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Abstract: Log messages from enterprise-level software systems contain crucial runtime details. Engi-
neers can convert log messages into structured data through log parsing, laying the foundation for
downstream tasks such as log anomaly detection. Existing log parsing schemes usually underperform
in production environments for several reasons: first, they often ignore the semantics of log messages;
second, they are often not adapted to different systems, and their performance varies greatly; and
finally, they are difficult to adapt to the complexity and variety of log formats in the real environment.
In response to the limitations of current approaches, we introduce IPLog (Intelligent Parse Log), a
parsing method designed to address these issues. IPLog samples a limited set of log samples based on
the distribution of templates in the system’s historical logs, and allows the model to make full use of
the small number of log samples to recognize common patterns of keywords and parameters through
few-shot learning, and thus can be easily adapted to different systems. In addition, IPLog can further
improve the grouping accuracy of log templates through a novel manual feedback merge query
strategy based on the longest common prefix, thus enhancing the model’s adaptability to handle
complex log formats in production environments. We conducted experiments on four newly released
public log datasets, and the experimental results show that IPLog can achieve an average grouping
accuracy (GA) of 0.987 and parsing accuracy (PA) of 0.914 on the four public datasets, which are the
best among the mainstream parsing schemes. These results demonstrate that IPLog is effective for
log parsing tasks.

Keywords: log parsing; prompt tuning; manual feedback; computer science and engineering

1. Introduction

Logs are mainly used to record the state of a system during operation, and engineers
can utilize these logs for fault prediction [1,2] or system anomaly detection [3–6]. In recent
years, online services and system software have become an indispensable part of our daily
life, and they generate a huge number of software logs every hour, so it is impossible to
ensure the quality of service by manually analyzing so many logs. In order to improve
the diagnostic efficiency in cases of system anomalies and to reduce the labor cost, the
task of automated log parsing has received a lot of attention. The core of this task is to
transform the unstructured raw log information into a structured data format, which in
turn can be used to feed into various deep learning or machine learning models in order to
perform various subsequent missions. Such automated processing significantly speeds up
the response time of engineers when dealing with anomalies in engineering projects.

Log parsing involves transforming raw log messages into predefined log templates.
Log messages originate from log statements within the source code. Typically, as illustrated
in Figure 1, a log message consists of a log header, generated by the logging system, and a
log message body. The log header contains information such as timestamps, level of detail,
and components, while the log message body typically comprises two parts: a template
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constant string (keyword) depicting system incidents, and a parameter (variable), which is
constantly changing at runtime, reflecting the detailed information of the system at runtime.
In one of the log messages in Figure 1, the log header is obtained after processing (i.e.,
“17/06/09 17:20:31”, “INFO”, and “executor. Executor”), and the log message body consists
of the template “Running task <*> in slabele <*> (TID <*>)” and a list of “16.0”, “3118.0”,
and “132697”.
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Figure 1. Example of log parsing.

Over the years, several data-driven methods [7,8] have been developed to facilitate
automated log parsing. These methods aim to identify the repetitive common elements
of log messages as templates and to extract the variable elements as parameters. Despite
the progress made, existing log parsing methods are still criticized for their unsatisfactory
results in production environments, which may have a significant negative impact on subse-
quent tasks such as anomaly detection [9,10]. We pinpoint three main factors contributing to
inaccurate parsing results. Firstly, existing log parsing techniques focus solely on extracting
common elements as templates, overlooking the semantic content of logs. For example,
as shown in Figure 1: considering the semantics of log messages, “mesos-slave-14:42913”
should clearly be recognized as a parameter. Here, “mesos-slave-14:42913” refers to the
identity of a specific Mesos slave node. However, without considering the semantics, exist-
ing log parsing methods often fail to recognize the noun part of “mesos-slave-14:42913”,
and thus incorrectly consider this parameter part of the template. Secondly, the log con-
tents vary significantly across different services and systems. Log events and descriptions
generated by diverse systems differ greatly, posing a challenge to the generalization of log
parsing methods across various environments. Thirdly, existing log parsing methods are
difficult to adapt to the complexity and variety of log formats in real-world environments,
where many log statements change throughout the life cycle of a software system. This
instability stems from the fact that developers add new log statements or modify existing
log content to accommodate new features or bug fixes during ongoing development and
maintenance, which leads to a significant increase in the variety and complexity of log
templates, making it difficult for existing parsing methods to cope.
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To address the above problem, we propose a new log parsing method, IPLog. In this
work, we argue that logs are always heavily repetitive during generation regardless of the
system, and that this repetitiveness causes the model to ignore truly valuable information.
Based on this thinking, we propose a new adaptive system sampling method to select a
small number of training data from historical logs, and then learn from this small num-
ber of data to grasp the semantic content of log messages, enabling the identification of
parameters and keywords within them. Second, we use the template-free prompt tuning
method [11] to adjust a pretrained model to forecast a particular virtual label word for
parameter locations. The embedding vector for the synthetic label “Variable” is derived
from the word “distribution” calculated by the unlabeled log dataset and the language
model. After training, the model is capable of directly parsing new log data. To further
improve the performance of the parsing method on different systems, we finally propose a
postprocessing method for a manual feedback merge query strategy based on the longest
common prefix, which allows the model to achieve a sizable increase in performance
with very little human involvement. Finally, we demonstrate the superiority of IPLog by
evaluating it on four newly released public log datasets.

In summary, our contributions are as follows.
In this article, we design a new adaptive system sampling method that can take a

small and representative set of training samples for different systems as a way to help
the model better understand the differences between parameters and templates, and thus
extract templates more accurately.

We present IPLog, a few-shot log parsing method based on prompt tuning that ac-
curately identifies patterns of log messages. IPLog employs an innovative template-free
prompt tuning approach to efficiently grasp semantic content from a limited set of labeled
log samples. This technique eliminates the need for manually defining regular expressions
for preprocessing, allowing for rapid adaptation to new logs. In addition, we design a
postprocessing method for merging queries with manual feedback based on the longest
common prefix, which effectively improves the model performance at a fraction of the cost.

We assess IPLog on four public log datasets and demonstrate that it surpasses existing
methods. The experimental results verify the effectiveness of our proposed approach.

2. Background and Motivation
2.1. Log Parsing

Log records are critical to system maintainers for diagnosing issues and monitoring
performance. Log parsing, a key step in these tasks, aims to transform raw, semi-structured
or unstructured log records into a structured format for further analysis and processing.
With structured log records, system maintainers can detect and troubleshoot problems
more efficiently while optimizing system performance to ensure stable system operation.
Log parsing is a process of extracting static log templates and parameters and processing
them [12].

2.2. Related Work

Regular expression filtering was the earliest method used for log parsing, but it re-
quires a large amount of manual work, making it difficult to cope with the rapid growth in
log volume in software-intensive systems. For efficient log parsing, various data-driven
techniques have been developed to transform raw log messages into templates and param-
eters. The classification of methods and the technical features of each method are shown in
Table 1. These methods can be generally classified into four primary categories: similarity-
based clustering, frequent pattern mining, heuristic methods, and neural networks.



Electronics 2024, 13, 3324 4 of 20

Table 1. Overview of log parsing methods.

Category Method Feature

Frequent pattern mining

SLCT Frequent word matching
LFA Frequency and regular expression

LogCluster Hash table clustering
Logram N-gram dictionary

Similarity-based clustering LKE Edit distance clustering
LenMa Incremental clustering

Heuristics
AEL Clone detection

Drain Parsing tree
Spell LCS mapping

Neural network
Nulog Transformer encoder
Semlog Semantic contribution scoring
LogPPT Pretrained model

Frequent Pattern Mining: Intuitively, the public portion of a log should frequently
appear throughout the log dataset. Therefore, frequent pattern mining techniques exploit
this feature. Typical approaches include SLCT [13], LFA [14], LogCluster [15] and Lo-
gram [8]. These methods first traverse the log data and construct frequent itemsets based
on labels, labeled position pairs, or labeled n-tuple models. A given frequent itemset can
then group log messages into multiple clusters, and log templates can be extracted from the
clusters. SLCT was the first to apply frequent pattern mining to log parsing [12]. For SLCT,
it not only applies frequent pattern mining to log parsing but also constructs clustering
candidates by scanning the input dataset multiple times, each time by extracting words
that occur more frequently than a predefined threshold. LFA and LogCluster build on
this by further considering the frequency distribution of tokens and the locations of the
tokens. LFA not only considers the frequency distribution and location of tokens but also
recognizes the constant and variable portions of log messages to construct event types as
regular expressions. LogCluster uses a hash table to locate frequent words and extracts
all frequent words from each log message to build or update candidate groups. Logram
aims to extract frequent 2 g and 3 g tokens. This process typically involves building a word
frequency table that records the number of occurrences of each phrase. Logram then uses
these frequent phrases to build a template for the log, inferring the basic structure of the
log message by recognizing and combining common phrases.

Similarity-Based Clustering: This class of parsing methods assumes that logs belong-
ing to the same log template can be clustered together by certain features. LKE [16] uses
a hierarchical clustering algorithm with custom-weighted edit distances. This weighting
reflects the importance of the different log sections, allowing the algorithm to more accu-
rately distinguish between log templates. LenMa [17] focuses on word-length features and
converts logs into vectors representing the number of letters in a word. This approach
clusters log messages by calculating the similarity between them or their signatures.

Heuristics: Log messages differ from general text data due to their unique characteris-
tics. Consequently, some log parsing techniques leverage these traits to extract common
segments as templates. AEL [18] classifies log messages by comparing the frequency of
occurrence of constant and variable lexical elements in the logs, effectively identifying and
grouping logs with similar patterns. Drain [7] borrows the idea of prefix trees to group
logs by parsing the logs online using a tree structure with a fixed depth. Spell [19] uses the
longest common subsequence algorithm to analyze logs, identify recurring patterns in logs,
and extract generic log templates from them.

Neural Network: Nulog [20] uses the transformer encoder to classify mask words one
by one for log parsing. After encoder processing, a linear layer converts the output matrix
into a vector representation of the log messages, a representation that captures the key
features and intrinsic structure of the log data. NuLog identifies the variable portions of the
logs by masking operations on each lexical element and generates the appropriate event
templates accordingly. Semlog [21] trains BERT-based models to enhance the semantic
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distinction between constants and variables. During the online parsing phase, Semlog
finally applies a template extraction algorithm to determine the log template for each log
based on the computed semantic contribution score. In LogPPT [22], an adaptive random
sampling algorithm was designed to select a diverse training set, which is then used to
tune the pretrained model. This allows for the prediction of log templates and parameters.

2.3. Limitations

Despite the progress made, existing log parsing methods still suffer from low parsing
accuracy in production environments, which may seriously affect subsequent analyses
such as anomaly detection based on logs. In general, existing log parsing methods suffer
from the following limitations:

Ignoring semantics: Log parsing methods typically focus on extracting structured data
from logs, but this approach can ignore the deeper meaning of log content. For example, an
error log may contain key performance metrics or configuration information that may be
missed in a simple text extraction process. Traditional log parsing methods often misidentify
parameters as keywords, especially when semantic information is not taken into account.
For example, similarity-based clustering, frequent pattern mining, and heuristic methods
often rely on syntactic rules that fail to capture semantic information in logs, leading to
poor parsing results. Specifically, SLCT, LFA, LogCluster, and Logram address data only
from a statistical perspective, focusing on frequently occurring patterns. LKE and LenMa
concentrate on structural similarities, while AEL and Drain employ heuristic rules and
prefix tree structures for rapid log template extraction. Spell relies on the longest common
subsequence to process logs. These methods generally focus on the format and syntactic
features of logs. The phenomenon of misidentifying variables as templates is particularly
evident in these methods that do not take advantage of semantic information. Due to the
inability to accurately identify templates and parameters in logs, these methods result in
suboptimal performance in terms of log parsing accuracy.

Lack of generalizability: Logs generated by different systems, applications, or devices
may have a high degree of diversity, including different formats, terminology, and logging
conventions. The challenge for a generalized log parsing method is that it needs to be
flexible enough and broadly compatible to accommodate these diverse formats. While
some parsing methods may perform well with specific types of log files, their performance
may degrade significantly across systems or applications. For example, a parsing method
designed for a particular application may not be able to accurately process logs from
another system because differences in the representation of key data between the two
may result in parsing errors and missing information. The limitation of such approaches
is that they typically need to be adapted or reconfigured for each new log type, adding
complexity and cost to maintenance. For similarity-based clustering, frequent pattern
mining, and heuristic methods, specific adjustments are often necessary to effectively
handle log data from different systems, limiting their applicability across diverse log
formats or systems. For instance, SLCT requires presetting the regular expression “[r’blk_-
?\d+’, r’(\d+\.){3}\d+(:\d+)?’]” to match block IDs and IP addresses before parsing HDFS
system logs. However, in the Zookeeper system, where the focus is more on paths and IP
addresses, the regular expression must be changed to “[r’(/|)(\d+\.){3}\d+(:\d+)?’]” for
correct matching. This also means that rule-based methods, to be effective across different
systems, must rely on domain knowledge to craft specific regular expressions, undoubtedly
limiting their universality across various systems.

Poor adaptability: As technology evolves and systems are upgraded, the emergence of
complex log formats is inevitable. Traditional log parsing methods often struggle to adapt
promptly to these changes, especially when new log patterns or types are introduced. For
example, the introduction of new software modules or updates to existing systems may
generate entirely new types of log entries. If the parsing method fails to recognize these
new patterns, it may miss critical information or produce incorrect parsing results. In real
production environments, the complexity of log templates and parameters also becomes
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more complex over time, and traditional parsing methods have difficulty adapting to such
changes. Currently, almost all methods struggle to easily adapt to new log formats and
content. Specifically, for similarity-based clustering, frequent pattern mining, and heuristic
methods, the regular expressions or parameters established for systems no longer suffice
with system updates, requiring continual manual revisions based on newly emerged logs,
thereby reducing parsing performance. NuLog, SemLog, and LogPPT typically rely on
neural network technology to parse log data. Although these methods excel in handling
logs with known formats and content compared to traditional log parsing techniques, they
still encounter accuracy issues when faced with new log templates, leading to incorrect
template grouping and adversely affecting log parsing performance.

2.4. Insights and Opportunities

The three aforementioned issues prompted us to rethink our approach to log parsing.
By examining logs from various public datasets and industrial sources, we identified a
crucial feature of log data: despite the diverse content across different systems or services,
logs typically adhere to specific logging conventions. Inspired by the use of virtual labeling
tokens to identify keywords and parameters in LogPPT [22], we accomplish the goal of
log parsing by selecting a comprehensive sample from historical logs labeled as training
data. We then use a prompt tuning strategy. We reformulate the task of log parsing into a
predictive labeling problem. The underlying premise is that the majority of keywords in log
statements consist of valid, intelligible words readily accessible in dictionaries [23], making
them easier for a language model to predict. In contrast, the parameters are ever-changing,
making it difficult for a language model to predict. In this process, we set up a strategy such
that the model uses the specific virtual label word “Variable” for parameter identification,
while keeping the original text predicted for keywords in the log. Unlike traditional prompt
tuning methods, we adopt a template-free prompt tuning strategy [11], which does not
need to rely on predefined prompt templates to guide the model. Hence, in the process of
log parsing, the model is primed to anticipate the virtual label “Variable” precisely where
parameters occur, while preserving their original manifestation at keyword positions.

3. Method

This section details our approach, which aims to overcome the limitations of traditional
methods. Our model leverages the extensive knowledge embedded in pretrained language
models to detect patterns in parameters and templates within the contextual aspects
within log messages. By utilizing a prompt tuning technique, the model can effectively
perform log parsing with a limited number of training samples, transferring the language
model’s knowledge to the task. To maximize the benefits of prompt tuning, selecting an
appropriate training set is essential. Therefore, we have developed a new adaptive system
sampling method to precisely choose training samples, enhancing both training efficiency
and effectiveness. In this section, we arrange it as follows: we firstly state the problem
definition in Section 3.1, describe the data sampling methodology in Section 3.2, detail the
IPLog core model methodology design in Section 3.3, describe how to implement the IPLog
and how to parse online in Section 3.4, and finally introduce a manual feedback merge
query method in Section 3.5.

3.1. Definition of the Problem

In this research, we metamorphose the log parsing task into a challenge of parameter
recognition by employing a novel prompt tuning method that is trained with a limited set
of labeled samples. To handle a dataset D, we customize a pretrained model M through
prompt tuning to distinguish between templates and variables in log messages. The
model processes an initial log message comprising n tokens T = {t1, t2. . .,tn}. At parameter
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positions, the model predicts the virtual label “Variable” while for keywords, it predicts the
initial word. Formally, model M is trained to generate output O = {o1, o2. . .,on}, where:

oi = M(ti) =

{
“Variable” if ti is one of the variables

ti if ti is part of the template
(1)

Figure 2 illustrates the model’s training process to predict parameters “3357” and
“1343” using the label word “Variable”. For keywords like “child”, the model predicts the
original word. “Variable” is a specific placeholder word with no inherent meaning. The
model identifies parameters within the log message and recognizes them through their
association with the word “Variable”. The embedding vector for “Variable” is computed
based on the most commonly occurring parameters in the log message, enhancing the
expression of their meaning. During the online parsing phase, all instances of “Variable”
are considered parameters, while other words form the log template.
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This shift allows the model to leverage existing pretraining knowledge and effectively
identify and differentiate key information in logs with a small amount of labeled data.
With this approach, we significantly reduce our reliance on large amounts of labeled data
while maintaining a high level of accuracy, which is especially critical when dealing with
large-scale or dynamically changing log data.

3.2. Adaptive System Sampling

During the training phase, our method necessitates only a sparse set of labeled log
data to establish the training dataset. In order to improve the parsing of the model, we
design a simple and efficient strategy, the adaptive system sampling algorithm, to pick a
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small but comprehensive collection of labeled samples for the current system. In adaptive
system sampling, the algorithm first parses historical log data to identify the kinds of
log templates that the current system already has. Each template represents the format
of a particular class of events or behaviors in the system’s logs, and the distribution of
these templates may vary significantly across systems. This analysis enables the sampling
strategy to understand which templates are common in the current system and which are
rarer. During the sampling process, the adaptive system sampling algorithm will adjust
the selected samples based on the type and frequency of occurrence of the templates. For
high-frequency logs, frequent occurrences may indicate that they are critical to the normal
operation of the system, and thus sampling from these templates can help the model to
better learn the normal behavioral patterns of the system. For less frequent logs, on the
other hand, although they appear infrequently, they may be associated with critical events
or abnormal states in the system. Identifying and training such templates can greatly
improve the accuracy and robustness of the model in dealing with anomalies, and adaptive
system sampling can effectively improve the quality of the training data.

The adaptive system sampling method not only improves the comprehensiveness
and diversity of the training data but also significantly reduces the training cost and time
by selecting a small number of the most informative samples. When a new log template
is added to the historical log, the method can adaptively update the number of samples
selected, which allows the model to easily adapt to the new log format.

3.3. Log Parsing Based on Prompt Tuning

In this study, we apply prompt tuning techniques that set new standards in a variety
of natural language processing (NLP) tasks, aiming to achieve the goal of entity-oriented
language modeling. The main rationale is that keywords in logs are usually valid and
easy-to-understand words that can be found in the lexicon, making it easier for language
models to make predictions; on the contrary, parameters in logs change frequently and are
more difficult for language models to predict. Based on this observation, we transform the
log parsing task into a label word prediction problem. Specifically, we let the model predict
parameters as virtual label words “Variable” and keywords as original words.

3.3.1. Pretrained Language Model

Over the last few years, pretrained language models have demonstrated significant
effectiveness in numerous NLP tasks [24–26]. Typically, these models undergo initial
pretraining on extensive corpora of unlabeled text, followed by fine-tuning for specific
downstream missions. Recent research has shown [10] that pretrained models can effec-
tively parse the semantics of log messages and provide support for various log analysis
tasks. In this paper, we adopt the popular RoBERTa [24] model for our study. RoBERTa
utilizes solely the encoder component and adopts the identical transformer architecture as
BERT. Both RoBERTa and BERT utilise the byte-pair encoding (BPE) strategy for vocabulary
processing, which avoids the introduction of unknown words by subdividing uncommon
words into sub-words. The main reason for choosing RoBERTa over BERT is that RoBERTa
improves the performance of the model by scaling up the training data and optimizing the
training strategy. RoBERTa uses larger training datasets, longer training time and larger
batch size, and removes the next-sentence prediction (NSP) task. This quality renders
RoBERTa exceptionally apt for log parsing, since developer-defined parameters frequently
consist of word combinations that extend beyond standard English vocabulary, such as
the parameter “mesos-slave-14:42913” in Figure 1. Example of log parsing studies have
shown [27] that RoBERTa performs well in log analysis.

3.3.2. Virtual Parameter Indicator Word Selection

In this study, we use the template-free prompt tuning technique [11] to predict a virtual
label word “Variable” for each parameter position in the input sequence T = {t1, t2. . .,tn}.
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Since all parameters are converted to the same word, it becomes particularly important to
identify some indicator words that can effectively represent these parameters.

Using the training dataset Dtrain = {(Ti, Oi)}K
i=1, we apply a pretrained language

model M to analyze the probability distribution of the predicted likelihood tokens at each
position i. We compute the output of the model M for each sample pair (T, O) to obtain the
probability distribution p of the individual tokens x in the prediction log message T. To
proceed, at each location i identified as a parameter, we select the top k predicted tokens to
initialize the set of parameter indications, as Pini. This step aims to broaden the parameter
indication set by selecting tokens that closely align in meaning with the original parameter
tokens.

Based on the initial set of parameter indications Pini, we then look for the most
frequent words in the untagged data. We calculate the frequency ∅( t = x|D) of occurrence
of each token x in the set and select the most common words by sorting them according to
frequency:

P = argmax
x

∅( t = x|D), ∀x ∈ Pini (2)

Upon acquiring the set P, we calculate the mean vector of all the tokens in the set P and
add this vector as an embedding vector into the language model M to set the embedding
vector for the virtual label word “Variable”. This approach not only enhances the ability of
the model to identify the parameters but also optimizes the overall model performance. In
addition, this approach enables the model to better capture the parameter patterns in the
log data, which improves the accuracy and efficiency of parsing.

3.3.3. Offline Training

During the training phase, we fully utilize historical logs for training. We use log
messages T = {t1, t2. . .,tn} as input and construct the target sequence O = {o1, o2...,on} by
substituting the parameter at position i with the virtual label word “Variable” while
retaining the original word at the keyword position. Identification is then performed
according to Equation (1). As shown in Figure 3, we take the log message “Adding an
already existing block blk_-2074647” as the input, and at the same time, construct the target
sequence “Adding an already existing block <*>”, where we denote the position i where
the virtual label word is located by <*>.
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It is important to emphasize that the pretrained model is completely reused during
the adaptation process. This entity-focused objective, similar to the mask token prediction
in language models, minimizes the discrepancy between fine-tuning and pretraining. Thus,
the model is able to retain the knowledge gained from the pretrained language model. In
addition, with this approach, we not only maintain the model’s consistency across tasks but
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also ensure its efficiency and accuracy when processing log data. In this way, our model is
able to flexibly use the pretrained knowledge in different application scenarios to further
enhance its parsing and prediction capabilities.

3.4. Online Parsing

In the online parsing phase, the trained model efficiently processes incoming log data
in real time. Initially, the model takes the incoming log messages and splits them into
separate tokens by performing a parsing process. Subsequently, each token is analyzed
and the model predicts whether it is marked as parameters or just plain keywords. This
approach enables the model to instantly identify and differentiate between various elements
of the log in practice. It not only identifies which parts are dynamically changing parameters
but also pinpoints fixed template parts, allowing for effective structuring and classification
of log messages. Instead of choosing to represent consecutive parameters as just <*>,
as most parsing methods do, we replaced each parameter with <*> after parsing it out,
which facilitates more differentiation when analyzing log templates at a later stage. As
shown in Figure 3, in the face of the new log message “PacketResponder 1 for block blk_-
160899 terminating”, IPLog can accurately identify the parameter “1” and the parameter
“blk_-160899”.

This real-time parsing capability greatly improves the speed and accuracy of log
data processing, enabling system administrators or automated monitoring tools to quickly
respond to information displayed in the logs, such as detecting potential system problems
or abnormal activity.

3.5. Manual Feedback Merge Query

Inspired by Hue [28], we designed and implemented an interactive function for manual
feedback to enhance the model’s adaptability to changing and complex log templates. This
feature is implemented as follows. After the model automatically extracts log data and
forms preliminary log templates to form template groups, the operator has the option
to further improve the grouping accuracy by merging the templates. These generated
templates are first analyzed, and then similar templates are identified by matching the
longest common prefix between different templates. The maintenance personnel can
view the similarity information of these templates on the user interface and artificially
choose whether to merge these templates according to the actual situation and maintenance
requirements.

As shown in Figure 4, for the templates with the same public prefix “Error reading
message prefix on socket to <*>”, the maintenance personnel can determine whether the
current merge query is correct or not through the system, and if the current merge does not
meet the requirements, they can choose to skip it. For the “ambient=<*>“ merge request in
Figure 4, it is approved, and the two templates are merged into a unified format. Human
feedback allows the maintenance staff to adjust the clustering results based on actual
experience and log specifics, correcting potential misclustering cases and ensuring that
the clustering results match the actual application scenarios better. During the merging
process, the maintenance staff can effectively improve the model’s performance on complex
log formats at minimal cost.

User choices and feedback are recorded by the system and used to adjust the model’s
parsing strategy over time, allowing the model to better adapt to changes in log format.
This continuous feedback loop ensures system optimization, enhancing parsing accuracy
and template clustering accuracy.
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4. Experimental Design

In order to evaluate the effectiveness and efficiency of IPLog, we conducted a number
of experiments. In this section, we first describe the information of the dataset in Section 4.1,
then we will present our experimental environment in Section 4.2, the evaluation metrics
used in our experiments will be presented in Section 4.3, and the baselines we compared
will be presented in Section 4.4.

4.1. Datasets

Our experiment primarily utilizes the newly released loghub2.0 [29] by LogPai, which
encompasses log data from supercomputers, distributed systems, and server applications.
Compared to the data from loghub-2k [30], which was commonly used in previous research,
loghub2.0 more accurately reflects log data observed in real-world software systems, and
the challenges of using the loghub2.0 dataset become more difficult, both in terms of the
complexity of the templates and the size of the data. Each system in loghub-2k contains
only 2000 logs, and the variety of log templates is far less compared to loghub2.0. Detailed
system information for our current study is shown in Table 2, where Hadoop is a big data
processing framework that allows distributed processing of large datasets across computer
clusters using a simple programming model. Hadoop has been extensively studied in the
literature due to its growing importance in industry. HDFS is a distributed file system
designed to run on commercial hardware. It is one of the core components of Hadoop and
exists as the lowest-tier distributed storage service. ZooKeeper is an open source service
managed by the Apache Software Foundation. It is primarily used to orchestrate services
in distributed applications. Apache is open-source web server software developed by
the Apache Software Foundation, and is one of the most widely used web servers on the
internet due to its cross-platform nature, stability, and scalability.

Table 2. Details of the datasets (including 3 distributed systems and 1 service application).

loghub2.0 loghub-2k

System Dataset Templates Logs Templates Logs

Distributed systems
Hadoop 236 179,993 114 2000
HDFS 46 11,167,740 14 2000

Zookeeper 89 74,273 50 2000

Server application Apache 29 51,977 6 2000

4.2. Implementation Details

All our experiments were conducted on an Ubuntu 20.04 server equipped with an
Nvidia RTX 4090 (24 GB) GPU and an Intel(R) Xeon(R) Platinum 8352 V CPU. Our CUDA
version is 11.3 and the code is based on PyTorch 1.10.0 and Python 3.8 implementation. We
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utilized the AdamW [31] optimizer and set the initial learning rate to 0.00005, the batch size
to 8, and performed a total of 200 steps of training. Also, we employed a linear learning
rate decay strategy and implemented a 10% warm-up step at the beginning of training.
In the online parsing phase, the batch size is increased to 32, and in the adaptive system
sampling phase, we set the number of samples for each template to 1. For the virtual label
word “Variable”, we compute the embeddings based on the 8 most frequent label words in
the experiment.

4.3. Evaluation Metrics

Group Accuracy (GA): The GA metric assesses the capability to accurately group log
messages that belong to the same template. The GA metric quantifies the effectiveness
of log message grouping by calculating the proportion of correctly categorized messages
among the total. It hinges on the coherence between a message’s template and a cluster
of messages sharing identical underlying facts. Only messages with templates aligning
precisely with such clusters are deemed correctly grouped. This metric’s emphasis lies in
ensuring robust categorization that reflects the nuanced relationships within log data. If we
represent CG as the number of correctly grouped log messages and T as the total number
of log messages, the exact formula is as follows:

GA =
CG
T

(3)

Parsing Accuracy (PA): The PA metric evaluates the accuracy of log message parsing
by measuring the percentage of correctly parsed messages among the total. It defines a
message as “correctly parsed” if every token is accurately identified as either a template or
parameter. This metric is more stringent than group accuracy, because a single misclassified
token can lead to the entire message being parsed incorrectly, underscoring its rigorous
assessment of parsing precision. The PA used evaluates the ability to correctly extract the
template portion and parameter portion of each log message, which is crucial for various
log analysis tasks. If we represent CP as the number of log messages parsed correctly and T
as the total number of log messages, the exact formula is given below:

PA =
CP
T

(4)

4.4. Baselines

We compare IPLog with six other methods, comprising the most common methods
currently available in the log parsing domain—LFA [15], LenMa [17], Spell [19], Drain [7],
SLCT [13]—and the most recent one proposed in 2023, LogPPT [22]. We choose these six
methods for evaluation because not only do they have publicly available source code, but
these methods are representative of various schemes such as similarity-based clustering
(LenMa), frequent pattern mining (LFA and SLCT), heuristics methods (Drain and Spell),
and neural network-based methods (LogPPT). In addition, we refer to the evaluation results
and recommendations for each parsing method published by LogPai [30,32–34] to make
our experiments richer.

5. Results
5.1. Comparison Experiments

We make a comparison between IPLog and the six methods introduced in baselines.
From the results in Table 3, we can see that our method outperforms almost all baseline
methods in the evaluation metrics GA and PA. Specifically, in terms of group accuracy
(GA), IPLog can achieve more than 0.95 accuracy on all datasets. In addition, IPLog
achieves nearly 1.0 group accuracy on all three datasets except Hadoop, which outperforms
existing log parsing methods. IPLog’s performance is even more outstanding in terms of
parsing accuracy (PA), which reaches more than 0.99 on both HDFS and Apache datasets,
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significantly outperforming the baseline method. For the Hadoop and Zookeeper datasets,
IPLog still achieves the best performance, although it does not achieve accuracy above
0.9. IPLog’s remarkable parsing accuracy underscores its ability to effectively discern the
templates and corresponding parameters within log messages. The experimental results
conclusively validate IPLog’s capability to accurately identify log templates and parameters,
thereby streamlining the categorization of logs into cohesive templates.

Table 3. Comparison with other log parsing methods in GA and PA.

LFA SLCT Spell Drain LenMa LogPPT IPLog

GA PA GA PA GA PA GA PA GA PA GA PA GA PA

HDFS 0.748 0.153 0.414 0.146 0.961 0.290 0.999 0.621 0.999 0.137 0.694 0.897 0.999 0.998
Hadoop 0.827 0.432 0.234 0.066 0.449 0.116 0.921 0.541 0.796 0.052 0.533 0.725 0.953 0.816

Zookeeper 0.839 0.346 0.749 0.684 0.987 0.789 0.994 0.843 0.857 0.683 0.973 0.843 0.999 0.852
Apache 0.805 0.637 0.420 0.175 1.000 0.250 1.000 0.727 0.993 0.031 0.786 0.952 0.998 0.992

Bold values indicate the optimal results.

In order to further study the parsing effect of IPLog on specific logs, we randomly se-
lected 10 log messages in the HDFS dataset and studied and compared the parsing results of
the seven methods for these 10 log messages. As shown in Figure 5, the green log templates
represent the correctly parsed templates, e.g., for the LFA method, only the second log
message “PacketResponder 2 for block blk_5340239390217577926 terminating” is correctly
parsed as the log template “PacketResponder <*> for block <*> terminating”, and the other
nine log messages are parsed incorrectly. By comparison, we find that IPLog performs
the best, successfully parsing all 10 log messages into correct log templates. For example,
for complex logs like “Receiving block blk_-251869386118078153 src:/10.251.203.246:38466
dest:/10.251.203.246:50010”, IPLog can accurately parse it into the log template “Receiving
block <*> src: <*> dest: <*>”. Except for LogPPT, which is also based on a neural network
and can also parse it correctly, the other methods all parse it incorrectly. Overall, Drain,
the best parser among the non-neural network methods, only parsed five of the ten log
messages correctly, which also shows that it is difficult to adapt traditional parsing methods
to complex system logs. In the neural network-based comparison, compared with LogPPT,
IPLog parses the parameters more accurately. In the log message “Starting thread to trans-
fer block blk_4565119633233737252 to 10.251.107.50:50010,10.251.107.19:50010”, LogPPT
incorrectly replaces the last two parameters “10.251.107.50:50010,10.251.107.19:50010” with
a single <*>, which is obviously not conducive to log template differentiation.
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Comparison of the parsing results of 10 randomly selected log messages in the HDFS
dataset with different parsing methods illustrates that IPLog can identify log templates
and parameters more accurately, confirming the powerful ability that IPLog shows in log
parsing tasks.

IPLog can maintain a high accuracy primarily because it learns semantic information
from logs, thus achieving precise predictions of templates and parameters, a capability
not found in rule-based methods. For example, in Figure 5, the log “Receiving block
blk_-251869386118078153 src:/10.251.203.246:38466 dest:/10.251.203.246:50010” pertains to
a data transfer process in HDFS. In this specific log, the “/” serves not merely as a character
but also as a part of the network address, thereby ensuring the integrity and correctness of
the parameters. However, apart from IPLog and LogPPT, which determine through learned
semantic information that “/” is part of a network address, other methods merely split the
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log by characters without understanding the role of “/” in representing addresses, leading
to incorrect field extraction.

To further study the grouping effect of IPLog on specific log templates, we randomly
selected seven log templates from the Hadoop dataset and studied and compared the
grouping results of the seven methods on these templates. The results are shown in Table 4,
where the numbers in the table indicate how many groups each method actually grouped
the current template into after parsing was completed. The correct grouping situation is
that each template should correspond to one group. Through this comparative analysis,
we can evaluate the accuracy and effectiveness of each method in grouping templates. As
can be seen from the table, both IPLog and Drain perform best by correctly grouping all the
chosen templates into their respective original groups. The other methods, however, show
large differences in their grouping results, especially the SLCT, Spell, and LenMa methods,
which group into a large number of groups on multiple templates, suggesting that these
methods have significant deficiencies in grouping log templates together.

Table 4. Comparison of different parsing methods for grouping seven randomly selected log templates
in Hadoop (the number represents how many groups the current template is actually divided into
after parsing is completed, of which only the number 1 represents that the current template is correctly
divided into a group, and the other number n represents that the current log template is incorrectly
divided into n).

LFA SLCT Spell Drain LenMa LogPPT IPLog

Finished spill <*> 1 8 8 1 8 3 1
(EQUATOR) <*> kvi <*>(<*>) 1 2 197 1 197 2 1

soft limit at <*> 1 1 1 1 1 1 1
Assigning <*> with <*> to <*> 2 5 5 1 1 3 1

<*> Task Transitioned from <*> to <*> 1 4 4 1 609 15 1
Progress of TaskAttempt <*> is: <*> 1 37 887 1 1 2 1

mapreduce.cluster.local.dir for child: <*> 1 1 1 1 1 1 1

IPLog processes all system logs using a fixed set of hyperparameters, without the need
for readjustments for each dataset or the setting of domain-specific regular expressions
for different systems. However, similarity-based clustering, frequent pattern mining, and
heuristic methods need to be adjusted according to different systems. Here, we demonstrate
the regular expressions and the “support” parameter settings for the SLCT algorithm
tailored to different systems. As shown in Table 5, a suitable regular expression is required
to match IP addresses in all four types of system logs. For example, in HDFS logs, an
additional match for block ID “blk_-?\d+” is necessary, while in Zookeeper logs, a leading
“/” must be handled. These requirements vary by system. Additionally, the “support”
parameter is passed to the SLCT method, specifying the threshold for template extraction
support needed during the log parsing process. This parameter determines how many
times a template must appear in the log data to be considered valid or representative.
Adjusting the “support” parameter significantly affects the results of log parsing, including
the number, type, and specifics of the templates. Table 5 shows the settings of the “support”
parameter for each system under optimal conditions, reflecting their differences. These
differences hinder the methods’ generality.

Importantly, as systems are updated and log templates and formats change, rule-based
log parsing methods like SLCT struggle to match new log formats. To further validate
our idea, we simulated the process of log changes: relatively simple and few logs from
loghub-2k to represent the log output before system upgrades, and a large number of
complex logs from loghub2.0 to represent the log output after system updates. As Table 6
shows, IPLog experienced a minimal decrease in GA and PA metrics, only 0.30% and
0.76%, and was virtually unaffected. However, other methods, except for LFA, showed a
more significant decrease in these metrics. For example, SLCT saw the largest drop in GA
and PA metrics, at 25.08% and 22.61%, respectively. The neural network-based LogPPT



Electronics 2024, 13, 3324 16 of 20

experienced decreases of 7.10% and 9.63% in GA and PA metrics. The experimental results
confirmed that these methods struggle to adapt to changes in log formats, resulting in
severe performance degradation.

Table 5. Comparison of regular expressions and parameters between IPLog and SLCT on different
systems.

SLCT IPLog

Regular Expressions Support Regular Expressions Support

HDFS [r’blk_-?\d+’, r’(\d+\.){3}\d+(:\d+)?’] 120

None None
Hadoop [r’(\d+\.){3}\d+’] 125

Zookeeper [r’(/|)(\d+\.){3}\d+(:\d+)?’] 10
Apache [r’(\d+\.){3}\d+’] 5

Table 6. Comparison of different parsing methods on GA and PA in loghub-2k and loghub2.0.

LFA SLCT Spell Drain LenMa LogPPT IPLog

GA PA GA PA GA PA GA PA GA PA GA PA GA PA

loghub-2k 0.906 0.363 0.606 0.345 0.935 0.436 0.981 0.724 0.931 0.279 0.803 0.945 0.990 0.921
loghub2.0 0.804 0.392 0.454 0.267 0.849 0.361 0.978 0.682 0.911 0.225 0.746 0.854 0.987 0.914

% Chg. −11.26% +7.99% −25.08% −22.61% −9.20% −17.20% −0.31% −5.80% −2.15% −19.35% −7.10% −9.63% −0.30% −0.76%

Bold values indicate non-significant decreases.

In the experimental results, we observed that only LFA showed an increase in PA
performance. A detailed analysis of LFA’s parsing results showed that it accurately parsed
only a few log templates, such as “PacketResponder <*> for block <*> terminating”. As
the proportion of such templates increased in loghub2.0, LFA’s PA metric correspondingly
rose. From the comparison between IPLog and six other methods across loghub-2k and
loghub2.0, it is inferred that in real production environments, when log templates change,
IPLog is almost unaffected, whereas the other six methods experience a significant decline
in performance, struggling to adapt to these changes.

5.2. Ablation Experiments

This section critically evaluates the performance of the fundamental components and
parameters of our innovative approach. We first remove the manual feedback strategy,
and as can be seen from the results in Table 7, after removing the manual feedback, the
average GA of IPLog on the four datasets decreases by 17.2% (from 0.987 to 0.817), with
little change in PA. We analyzed this result and designed the manual feedback merge
query to correct mainly the errors and omissions of templates in the grouping process, so
the improvement for GA is significant. For templates that are grouped incorrectly, it is
possible for the incorrect template to become the original correct template during the merge
process, but since the number of templates in this category is small, the impact on PA is
not significant.

Table 7. Results of ablation studies for the manual feedback module and the prompt tuning module.

GA PA

Full IPLog 0.987 0.914
w/oManualFeedback 0.817 0.912
w/oPromptTuning 0.971 0.890

w/oPromptTuning&ManualFeedback 0.659 0.885

In addition, in order to verify the importance of prompt tuning for IPLog, we first
replaced the prompt tuning with fine-tuning, and the results in Table 7 show a relative
decrease in both GA and PA. In addition, during the postprocessing merging process, we
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found that the increase in parsing errors led to a significantly higher number of requests
during merging, which undoubtedly increased the operational difficulty of postprocessing.
In order to ensure the fairness of the comparison, we additionally dropped the manual
feedback strategy at the same time on the basis of removing the prompt tuning, and the
results in the table clearly show that IPLog based on fine-tuning and dropping the manual
feedback decreased by 19.3% (from 0.817 to 0.659) in the metric GA and 2.9% (from 0.912
to 0.885) in the metric PA. The results of the ablation experiments in Table 7 confirm that
the manual feedback strategy and prompt tuning can effectively improve the performance
of IPLog.

Our adaptive system sampling algorithm can effectively select the best training sample
data. In order to confirm the effectiveness of our sampling algorithm, we compare the effect
of two other sampling algorithms with the results: random sampling and is DPP sampling.
Note that for the fairness of the comparison, we uniformly cancelled the postprocessing
operation in our experiments. Random sampling is a basic data sampling method that
constructs subsets by randomly selecting samples from historical log datasets. The method
does not take into account the intrinsic structure or characteristics of the data, and all
samples have the same probability of being selected. DPP sampling is a sampling method
based on the determinantal point process (DPP), aiming to select samples with diversity
and representativeness. The DPP captures the similarity between samples by defining a
kernel matrix, thus tending to select samples that are not similar to each other.

From the results in Figure 6, it is clear that the adaptive system sampling algorithm
performs well in selecting samples, resulting in optimal model results. This result demon-
strates the effectiveness of our sampling algorithm in maximally generalizing the features
of the entire history log while using a small amount of data. Specifically, these sample data
are not only optimized in terms of quantity but also balanced in terms of representativeness
and diversity, thus ensuring the efficiency and accuracy of the model in subsequent training
and analysis.
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6. Discussion

Based on our analysis, the reason that IPLog attains excellent performance in parsing
logs for different systems is that it first utilizes a pretrained language model, which obtains
basic sentence comprehension after training on a large amount of text data, and through
the prompt tuning techniques, the model can more accurately identify the keywords and
parameters in the log statements and complete the accurate extraction of the log templates.
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Traditional methods (e.g., SLCT and Drain) usually rely on simple feature extraction and
are unable to deeply understand the semantics of the text, so they are not as good as IPLog
in terms of parsing accuracy. In addition, we believe that IPLog can easily perform log
parsing on different system logs because it does not require domain-specific knowledge
of regular expressions. IPLog extracts log templates by learning common patterns of
keywords and parameters without the need to set up fixed rules for different systems in
advance. When log formats change due to system updates, IPLog is largely immune to such
changes, but methods based on domain-specific knowledge (e.g., LFA) are less effective.
Methods that use deep learning models (e.g., LogPPT), although also showing a certain
degree of superiority, tend to incorrectly group templates belonging to the same log group
into multiple groups, which results in poor performance in grouping accuracy. However,
IPLog greatly improves the method’s grouping performance for templates with a small
amount of human involvement through the manual feedback merge query strategy, which
is missing for the other methods.

Of course, we also found some problems during our research. For example, we
conducted our evaluation using public log datasets, which provide real log templates for
all log messages. Despite being commonly utilized in related research, these datasets still
include a minor proportion of errors. In addition, in our approach, we split the tokens in
the original log messages by BPE in RoBERTa. However, because of the complexity of the
log messages, some custom parameters are still difficult to split correctly, which leads to
some degradation in the parsing accuracy. In future work, we will try more effective ways
to deal with such cases.

In future research, we plan to explore the possibility of deploying IPLog in real pro-
duction environments to deeply analyze its performance under real production conditions.

7. Conclusions

Log parsing is responsible for converting raw logs into a structured format, which is
the basis for system troubleshooting and anomaly detection. In order to make log parsing
more accurate and efficient, in this paper, we propose a log parsing method called IPLog.
IPLog is based on few-shot learning, which firstly improves the quality and diversity of
the training data by parsing historical log data, identifying log templates and adjusting
the sampling strategy according to the template types through a novel adaptive system
sampling method. Secondly, the template-free prompt tuning method is used to allow the
model to fully extract the generic patterns of logs from these sampled labeled log data,
which enhances the model’s ability to identify log parameters and its parsing performance.
In the online parsing phase, the trained model is directly applied to the parsing of new
logs, thus enabling accurate extraction of log templates and parameters. At the end of our
approach, we also propose a novel manual feedback merge query strategy based on the
longest public prefix, which further improves the parsing ability of IPLog on complex logs.

We evaluated IPLog on four public log datasets. IPLog can achieve an average of
0.987 in group accuracy and 0.914 in parsing accuracy, which are the best in both metrics
compared to existing methods. In order to deeply analyze the effectiveness of IPLog in the
log parsing task, we additionally compared in detail the parsing results of ten randomly
selected log messages in the HDFS dataset, as well as the grouping results of seven log
templates randomly selected from the Hadoop dataset, and these comparisons also clearly
show the superiority of IPLog compared to other methods.
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