
Citation: Nguyen, T.-D.; Pham Van, T.;

Le, D.-T.; Choo, H. Adaptive Clustering

and Scheduling for UAV-Enabled Data

Aggregation. Electronics 2024, 13, 3322.

https://doi.org/10.3390/

electronics13163322

Academic Editor: Ping-Feng Pai

Received: 10 July 2024

Revised: 15 August 2024

Accepted: 20 August 2024

Published: 21 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Adaptive Clustering and Scheduling for UAV-Enabled
Data Aggregation
Tien-Dung Nguyen 1 , Tien Pham Van 1 , Duc-Tai Le 2,* and Hyunseung Choo 2,*

1 School of Electrical and Electronic Engineering, Hanoi University of Science and Technology,
Hanoi 100000, Vietnam; dung.nguyentien2@hust.edu.vn (T.-D.N.); tien.phamvan1@hust.edu.vn (T.P.V.)

2 Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon 16419, Republic of Korea

* Correspondence: ldtai@skku.edu (D.-T.L.); choo@skku.edu (H.C.)

Abstract: Using unmanned aerial vehicles (UAVs) is an effective way to gather data from Internet of
Things (IoT) devices. To reduce data gathering time and redundancy, thereby enabling the timely
response of state-of-the-art systems, one can partition a network into clusters and perform aggregation
within each cluster. Existing works solved the UAV trajectory planning problem, in which the energy
consumption and/or flight time of the UAV is the minimization objective. The aggregation scheduling
within each cluster was neglected, and they assumed that data must be ready when the UAV arrives
at the cluster heads (CHs). This paper addresses the minimum time aggregation scheduling problem
in duty-cycled networks with a single UAV. We propose an adaptive clustering method that takes
into account the trajectory and speed of the UAV. The transmission schedule of IoT devices and the
UAV departure times are jointly computed so that (1) the UAV flies continuously throughout the
shortest path among the CHs to minimize the hovering time and energy consumption, and (2) data
are aggregated at each CH right before the UAV arrival, to maximize the data freshness. Intensive
simulation shows that the proposed scheme reduces up to 35% of the aggregation delay compared to
other benchmarking methods.

Keywords: UAV; data aggregation; scheduling; minimum delay; internet of things

1. Introduction

Gathering sensory data in a minimal amount of time has been a critical concern for
years. Examples of time-sensitive applications are smart monitoring and object tracking,
in which sensor devices can be deployed over a large area and the applications need to
acquire data in a short time [1]. In reality, while sensors are typically battery-powered [2],
they must serve for years. One of the most prominent methods used to prolong the sensor
lifetime is duty-cycling [3]. Nevertheless, it lengthens the data-gathering time and degrades
the application service quality. In this regard, UAVs potentially help, and research studies
on UAVs are receiving increasing interest from both academia and industry. A UAV can
serve as a mobile station, a relay node, or an edge [4]. Particularly, for data collection
applications, UAV is helpful in various ways. For example, it prolongs the sensor network
lifetime and increases channel quality by providing direct short-range communication with
sensor devices [5]. It can also fly over an unattended/disconnected area to gather data,
which lowers the deployment costs.

This paper investigates the minimum-latency data aggregation scheduling problem
in duty-cycled wireless sensor networks with UAVs. Herein, a UAV is responsible for
collecting data from the ground sensors. Because the sensor data are highly correlated,
data aggregation techniques are often employed to reduce time, energy consumption, and
redundancy. The network splits into several clusters, each of which is managed by a cluster
head. Sensor nodes in a cluster send their data to the cluster head (CH), and the UAV only
visits these CHs to acquire the aggregated data. Several prior works presented different

Electronics 2024, 13, 3322. https://doi.org/10.3390/electronics13163322 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13163322
https://doi.org/10.3390/electronics13163322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0064-4044
https://orcid.org/0000-0002-1739-6190
https://orcid.org/0000-0002-5286-6629
https://orcid.org/0000-0002-6485-3155
https://doi.org/10.3390/electronics13163322
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13163322?type=check_update&version=2

Electronics 2024, 13, 3322 2 of 20

optimization perspectives for the UAV-enabled data collection problem. authors of [6,7]
arranged multiple UAVs to minimize the energy consumption of sensor devices. In [8],
the authors emphasized that the age of information should be minimal, but the scheme
only facilitated a small number of sensors. Aiming at a similar goal, in [9], the authors
assumed that data become obsolete after a certain deadline. A UAV is intended to gather
data from as many devices as possible. Quite a few other researches aimed to minimize the
UAV-related metrics, e.g., UAV flight time and UAV energy consumption. These works
either require UAV to approach every device [6], or divide the network into small-size
clusters with direct communication between CH and cluster members (CMs) [10]. This
would result in an excessive number of clusters if the network size increases, making the
UAV path planning and scheduling more challenging. Furthermore, only optimizing the
UAV itinerary might not be efficient, because the data collected at each cluster head can
become obsolete after a certain waiting time. To the best of our knowledge, there has been
no research on delay-efficient transmission scheduling for sensor networks in conjunction
with UAV itinerary scheduling.

Herein, we propose an adaptive clustering and scheduling (ACS) approach that
computes the device transmission time tightly based on the UAV itinerary. Each CH
is given a deadline to aggregate data from its surroundings. Because the UAV visits a
sequence of CHs, the (k + 1)-th CH has more time to gather data than the k-th one. As
such, later-visited clusters have larger deadlines and should contain more CMs. Inside
each cluster, device transmissions are pipelined based on their duty cycle to maximize the
number of devices it can accommodate within the deadline. Our contributions are briefly
stated as follows. Note that, the terms ‘sensor’ and ‘device’ are used interchangeably in
this paper.

• We formulate a joint UAV-sensor device scheduling problem and prove its NP-hardness.
Then a simpler problem is derived in which the UAV can fly continuously without
hovering at each CH.

• The proposed scheduling approach precisely computes the transmission schedule
among devices and to the UAV. By calculating the times at which the UAV should
approach the CHs, we infer the deadline for each CH to acquire data from the CMs.

• From the computed deadlines, we design a collision-free reverse cluster formation and
scheduling scheme. Herein, the scheme simultaneously constructs a data aggregation
tree in each cluster and assigns transmission times to devices. Note that the last CH
with the largest deadline will start to construct the aggregation tree and acquire CMs
first, followed by the CH with the second largest deadline, and so forth.

The remainder of this paper is organized as follows. Section 2 reviews recent work
related to the problem we are solving. In Section 3, we describe network models and
assumptions, followed by the problem formulation in Section 4. The proposed ACS scheme
is presented in Section 5. We evaluate the proposed design in Section 6, summarize the
contributions of this work, and discuss future directions in Section 7.

2. Related Work

For decades, a mobile sink (or mule) has been used as a solution to collect data from
ground sensors [11]. A mobile sink is useful in situations where there are no dedicated and
powerful nodes to collect data from the surroundings, or when the network is disconnected.
However, the ground mobile sink is affected by complex terrains and obstacles; therefore,
they lack flexibility and speed [11]. Consequently, it might take a lot of time to collect
data from a network. This is problematic since, nowadays, data freshness is also a critical
concern. UAV seems to be a viable replacement for the ground mobile sink. Existing
research aimed to shorten the UAV itineraries, since the UAV resources are usually limited.
For instance, in [12,13], the authors assumed that the UAV collects individual sensor data
following a fixed route. Herein, not all sensors send data to the UAV. In [14], the authors
took into account the altitude, trajectory, velocity, and wireless link when minimizing
data collection time. The UAV shall hover at a maximum altitude so as to maximize the

Electronics 2024, 13, 3322 3 of 20

transmission range, thereby shortening the trajectory. Concerning the age of information,
the authors of [8] also targeted a minimal UAV trajectory and proposed solutions using
dynamic programming and genetic algorithms. With the same objective, the authors of [15]
modeled the data collection problem as a Markov decision process, in which they used deep
reinforcement learning to find an optimal UAV trajectory. In [16], the authors solved the
trade-off between the energy consumption of the UAVs and the number of UAVs required
to cover an area. Herein, fewer UAVs mean that each UAV has to cover a larger area. As
a consequence, the UAVs have to hover at a higher altitude for a longer period, which
drains more energy. In general, prior works, that focused on UAV performance involved
determining the traveling order of CHs, differing in how the constraints were considered.
Several other studies in this area, such as [17–19], have also contributed to this direction.

UAVs can help improve the energy efficiency of WSNs (wireless sensor networks),
because traditional data collection solutions for WSNs are used to create energy holes
around the sink due to the high traffic going through these nodes [11]. UAVs, instead,
can freely move to any location and alleviate the energy hole problem. For example, the
authors of [20] let the UAV move close to the target sensors, so sensor devices did not
need to transmit at high power. In [21], the authors optimized the transmitting power and
transmission reliability of Internet of Things (IoT) devices by clustering and using multiple
UAVs, one per cluster. In [10,22], the network is split into clusters of equal sizes to balance
the energy consumption of sensors and prolong the network lifetime. In [13], the scheme
allows the prioritization of the region of interest and ignores sensors from low-priority
regions. In [6], the authors presented a successive convex optimization technique to achieve
a sub-optimal solution. Herein, not only is reliable communication with sensors guaranteed,
but the energy consumption of all sensors is also minimized. Lee et al. proposed a LEEF
algorithm, which utilizes k mobile relays to cover k clustered regions. LEEF strives to
equalize the energy consumption of mobile relays [23].

To the best of our knowledge, although there were many efforts conducted on data
collection with UAV, all the existing schemes only focus on the performance metrics of
the UAV without considering the aggregation schedule inside each cluster. Moreover, the
clusters usually have equal size and are organized in a star topology, which requires a
long time to collect data as the CMs have to take turns sending to the CH. Finally, the
geographical coverage of a CH is limited by its communication range; therefore, to maintain
the direct transmissions between CMs and CH, the number of clusters increases when
the deployment area scales up. As a result, the UAV itinerary becomes longer and more
inefficient. Our proposed scheme, ACS, arranges to aggregate data at the CHs right before
the arrival of the UAV. In addition, the UAV speed and CH visiting order will determine
the cluster size. We utilize the sleep–awake pattern of sensors to pipeline transmissions
through multi-hop routes such that each CH can accommodate a larger number of CMs in
a short aggregation time.

3. Network Model

We model the network as a graph G = (V, E), in which V is the set of homogeneous
IoT devices (nodes) and E is a set of communication links between the devices. Herein,
there exists a link between two nodes u, v ∈ V if and only if the Euclidean distance between
them is smaller than the communication range R. The whole network shares a single
communication channel. Two neighbors can communicate with each other, and if a node
transmits, all of its neighbors can hear the signal. This leads to collisions if two or more
signals simultaneously arrive at the same receiver. The node then cannot receive any
of the signals. We use the protocol interference model, which consists of primary and
secondary collisions [3].

Sensor devices are temporally synchronized and use TDMA (time division multiple
access) to access the channel. Herein, time is divided into slots and each sensor device sends
the data at a specific slot. There will be no collision avoidance mechanism required, such as
CSMA (carrier sensing multiple access). Instead, it requires a transmission schedule for the

Electronics 2024, 13, 3322 4 of 20

whole network, so that each device can send data without collision. The communication
transceivers operate in half-duplex mode, i.e., at a time, they can only either send or receive
data. We assume that all devices run in duty cycle mode, in which a device only wakes up
for a short time to receive or transmit data, and for the rest of the time, it stays in a sleeping
state to conserve energy. Herein, time consists of equal working periods, and each working
period is further split into constant T slots with indices in {0, 1, . . . , T − 1}. Each device
randomly chooses an active slot τ ∈ {0, 1, . . . , T− 1}. The device periodically wakes up at
its active slot to wait for possible incoming transmission and sleeps otherwise. If a device
wants to send data to its neighbor, it must wake up and transmit data at the active slot of
the receiver. Figure 1 illustrates a network containing three nodes {a, b, c}, in which node
c is active at slot 0 and T = 3. Nodes a and b must send data to node c in two different
working periods, at the active slot 0 of node c. A time slot is sufficient to transmit a packet.

a c

0 1 2 0 1 2

b

a b

... t
Node c

Active slot

Sleeping slot

Working period 1 Working period 2

i

0

Time slot k, corresponding to slot index i

1 2 3 4 5

k

Figure 1. An example of a duty-cycled network. Node c is active at slot 0 and each working period
consists of 3 slots. Two senders a and b must take turns sending data to node c in two different
working periods.

Sensor data sent by the devices can be aggregated perfectly [3] so that each node only
sends data once. This means that, regardless of the number of received data packets, the
intermediate node will aggregate the received data with its data, to form a single packet
toward the upstream device. We also assume that the UAV is navigated and positioned so
that its wireless links to CHs are sufficiently reliable to guarantee transmission success.

4. Problem Formulation

Table 1 lists the acronyms and notations we use in this paper.
The UAV is assumed to rest at a docking station and remains charged if it is not on

duty. On a trip to gather data, it visits a set of CHs, one after another. In each cluster,
CH is responsible for aggregating data from other CMs, through multi-hop paths. An
intermediate node combines all received data and its own data, then outputs one outgoing
transmission. Examples of this aggregation function are MIN, MAX, and AVERAGE. For
devices, an aggregation schedule must specify the time slot and the device that sends data
to which receiver. In addition, the schedule must incorporate all devices. A valid schedule
should induce no collision between transmissions occurring at the same time. For UAVs,
the schedule should indicate the departure time, given the known trajectory and speed.

Electronics 2024, 13, 3322 5 of 20

Within each cluster, the routing structure forms a tree topology rooted at the CH. Hereafter,
we use the terms sender/receiver and child/parent interchangeably.

Table 1. Notation.

Notation Explanation

CH cluster head

CM cluster member

a(u) active slot of node u

T number of slots in a working period

R communication range of devices

v UAV speed

d(u, v) Euclidean distance between two nodes u, v ∈ V

N(u) neighbor set of node u

NH(u) neighbors of node u that are also in the set H

C(u) children set of node u

c0 the docking station where the UAV starts from, c0 does not aggregate data from any device.

ci the i-th CH in which order the UAV will visit (i ∈ [1, k])

C the set of CHs, C = {ci}i∈[1,k]

Vi set of nodes in the i-th cluster, excluding the CH ci (i ∈ [1, k])

Ai the arrival time of the UAV at the i-th cluster (i ∈ [1, k])

Di departure time at the i-th cluster (i ∈ [1, k])

Ti
the tree rooted at ci. Ti is a data structure of the sender–receiver relationship among CMs in the i-th cluster
(i ∈ [1, k])

tx(u) transmission time slot of node u

Si set of nodes in V transmitting at time slot i

l(u, v, T) link delay from node u to node v given working period length T

The aggregation time, or aggregation delay, is the time elapsed from when the UAV
departs from the docking station, until when it leaves the last CH in its itinerary after
successfully retrieving data. Let k be the number of clusters and C = {ci}i∈[1,k] is the set of
CHs, which are known in advance. For example, several nodes with more resources can
be deployed in the field as CHs. The CH locations may depend on the terrain. Finding
an optimal number k as well as the optimal positions of the CHs are postponed to future
research. Because the whole network is partitioned into k clusters, we have:⋃

i∈[1,k]

Vi = V\C. (1)

Remark 1. Given the locations of the CHs, we can compute the shortest flying path for the UAV. For
simplicity, we assume that the set C is ordered and represents the shortest trajectory. Nevertheless,
the size and members Vi of each cluster depend on the scheduling scheme.

Let ζi, i ∈ [0, k− 1] be the traveling time from CH ci to CH ci+1 and αi, i ∈ [0, k] be the
waiting time at the ci (Figure 2). Both ζi and αi are measured in the number of time slots.
Let v be the speed of the UAV (m/ time slot), we have the following:

ζi = ⌈
d(ci, ci+1)

v
⌉, ∀0 ≤ i ≤ k− 1. (2)

Electronics 2024, 13, 3322 6 of 20

…
0

1

2
c

k
c

2

1
c0

1

2

1k

−

k

t
0c

1D 2D kD
Figure 2. An illustration of the hovering and flying times from the docking station to the CHs
{ci}i∈[1,k]. Dashed arrows indicate the sequence of visits. The blue arrow indicates the moving
direction of the UAV. The αi is the hovering time at ci, and ζi is the flying time from ci to ci+1,
i ∈ [0, k].

The hovering time αi > 0, i ∈ [1, k] if and only if CH ci has yet to finish data collection
upon the UAV arrival. We can compute the UAV arrival time Ai at CH ci as follows:

Ai =
i−1

∑
j=0

(αj + ζ j), ∀1 ≤ i ≤ k. (3)

The departure time Di of the UAV at CH ci, i.e., the data aggregation time at the i-th
cluster, is as follows:

Di = αi + Ai = αi +
i−1

∑
j=0

(αj + ζ j), ∀i ∈ [1, k]. (4)

Note that {ζi}i∈[0,k−1] are constant values, and Dk is the aggregation time of the whole
network. To minimize Dk, one needs to minimize the total waiting time ∑k

j=0 αj. Herein,

the total waiting time comprises the hovering time ∑k
j=1 αj and the waiting time α0 at

the base station. The selection of {αi}i∈[0,k] must ensure that all devices participate in the
data aggregation.

Remark 2. Dk is the aggregation time of the whole network.

Let S = {Si}i∈[1,Dk]
be an arbitrary valid transmission schedule, in which Si is the

set of devices transmitting data at time slot i: Si = {u ∈ V\C|tx(u) = i}. The following
conditions must hold: ⋃

1≤i≤Dk

Si = V\C, (5)

and
Si ∩ Sj = ∅, ∀1 ≤ i ̸= j ≤ Dk. (6)

Herein, (5) means that all the devices are assigned transmission time slots, and (6)
ensures that each node only sends data once to its receiver. In addition, all the transmissions
occurring at the same time must be collision-free, ∀i ∈ [1, Dk]:

u /∈ N(p(v)) and v /∈ N(p(u)), ∀u, v ∈ Si, u ̸= v. (7)

Within a cluster, the transmission time of each node must be smaller than the aggrega-
tion time:

tx(u) ≤ Di, ∀u ∈ Vi. (8)

Furthermore, since a parent node may receive data from several children, the trans-
mission time slot of a child must be smaller than that of its parent.

Electronics 2024, 13, 3322 7 of 20

Remark 3. Due to the aggregation constraint, the transmission time slot of a parent must be later
than that of its children, i.e.,

tx(u) > tx(v), ∀v ∈ C(u). (9)

An aggregation schedule can be identified by the routing structure, i.e., {Ti}i∈[1,k],
which points out a receiver for each device, and the transmission time, i.e., {Sj}j∈[1,Dk]

,
which enforces when the devices should send data. We can formally formulate the opti-
mization problem as follows.

min Dk|∃{Ti}i∈[1,k], {Si}i∈[1,Dk]

subject to (4)–(9).
(10)

Theorem 1. The problem (10) is NP-hard.

Proof. Let us consider a reduced problem of (10) when k = 1. This problem becomes the
conventional minimum-time aggregation scheduling problem in wireless sensor networks,
and is NP-hard [24]. Therefore, problem (10) is NP-hard.

5. Adaptive Clustering and Scheduling Scheme

This section presents a heuristic scheme to solve problem (10). Recall that there are
two types of scheduling for WSNs. We summarize the main features as follows.

• Bottom-up scheduling. This type requires to construction of an aggregation tree
rooted at the CH in advance. Next, the scheduling algorithm identifies the trans-
mission time slot for each tree edge, from the leaves up to the root. The scheduling
algorithm iteratively finds transmissions for time slots 1, 2, . . . , Dk.

• Top-down scheduling. This type does not require having a tree beforehand. The
tree is grown during the scheduling process. Unlike the bottom-up approach, we can
provide a deadline to collect data at the root node. Depending on the given deadline,
a part or the whole network can send data to the root [25]. The scheduling algorithm
iteratively finds transmissions for time slots Dk, Dk − 1, . . . , 2, 1, in the reverse order of
the bottom-up scheduling approach.

Regarding the bottom-up approach, the process begins with (step 1) splitting the
network into clusters, followed by (step 2) constructing the aggregation tree in each cluster,
and then (step 3) performing a scheduling algorithm. However, how to optimally cluster
the network is hard, as it is impossible to know the aggregation time in each cluster without
running step 2 and step 3. This may require numerous trials and errors to achieve a
sufficient solution.

On the other hand, top-down scheduling allows for the simultaneous construction of
the aggregation tree and scheduling, and the tree size (and, hence, the cluster size) can be
adjusted together with the given aggregation deadline. Figure 3a illustrates a case where
three CHs are present, and the UAV leaves the CHs at D1, D2, and D3. In Figure 3b, the
clusters may have different sizes because the aggregation deadline for each is different.
While all the clusters consist of members being scheduled until D1, only CH2 and CH3
continue to aggregate data during D1 < t ≤ D2, and then only CH3 contains transmissions
scheduled during D2 < t ≤ D3. Generally, when the UAV flies to the CH1, the sensor
devices can transmit data toward any CH. After the CH1 delivers data to the UAV, the
remaining CHs, i.e., {CH2, CH3, .., CHk}, continue to gather data. Since the UAV may arrive
at the i-th CH earlier than the time ci finishes collecting data from its cluster, it may have to
wait for the duration αi ≥ 0 before departure. Based on Dk, the data aggregation deadline
at the i-th cluster can be derived from (4) as follows:

Di = Dk −
k

∑
i+1

αj −
k−1

∑
i+1

ζ j. (11)

Electronics 2024, 13, 3322 8 of 20

The following theorem proves that we can always simplify problem (10) by adding a
constraint on the waiting time at each CH (or hovering time) as follows:

Theorem 2. For any valid aggregation schedule S with D = {Di}i∈[1,k], there always exists a
schedule S′ with D′ = {D′i}i∈[1,k] such that ∑k

j=1 α′j = 0 and D′k = Dk.

Proof. We can identify {D′i}i∈[1,k] as follows:

D′i = Dk −
k−1

∑
j=i

ζ j, ∀i ∈ [1, k−1]. (12)

From (12) and (4), we have D′i ≥ Di, ∀i because αi > 0, ∀i ∈ [1, k]. Since each CH ci
can aggregate data from its cluster within Di time slots, it can also aggregate data within
D′i ≥ Di time slots. The theorem is proved.

1
CH

2
CH

3
CH

(a)
1

CH
2

CH
3

CH

Scheduled transmissions in

Scheduled transmissions in

Scheduled transmissions in

2 1D D−

3 2D D−

C
lu

st
er

 s
iz

e

1
D

(b)

Figure 3. Sample UAV trajectory to three CHs. The arrival times at each CH are D1 < D2 < D3.
With different time allowances to collect data, CH1, CH2, and CH3 may have different cluster sizes.
(a) UAV trajectory; (b) CHs and the corresponding sizes.

Using Theorem 2, we can simplify the problem in (10) to the following problem: Find
min Dk and a scheduling algorithm S such that when giving the deadlines Di to the CHs
{ci}i∈[1,k], all devices are scheduled to send data to the CHs. The scheduling algorithm S
must satisfy Equations (5)–(9). Herein, Di is calculated by the following:

Di = Dk −
k−1

∑
j=i

ζ j, ∀i ∈ [1, k− 1], (13)

or, equivalently:

Di = α0 +
i−1

∑
j=0

ζ j, ∀i ∈ [1, k], (14)

which is simpler than (4), as the variables {αi}i∈[1,k] are eliminated.
In reality, the UAV might not be able to fly continuously, while ensuring reliable

communication with the selected CHs. However, we can consider v as the average speed
of the UAV, taking into account the hovering time and acceleration/deceleration time.

5.1. Overall Approach

Equations (13) and (14) suggest that the aggregation deadlines at all the clusters can
be derived from the aggregation deadline at the last CH Dk, or from the waiting time α0 at

Electronics 2024, 13, 3322 9 of 20

the docking station c0 as the hovering times at all the CHs are zero ({αi}i∈[1,k] = 0). In other
words, once either α0 or Dk is selected, then {Di}i∈[1,k] is deterministic. Given a scheduling
algorithm S , Algorithm 1 shows a naive method to determine the minimum value of α0.
The first α0 is returned if the derived deadlines {Di}i∈[1,k] given to the CHs are sufficient to
cover the entire network. However, this approach requires repeating the same scheduling
procedure (lines 3–4) multiple times, making it costly.

Algorithm 1 Naive method to find α0.
Input: G = (V, E), set of CHs C
Output: Minimum α0

1: while True do

2: Compute {Di}i∈[1,k] as in (14)

3: if S already covered all nodes within {Di}i∈[1,k] then

4: break

5: else

6: α0 ← α0 + 1

7: end if

8: end while

Instead, this paper proposes a novel adaptive top-down data aggregation scheduling
approach, namely ACS, which grows the aggregation trees from the roots (i.e., the CHs),
and at the same time computes the transmission schedule. Herein, ACS starts at the last
transmission time slot, i.e., Dk, and goes backward to find the senders in each time slot.
Assuming that R denotes the reverse scheduling algorithm, Algorithm 2 illustrates an
abstract procedure of ACS.

Algorithm 2 One-shot reverse method to find Dk.
Input: G = (V, E), set of CHs C
Output: The aggregation time.

1: Assign some big value to Dk

2: Compute {Di}i∈[1,k−1] as in (13)

3: Run the scheduling algorithmR
4: tmin = min

u∈V\C
tx(u)

5: for u ∈ V\C do

6: tx(u)← tx(u)− T⌊ tmin
T ⌋

7: end for

8: return Dk − T⌊ tmin
T ⌋

At first, ACS initializes a sufficiently large deadline Dk for the last cluster (line 1), and
computes other deadlines for the remaining CHs (line 2). This is to ensure that after running
the scheduling algorithmR (line 3), all the transmission time slots of devices are positive
numbers. Next, we take tmin as the smallest time slot used to schedule (line 4). Because the
transmissions are scheduled in a reverse direction, there will be no transmission scheduled
for time slots 1, 2, 3, ..., tmin − 1 (Figure 4). As a result, we can shift all devices’ assigned
transmission time slots backward by T⌊ tmin

T ⌋ time slots, i.e., by ⌊ tmin
T ⌋ working periods to

the left (lines 5–6). The aggregation delay is, thus, Dk − T⌊ tmin
T ⌋.

Electronics 2024, 13, 3322 10 of 20

min
t1 2 3 kD1kD −

... ...

Scheduling direction

Last schedulable

transmission(s)

No transmission

before t_min
min
t

No transmission

before t_min
min
t

All transmissions are

scheduled after t_min
min
t

Figure 4. Reverse scheduling approach with a large Dk. The algorithm finds the transmissions in
each time slot, from the latest to the earliest. The last schedulable transmissions are in time slot tmin.
There is no transmission in time slots [1, tmin−1]. All the transmissions are scheduled in [tmin, Dk].

Figure 4 shows why we can shift the schedule be a maximum of ⌊ tmin
T ⌋ working

periods to the left. Because the algorithm computes the schedule in reverse order, all the
transmissions are assigned time slots in the range [tmin, Dk]. However, it is not possible to
shift the schedule by tmin time slots because the new schedule may break the duty cycle
settings of the receiver. For example, if tmin mod T ̸= 0, and a transmission from u to v is
scheduled at tmin. It means that a(v) = tmin mod T ̸= 0. If the algorithm shifts tmin time
slots, then u will be scheduled to send data to v at time slot 0, which is not at the active slot
of v. The maximum number of slots that we can shift is, therefore, T⌊ tmin

T ⌋.

Remark 4. After initializing with some large deadline Dk and finishing with the earliest trans-
mission at tmin > 0, the transmission schedule is shifted backward by ⌊ tmin

T ⌋ working periods. The
aggregation delay is then Dk − T⌊ tmin

T ⌋ time slots.

In the next subsection, we will provide a detailed design of the scheduling algorithmR.

5.2. Adaptive Clustering and Scheduling

The proposed ACS scheme is presented in Algorithm 3. For the ease of scheduling
implementation, we assign transmission time slot Di + 1 to CH ci for all i ∈ [1, k] (lines 1–2).
This can be seen as the time ci transmits data to the UAV. Typically, the algorithm iterates
the backward time slot by the time slot, starting from the deadline Dk at the last CH ck.
Herein, the set of candidate receivers P is determined first, followed by finding the senders
for them. The set of scheduled devices is denoted by SCH and is initially empty (line 4).
ACS stops when all the devices are scheduled, i.e., |SCH| = |V\C|. Lines 5–15 present
the process in which ACS searches for eligible transmitting nodes at time slot t. Herein,
P is the set of parent candidates at the current time slot t, which is initially empty. A
parent candidate u ∈ P (i.e., u can be a receiver) at time slot t is any node that satisfies the
conditions below:

1. tx(u) > t (line 8): candidate receiver u is already scheduled. By checking this condition,
ACS makes sure that a CH only starts acquiring CMs to grow its aggregation tree
at a proper time. For example, when Algorithm 3 starts at t = Dk, only ck grows
its aggregation tree. When the time t decreases down to t = Dk−1, then ck−1 begins
constructing its own aggregation tree, and so on.

2. a(u) = t mod T (line 9): candidate receiver u is active at the current time slot t;
otherwise, it cannot receive data.

3. N(u)\SCH ̸= ∅ (line 9): candidate receiver u has at least one unscheduled neighbor.
Otherwise, no node can be scheduled to send data to u.

Electronics 2024, 13, 3322 11 of 20

Algorithm 3 ACS scheduling scheme.
Input: G = (V, E), set of CHs C, aggregation delay det at each cluster {Di}i∈[1,k]

Output: The transmission schedule tx(u), ∀u ∈ V\C
1: for each i ∈ [1, k] do

2: tx(ci)← Di + 1

3: end for

4: t = Dk

5: SCH ← ∅
6: while |SCH| < |V\C| do

7: P← ∅
8: for u ∈ V

∣∣tx(u) > t do

9: if a(u) = t mod T and N(u)\SCH ̸= ∅ then

10: P← P ∪ {u}
11: end if

12: end for

13: C ← {v ∈ N(P)
∣∣tx(v) = None}

14: Find a collision-free matching between P and C
15: Cm ← set of senders in the matched pairs

16: tx(u)← t , ∀u ∈ Cm

17: SCH ← SCH ∪ Cm

18: t← t− 1

19: end while

These nodes in P are the receiver candidates. The set of candidate senders C consists of
nodes that are neighbors of at least one node in P and are not scheduled (line 13). In order to
identify the sender–receiver pairs that can transmit data simultaneously without collision,
ACS performs matching between P and C. The detailed matching algorithm is presented
in Algorithm 4. After matching, selected senders will be assigned the transmission time t
(line 16), and are added to the SCH set. Then, the algorithm proceeds to the next time step:
t← t− 1 (line 18).

Finding a matching between the sender set C and the receiver set P can be performed
in various ways, depending on how we prioritize the nodes. For example, in our previous
work [26], we used the node degree to sort the set P. This work nevertheless targets the low
duty-cycled WSNs, for which we utilize two well-known metrics, link delay and number
of neighbors, as follows.

Definition 1. Link delay from a sender u to a receiver v is as follows:

l(u, v, T) =

{
a(v)− a(u), if a(v) > a(u)
a(v)− a(u) + T, otherwise.

Definition 2. The neighbors in a set H of nodes u are as follows:

NH(u) = {v ∈ H|v ∈ N(u)}. (15)

Herein, node u, after finishing data gathering from C(u), must wait for a certain time
until its intended receiver v becomes active. The link delay basically means the minimum
of such a waiting time.

Electronics 2024, 13, 3322 12 of 20

Algorithm 4 Sender–receiver matching.
Input: Candidate receivers P, candidate senders C
Output: The set of scheduled nodes Cm

1: Sort P in a non-decreasing number of the number of its neighbors in C
2: Cm ← ∅

3: while P ̸= ∅ and C ̸= ∅ do

4: v← first node in P
5: u← arg min

w∈NC(v)
l(w, v, T)

6: u.parent← v
7: P← P\N(u) {Due to collision with the transmission from u}

8: C ← C\N(v)
9: Cm ← Cm ∪ {u}

10: end while

11: return Cm

Algorithm 4 seeks a collision-free set of transmissions that can happen at the current
time slot t. The receivers are in P and senders are in C. Items in P are sorted such that any
preceding item has no more neighbors in C than its succeeding ones, i.e., a node with fewer
neighbors in C has a higher priority (line 1). After that, the algorithm picks up a node in C
with the smallest link delay to v as the sender (lines 4–5). Next, the algorithm removes all
the receiver candidates that overhear the transmission from the selected sender u (line 6)
from set P and removes all sender candidates whose transmissions can cause a collision at
the selected receiver v (line 7). The while loop continues until there is no node left in either
P or C.

5.3. Complexity Analysis

In this section, we cover the time complexity analysis of the ACS scheme. We omit the
analysis of Algorithm 1, as this algorithm is not used. Below, we will examine the algorithm
complexity of Algorithms 2–4.

Algorithm 4 first sorts the candidate receiver set P, which can be conducted in
O(|V| log |V|) time. Line 3 loops O(|V|) times. In the loop, line 5, line 7, and line 8 each
take no more than O(|V|). Therefore, the time complexity of Algorithm 4 is O(|V|2 log |V|).

In Algorithm 3, lines 1–5 require no more than O(|V|) to complete. Line 6 loops, at
most, |V| times. In each loop, the algorithm checks each node in the network vertex set
(line 8); for each node u, it will examine the active slot and the aggregation status of the
neighbors of node u (line 9). Checking the aggregation status of node u depends on the
network density, i.e., the number of neighbors. In the worst case, this operation could
require at most O(|V|). Then, lines 13, 16, 17, and 18 require O(1). Line 14 is Algorithm 4,
which requires, at most, O(|V|2 log |V|). Hence, the time complexity of Algorithm 3 is
O(|V|3 log |V|). It is trivial to see that the main computation part of Algorithm 2 is line 3,
which is Algorithm 3. Therefore, the time complexity of the ACS scheme is O(|V|3 log |V|).

5.4. Step by Step Example

Figure 5 illustrates a complete run of the ACS on a network topology shown in
Figure 5a. Nodes c2 = A and c1 = B are two CHs, and the algorithm starts with D2 = 25
and D1 = 17 (time slots). A working period contains T = 5 slots.

Electronics 2024, 13, 3322 13 of 20

,4A ,2B

,1G

,4F

,3H

,0E,1D

,3C

(a)

,4A ,2B

,1G

,4F

,3H

,0E,1D

,3C

() 24tx C =

(b)

,4A ,2B

,1G

,4F

,3H

,0E,1D

,3C

() 24tx C =

() 19tx H =

(c)

,4A ,2B

,1G

,4F

,3H

,0E,1D

,3C

() 24tx C =

() 19tx H =

(
)
18

tx
G
=

(d)

,4A ,2B

,1G

,4F

,3H

,0E,1D

,3C

() 24tx C =

() 19tx H =

(
)
18

tx
G
=

(
)
1
7

tx
F

=

(e)

,4A ,2B

,1G

,4F

,3H

,0E,1D

,3C

() 24tx C =

() 19tx H =

(
)
18

tx
G
=

(
)
1
7

tx
F

=

(
)
14

tx
D

=

(f)

,4A ,2B

,1G

,4F

,3H

,0E,1D

,3C

() 24tx C =

() 19tx H =

(
)
18

tx
G
=

(
)
1
7

tx
F

=

(
)
14

tx
D

=

(
)
1
3

tx
E

=

(g)

,4A ,2B

,1G

,4F

,3H

,0E,1D

,3C

() 14tx C =

() 9tx H =

(
)
8

tx
G
=

(
)
7

tx
F

=

(
)
4

tx
D

=

(
)
3

tx
E

=

(h)

Cluster head

Node X with active slot k

Scheduled Unscheduled

Transmission Neighbor relation,kX X k

Figure 5. Performing ACS on a sample topology with two CHs c1 = B, c2 = A. Working period
length T = 5, and the aggregation deadlines D1 = 17, D2 = 25. (a) Original topology; (b) t = 24;
(c) t = 19; (d) t = 18; (e) t = 17; (f) t = 14; (g) t = 13; (h) final schedule.

Although the run starts at t = 25, no node is active at slot 0; hence, the algorithm
proceeds to time slot t = 24. The set of candidate receivers is P = {A}, and the set of
candidate senders is C = {C, D, E, H} . Two candidate senders, C and H, have the smallest
link delay to A, i.e., d(C, A, 5) = d(H, A, 5) = 1. The algorithm randomly chooses one
among the two. Here, we assume that node C is selected; hence, tx(C) = 24 (Figure 5b).

Electronics 2024, 13, 3322 14 of 20

Next, from time slot t = 24, down to time slot t = 20, there is no active candidate
receiver. Note that, although node C is active at time slot t = 23, it does not have any
neighbor to be a candidate sender. Then, at t = 19, node A becomes active again, and the
set of candidate senders is C = {H, D, E}. Now H is selected because it has the smallest
link delay to A. The transmission time of H to A is tx(H) = 19 (Figure 5c). Similarly, when
t = 18, ACS schedules node G to transmit data to H, so tx(G) = 18 (Figure 5d).

In the next time step, t = 17, because D1 = 17 and node B is also active at t = 17, B is
eligible to acquire a sender. The only unscheduled neighbor of B, i.e., node F, is scheduled
to send to B at tx(F) = 17 (Figure 5e). The algorithm continues with time slot t = 14 and
t = 13 (Figures 5f,g). The final aggregation schedule is obtained in Figure 5h, by subtracting
the transmission times of all devices’ ⌊ 13

5 ⌋ = 2 working periods, i.e., 10 time slots.

6. Performance Evaluation
6.1. Simulation Settings

We conducted a simulation using Python. The system settings are presented in Table 2.
Devices are randomly spread over a 500× 500 (m) square area. The transmission range
of devices is 50 (m) and we assume that the docking station is located at position (0, 0)
as depicted in Figure 6. The UAV’s speed is constant during its flight. The network side
length L and the transmission range could be varied together without affecting the results.
For example, we have the following:

0 100 200 300 400 500

0

100

200

300

400

500

UAV

CH1

CH2 CH3

CH4

Figure 6. The network is deliberately divided into four equal partitions. Each partition has one CH
near the center point. The arrows point out the arrival sequence.

Electronics 2024, 13, 3322 15 of 20

Table 2. Simulation settings.

Parameter Value

Network side length L 500 (m)
UAV docking station (0, 0)

IoT device transmission range 50 (m)
Number of devices 500–900
Time slot duration 100 (ms)

UAV speed 0.5–2.5 (m/time slot)

The network is deliberately divided into four equal regions, as in Figure 6, and the
UAV starts from the bottom left corner. Since the locations of four CHs are known, obtaining
the shortest trajectory is simple. The arrows indicate the order in which the UAV will visit
the CHs. For each simulation scenario, we randomly generate 30 network topologies and
achieve averaged results.

6.2. Baseline Schemes

The proposed ACS scheme is compared with our preliminary solution, namely the
incremental clustering and scheduling (ICS) scheme, and a naive scheduling scheme
(NS) [26]. The ICS scheme shares the flexible clustering principle with ACS. Herein, the
CHs and the UAV trajectory are, respectively, identical. However, when selecting a sender
for each receiver in the parent candidate set (line 4 in Algorithm 4), ICS randomly chooses
a sender among the unscheduled neighbors.

For the NS scheme, the devices are grouped into four clusters based on their geo-
graphical locations. All devices located inside the bottom left quarter belong to Cluster 1,
all devices in the top left quarter belong to Cluster 2, and so on (Figure 6). Each CH (at
the center of each quarter) has to aggregate data from the corresponding quarter where
it resides. The UAV trajectory is also the same as for ACS and ICS schemes. We again
apply Algorithm 3 per cluster, individually, by setting k = 1. Because the four clusters have
similar sizes, aggregation times at each CH should be close.

6.3. Impact of Network Size

Figure 7 presents aggregation delay when UAV moves at the 2 m/time slot. The
network side length L is set to 500 m and we vary the number of deployed devices. When T
is relatively small, ACS and ICS have similar performance, and both are around 7.5% better
than the NS scheme. However, when T increases, ACS is significantly better. For example,
for T = 50, aggregation delay values by ACS are about 7% and 32% smaller than those
of ICS and NS, respectively. For T = 100, the differences are larger, i.e., ACS values are
29% and 42% smaller in delay compared to those in ICS and NS. This is understandable
because the two latter algorithms ignore the active sleep patterns of sensor devices, which
is not negligible in duty-cycled networks.

When N increases from 500 to 900 nodes, the aggregation delays of the three schemes
do not show notable increments. This is because of the relatively sparse density of device
deployment, which results in a sufficiently large number of unused time slots in low-duty-
cycled settings. When the number of devices increases, the added nodes can utilize the
unused time slots to transmit data. Let ρ be the network density, i.e., the average number
of nodes in a radius-R disk [25]. For instance, when N = 500, R = 50, L = 500, we
have ρ = πR2 N

L2 = π×502×500
5002 ≈ 15.7 (nodes). As for N = 900, the average number of

neighbors each node has is 28. Figure 8 shows an example of when several nodes are added
to a network. In Figure 8a, the network has two nodes, {a, d}, with active slots, {0, 30},
respectively. The working period length here is assumed to be any number larger than
30. Node a transmits data to node d at time slot 30. In Figure 8b, node b with active slot
10 is added to the network, and b is a neighbor of both a and d. Herein, the scheduling
algorithm can arrange the transmission from a to b at time slot 10, and the transmission

Electronics 2024, 13, 3322 16 of 20

from b to d at time slot 30. Similarly, we can add another node c to the network and adjust
the schedule so that the aggregation time is unchanged, i.e., 30 time slots in this example.

5 6 7 8 9

0.5

0.7

0.9

·103

No. of nodes (×102)

D
el
ay

(t
im

e
sl
ot
s)

ACS ICS
NS

(a)

5 6 7 8 9

0.5

0.7

0.9

·103

No. of nodes (×102)

D
el
ay

(t
im

e
sl
ot
s)

ACS ICS
NS

(b)

5 6 7 8 9

0.5

0.7

0.9

·103

No. of nodes (×102)

D
el
ay

(t
im

e
sl
ot
s)

ACS ICS
NS

(c)

Figure 7. Data aggregation delay with L = 500 m and v = 2 m per time slot. (a) T = 20 slots;
(b) T = 50 slots; (c) T = 100 slots.

a d
Active slot: 0 Active slot: 30

(a)

a d

b

Active slot: 0 Active slot: 30

Active slot: 10

(b)

a d

b

Active slot: 0 Active slot: 30

Active slot: 10

c
Active slot: 20

(c)

Figure 8. Networks of different sizes but with the same aggregation delay: 30 time slots. (a) Two
nodes; (b) three nodes; (c) four nodes.

6.4. Impact of T

To evaluate the impact of T, we set L = 500 m, v = 2 m/time slot, and vary the working
period length T in the range [10, 200] while keeping the number of nodes N constant as in
Figure 9. The aggregation delay is computed in a number of working periods.

10 50 200

10

20

30

40

50

T (slots)

D
el
ay

(w
or
k
in
g
p
er
io
d
s)

ACS
ICS
NS

(a)

10 50 200

10

20

30

40

50

T (slots)

D
el
ay

(w
or
k
in
g
p
er
io
d
s)

ACS
ICS
NS

(b)

10 50 200

10

20

30

40

50

T (slots)

D
el
ay

(w
or
k
in
g
p
er
io
d
s)

ACS
ICS
NS

(c)

Figure 9. Data aggregation delay with L = 500 m, v = 2 m per time slot. (a) N = 500; (b) N = 700;
(c) N = 900.

Electronics 2024, 13, 3322 17 of 20

When T increases, the aggregation delay in working periods decreases. The reason
is that a large T allows more transmissions to occur in a working period. With a small
T, aggregation delays of ACS, ICS, and NS are similar. The ACS scheme has notable
improvement in low-duty-cycled networks. When T = 100, the aggregation delay values
of ACS are 35% and 42% smaller than those of ICS and NS, respectively.

6.5. Discussion

ICS and ACS differ in the way they construct the aggregation tree at each cluster. For
ACS, the algorithm takes an extra step (line 5 of Algorithm 4), which requires O(|V|) time
complexity in the worst case (when the network forms a completed graph). For a sparse
network, the required time depends linearly on the number of neighbors of a node, which
is basically the network density. Below, we further present observations on the cluster
distribution, UAV speed, and departure time.

Distribution of nodes in clusters. Figure 10 depicts the final cluster formation of ICS
and ACS schemes. Herein, nodes belonging to the same cluster have the same shape and
color. The first cluster has the smallest number of members, and the cluster size increases
subsequently. Since ICS builds the trees based on the neighboring relation, the trees span
relatively concentrated regions. However, for ACS, the primary concern is the sleep latency
between the sender and receiver. Therefore, members of a big cluster can span across
multiple regions. For example, Cluster 4 and Cluster 3 consist of nodes in all four regions,
while Cluster 2 spans across regions 1, 2, and 3.

0 100 200 300 400 500

0

100

200

300

400

500

(a)
0 100 200 300 400 500

0

100

200

300

400

500

(b)

Figure 10. Node–cluster distribution when T = 100, N = 500, L = 500. Cluster 1: yellow triangles,
Cluster 2: blue squares, Cluster 3: black stars, Cluster 4: red circles. (a) ICS scheme; (b) ACS scheme.

Impact of the UAV speed. Our scheme only plans for the UAV to visit the CHs instead
of every device. When setting up communication with a device, in reality, it may require
the UAV to slow down or hover still for reliable communication. However, as mentioned
above, we can think of v as the average speed, considering both the hovering time and
acceleration/deceleration times. In addition, the number of CHs is small; therefore, we
exclude this time and assume the UAV flies continuously.

Nevertheless, we believe that it is worth observing the impact of the speed on the
final aggregation delay. Figure 11 displays an aggregation delay trend when v varies in the
range [0.5, 2.5] m/time slot. These speeds are equivalent to [18, 90] km/h. The higher the
UAV speed, the more ACS outperforms other schemes. We do not simulate the UAV speed
beyond that range because 90 km/h is already high.

Electronics 2024, 13, 3322 18 of 20

0.5 1 1.5 2 2.5

0.5

1

1.5

2

·103

v (m/time slot)

D
el
ay

(t
im

e
sl
o
ts
) ACS

ICS
NS

Figure 11. Impact of the UAV speed. T = 50, N = 700, L = 500.

Docking station departure time α0. Recall that α0 is the time the UAV departs from
the docking station. Because the UAV flies continuously, its itinerary finishes within a
constant time. As a result, α0 determines the aggregation delay. In addition, α0 reflects
the difference between the aggregation time in Cluster 1, and the flying time of the UAV
from the docking station to CH c1. Figure 12 shows the docking-departure time of the
UAV. A larger T results in a higher aggregation delay in each cluster; therefore, the waiting
time at the docking station is longer. In all the cases, ACS lets the UAV take off earlier
than the other two schemes. If v decreases, then the UAV needs more time to travel to the
CH1. Consequently, it needs to take off earlier. For example, when T = 100 slots and the
scheduling algorithm is ACS, the UAV needs to start at time slot α0 = 0 if it flies with the
v = 1 m/time slot (Figure 12a), while with the v = 2 m/time slot, it can wait until time slot
100 (Figure 12b).

10 20 50 100 200

0.5

1

1.5
·103

T (slots)

α
0
(t
im

e
sl
o
ts
)

ACS
ICS
NS

(a)

10 20 50 100 200

0.5

1

1.5
·103

T (slots)

α
0
(t
im

e
sl
o
ts
)

ACS
ICS
NS

(b)

Figure 12. Docking station departure time (α0) with N = 700, L = 500. (a) v = 1 m/time slot;
(b) v = 2 m/time slot.

Electronics 2024, 13, 3322 19 of 20

7. Conclusions

This paper proposes ACS, an adaptive clustering and scheduling scheme that effi-
ciently arranges the device transmissions and UAV flying schedule. In particular, along
the UAV flying trajectory, later-visited CHs should have larger allocated data aggregation
deadlines. Upon calculating all deadlines at the CHs, ACS performs a reverse scheduling
algorithm to iteratively grow multiple aggregation trees rooted at the CHs. The transmis-
sion schedule and sender–receiver selections are pipelined according to the device’s active
time slots.

Simulation results confirm the effectiveness of ACS, as it reduces aggregation time by
up to 35% compared to other benchmarking schemes. ACS shows a significant improve-
ment over ICS when the working period length is average, i.e., in this case, T = 50. The
performances of ACS and ICS tend to converge when T is too small or too large. In the
future, we intend to optimize the number of CHs and their placement to achieve shorter
aggregation times. We also plan to evaluate the impact of various factors, such as fading
and the signal-to-interference and noise ratio, on performance. Finally, more scenarios
will be investigated, including disconnected regions, larger and denser networks, and
deadline-constrained aggregation tasks.

Author Contributions: Study design, T.-D.N.; Conceptualization, T.P.V.; Data collection, T.-D.N.; Data
analysis, T.-D.N. and D.-T.L.; Methodology, D.-T.L. and H.C.; Validation, T.P.V.; Writing—original
draft, T.-D.N.; Writing—review & editing, D.-T.L. and H.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partly supported by the Korea government (MSIT), IITP, Korea, in part
by the ICT Creative Consilience program (IITP-2024-2020-0-01821, 30%); in part by the Artificial
Intelligence Graduate School Program, Sungkyunkwan University (2019-0-00421, 10%); in part by the
Artificial Intelligence Innovation Hub (RS-2021-II212068, 10%); in part by the Development of 6G
Network Integrated Intelligence Plane Technologies (RS-2024-00392332, 20%); and by the National
Research Foundation of Korea (NRF) (RS-2024-00343255, 30%).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adam, M.S.; Anisi, M.H.; Ali, I. Object tracking sensor networks in smart cities: Taxonomy, architecture, applications, research

challenges and future directions. Future Gener. Comput. Syst. 2020, 107, 909–923. [CrossRef]
2. Li, W.; Wang, Y.; Sun, Y.; Mao, J. Research on Low-energy Adaptive Clustering Hierarchy Protocol based on Multi-objective

Coupling Algorithm. KSII Trans. Internet Inf. Syst. (TIIS) 2020, 14, 1437–1459.
3. Nguyen, T.D.; Le, D.T.; Vo, V.V.; Kim, M.; Choo, H. Fast Sensory Data Aggregation in IoT Networks: Collision-Resistant Dynamic

Approach. IEEE Internet Things J. 2020, 8 , 766–777. [CrossRef]
4. Zhan, C.; Hu, H.; Sui, X.; Liu, Z.; Niyato, D. Completion time and energy optimization in the uav-enabled mobile-edge computing

system. IEEE Internet Things J. 2020, 7, 7808–7822. [CrossRef]
5. Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. A UAV-Assisted Data Collection for Wireless Sensor Networks: Autonomous

Navigation and Scheduling. IEEE Access 2020, 8, 110446–110460. [CrossRef]
6. Zhan, C.; Zeng, Y.; Zhang, R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel. Commun. Lett.

2017, 7, 328–331. [CrossRef]
7. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things

communications. IEEE Trans. Wirel. Commun. 2017, 16, 7574–7589. [CrossRef]
8. Liu, J.; Wang, X.; Bai, B.; Dai, H. Age-optimal trajectory planning for UAV-assisted data collection. In Proceedings of the IEEE

INFOCOM 2018—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19
April 2018; IEEE: New York, NY, USA, 2018; pp. 553–558.

9. Samir, M.; Sharafeddine, S.; Assi, C.M.; Nguyen, T.M.; Ghrayeb, A. UAV trajectory planning for data collection from time-
constrained IoT devices. IEEE Trans. Wirel. Commun. 2019, 19, 34–46. [CrossRef]

10. Ebrahimi, D.; Sharafeddine, S.; Ho, P.H.; Assi, C. UAV-aided projection-based compressive data gathering in wireless sensor
networks. IEEE Internet Things J. 2018, 6, 1893–1905. [CrossRef]

http://doi.org/10.1016/j.future.2017.12.011
http://dx.doi.org/10.1109/JIOT.2020.3007329
http://dx.doi.org/10.1109/JIOT.2020.2993260
http://dx.doi.org/10.1109/ACCESS.2020.3002538
http://dx.doi.org/10.1109/LWC.2017.2776922
http://dx.doi.org/10.1109/TWC.2017.2751045
http://dx.doi.org/10.1109/TWC.2019.2940447
http://dx.doi.org/10.1109/JIOT.2018.2878834

Electronics 2024, 13, 3322 20 of 20

11. Al-Kaseem, B.R.; Taha, Z.K.; Abdulmajeed, S.W.; Al-Raweshidy, H.S. Optimized energy–efficient path planning strategy in WSN
with multiple Mobile sinks. IEEE Access 2021, 9, 82833–82847. [CrossRef]

12. Ma, X.; Kacimi, R.; Dhaou, R. Fairness-aware UAV-assisted data collection in mobile wireless sensor networks. In Proceedings of
the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September
2016; IEEE: New York, NY, USA, 2016; pp. 995–1001.

13. Say, S.; Inata, H.; Liu, J.; Shimamoto, S. Priority-based data gathering framework in UAV-assisted wireless sensor networks. IEEE
Sens. J. 2016, 16, 5785–5794. [CrossRef]

14. Li, J.; Zhao, H.; Wang, H.; Gu, F.; Wei, J.; Yin, H.; Ren, B. Joint optimization on trajectory, altitude, velocity, and link scheduling for
minimum mission time in UAV-aided data collection. IEEE Internet Things J. 2019, 7, 1464–1475. [CrossRef]

15. Tong, P.; Liu, J.; Wang, X.; Bai, B.; Dai, H. Deep Reinforcement Learning for Efficient Data Collection in UAV-Aided Internet of
Things. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin,
Ireland, 7–11 June 2020; IEEE: New York, NY, USA, 2020; pp. 1–6.

16. Zorbas, D.; Pugliese, L.D.P.; Razafindralambo, T.; Guerriero, F. Optimal drone placement and cost-efficient target coverage.
J. Netw. Comput. Appl. 2016, 75, 16–31. [CrossRef]

17. Ghorbel, M.B.; Rodríguez-Duarte, D.; Ghazzai, H.; Hossain, M.J.; Menouar, H. Joint position and travel path optimization for
energy efficient wireless data gathering using unmanned aerial vehicles. IEEE Trans. Veh. Technol. 2019, 68, 2165–2175. [CrossRef]

18. Zhang, B.; Liu, C.H.; Tang, J.; Xu, Z.; Ma, J.; Wang, W. Learning-based energy-efficient data collection by unmanned vehicles in
smart cities. IEEE Trans. Ind. Inform. 2017, 14, 1666–1676. [CrossRef]

19. Zhang, R.; Pan, J.; Xie, D.; Wang, F. NDCMC: A hybrid data collection approach for large-scale WSNs using mobile element and
hierarchical clustering. IEEE Internet Things J. 2015, 3, 533–543. [CrossRef]

20. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned aerial vehicle with underlaid device-to-device communications:
Performance and tradeoffs. IEEE Trans. Wirel. Commun. 2016, 15, 3949–3963. [CrossRef]

21. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile Internet of Things: Can UAVs provide an energy-efficient mobile
architecture? In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA,
4–8 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–6.

22. Ho, D.T.; Grøtli, E.I.; Sujit, P.; Johansen, T.A.; Sousa, J.B. Optimization of wireless sensor network and UAV data acquisition.
J. Intell. Robot. Syst. 2015, 78, 159–179. [CrossRef]

23. Lee, S.; Younis, M.; Anglin, B.; Lee, M. LEEF: Latency and energy efficient federation of disjoint wireless sensor segments. Ad Hoc
Netw. 2018, 71, 88–103. [CrossRef]

24. Chen, X.; Hu, X.; Zhu, J. Minimum data aggregation time problem in wireless sensor networks. In Proceedings of the International
Conference on Mobile Ad-hoc and Sensor Networks, Washington, DC, USA, 7 November 2005; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 133–142.

25. Nguyen, T.D.; Le, D.T.; Choo, H. Sensory Data Aggregation in Internet of Things: Period-driven Pipeline Scheduling Approach.
IEEE Trans. Mob. Comput. 2021, 21, 3326–3341. [CrossRef]

26. Nguyen, T.D.; Le, D.T.; Pham-Van, N.; Choo, H.; Van, T.P. UAV-aided Sensory Data Aggregation: Incremental Clustering and
Scheduling Approach. In Proceedings of the 2021 15th International Conference on Ubiquitous Information Management and
Communication (IMCOM), Seoul, Republic of Korea, 4–6 January 2021; IEEE: New York, NY, USA, 2021; pp. 1–5.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3087086
http://dx.doi.org/10.1109/JSEN.2016.2568260
http://dx.doi.org/10.1109/JIOT.2019.2955732
http://dx.doi.org/10.1016/j.jnca.2016.08.009
http://dx.doi.org/10.1109/TVT.2019.2893374
http://dx.doi.org/10.1109/TII.2017.2783439
http://dx.doi.org/10.1109/JIOT.2015.2490162
http://dx.doi.org/10.1109/TWC.2016.2531652
http://dx.doi.org/10.1007/s10846-015-0175-5
http://dx.doi.org/10.1016/j.adhoc.2017.12.008
http://dx.doi.org/10.1109/TMC.2021.3052803

	Introduction
	Related Work
	Network Model
	Problem Formulation
	Adaptive Clustering and Scheduling Scheme
	Overall Approach
	Adaptive Clustering and Scheduling
	Complexity Analysis
	Step by Step Example

	Performance Evaluation
	Simulation Settings
	Baseline Schemes
	Impact of Network Size
	Impact of T
	Discussion

	Conclusions
	References

