between low and high frequencies, provide more perceptible informa-
tion to solve the problem of high-frequency detail loss in image inpainting, and improve the
quality of image inpainting, with an improvement in the PSNR metrics and SSIM metrics
by 2.09 and 0.023. It proves the effectiveness of the FAM mechanism in capturing and
reconstructing the detail and texture features of ancient paintings, and obtains high-quality
ancient painting images.

Effect of Dual Discriminator (DD). The use of a dual discriminator to solve the
problem of local regions of ancient painting images, and to eliminate the problems of
discontinuity and blurring at the boundary of the missing regions of the image, significantly
improves the image inpainting task of ancient paintings. The PSNR metrics and SSIM
metrics are improved by 2.12 and 0.034, respectively. The following Figure 9e shows
the inpainting effect of the image without the use of the SSIM module, with problems
of discontinuity, blurring, etc., present at the boundary of the regions. On the contrary,
as shown in Figure 9f, the inpainted image generated by our method is not only highly
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similar to the original visually, but also consistent with the original in artistic style and
expressive force.

6. Conclusions

In this paper, a Generative Adversarial Network (GAN)-based ancient painting in-
painting method, named MFGAN, which utilizes multi-layer feature enhancement and
frequency perception, is proposed to address the issue of insufficient extraction of deep
semantic information in ancient paintings inpainting. MFGAN effectively enhances the
extraction of deep semantic features of ancient paintings through the introduction of a
residual pyramid encoder and significantly strengthens the processing of image details
by the effective combination of the deep feature extraction module and channel attention,
which are effectively combined to significantly enhance the processing of image details.
Furthermore, in order to reconstruct the high-frequency details and textures of the image,
this paper proposes a frequency-aware mechanism to obtain the high-frequency-aware
features of the image by using the frequency attention module, and capture and reconstruct
the high-frequency details and texture features of the ancient paintings by establishing
a skip connection between the low-frequency and high-frequency features. In addition,
a dual discriminator is proposed, which effectively ensures the semantic consistency of
the restored image in global and local regions, significantly reduces the discontinuities
and blurring differences at the boundary, and improves the overall quality of the restored
image. In the future, we will explore the effect of the frequency transformation method
DWT, as well as other alternatives (e.g., the quantum mechanics-based adaptive basis) on
the detailed restoration of ancient paintings, to further improve the performance of ancient
painting inpainting.
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