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Abstract: This paper proposes an improved African vulture optimization algorithm (IROAVOA),
which integrates the random opposition-based learning strategy and disturbance factor to solve prob-
lems such as the relatively weak global search capability and the poor ability to balance exploration
and exploitation stages. IROAVOA is divided into two parts. Firstly, the random opposition-based
learning strategy is introduced in the population initialization stage to improve the diversity of the
population, enabling the algorithm to more comprehensively explore the potential solution space
and improve the convergence speed of the algorithm. Secondly, the disturbance factor is introduced
at the exploration stage to increase the randomness of the algorithm, effectively avoiding falling into
the local optimal solution and allowing a better balance of the exploration and exploitation stages. To
verify the effectiveness of the proposed algorithm, comprehensive testing was conducted using the
23 benchmark test functions, the CEC2019 test suite, and two engineering optimization problems.
The algorithm was compared with seven state-of-the-art metaheuristic algorithms in benchmark
test experiments and compared with five algorithms in engineering optimization experiments. The
experimental results indicate that IROAVOA achieved better mean and optimal values in all test
functions and achieved significant improvement in convergence speed. It can also solve engineering
optimization problems better than the other five algorithms.

Keywords: African vulture optimization algorithm; random opposition-based learning; perturbation
operator; metaheuristic algorithm

1. Introduction

Metaheuristic algorithms are one of the effective methods for solving many real-world
engineering optimization problems and are widely used in various fields, such as eco-
nomics, engineering, politics, and management [1]. Most metaheuristic algorithms are
inspired by the survival of the fittest theory of evolutionary algorithms, the collective
command of swarm particles, the behavior of biologically inspired algorithms, and the
logical behavior of natural physical algorithms. Compared with traditional optimization al-
gorithms, metaheuristic algorithms have a simple structure, low computational complexity,
do not require gradient information, and have a strong ability to escape local optima [2].
Metaheuristic algorithms are divided into three main types: those based on biological evolu-
tion, those based on physical laws, and those based on population behavior [3]. Algorithms
based on the biological evolution process simulate the evolutionary process of organisms in
nature and are widely used in the field of artificial intelligence (AI) to solve highly complex
optimization problems [4]. Representative algorithms include genetic algorithm (GA) [5],
differential evolution (DE) [6], and partial differential equations (PDE) [7]. Physics-based
algorithms simulate the physical laws of nature. Representative algorithms include the
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Gravity Search Algorithm (GSA) [8] and the Multi-Verse Optimization (MVO) [9]. Group-
based algorithms simulate the biological behavior of group life. Representative algorithms
include Particle Swarm Optimization (PSO) [10], Gray Wolf Optimizer (GWO) [11], Whale
Optimization Algorithm (WOA) [12], Moth-Flame Optimization (MFO) [13], Tunicate Swar
Algorithm (TSA) [14], and Harris Hawk Algorithm (HHO) [15].

The African vulture optimization algorithm [16] is one of the metaheuristic algorithms
that is inspired by the competition and navigation behaviors of the African vultures. This
algorithm has received widespread attention from researchers due to its simple structure
and implementation method, as well as its excellent performance in finding optimal solu-
tions [17]. Haimid et al. proposed an improved African vulture optimization algorithm to
solve the minimization problem of fuel cell SOFC empirical voltage and current curves [18].
Zhou et al. proposed an improved African vulture optimization algorithm to solve the
dual resource constraint flexible job scheduling problem with machine and worker con-
straints [19]. In order to solve the problem of rolling bearing defect diagnosis, Govind et al.
introduced the improved African vulture optimization algorithm to optimize TVF-WMD
filter parameters [20]. Singh et al. introduced the African vulture optimization algorithm
to optimize the solution to the TSP shortest path problem [21]. Ahmed et al. introduced
the African vulture optimization algorithm to accurately predict the location parameters of
various solar photovoltaic units [22].

Although the African vulture optimization algorithm has good search performance, it
still has some shortcomings, such as a tendency to fall into local optima, limited population
diversity, and insufficient exploration capabilities in multimodal problems Wang et al. cited
the representative vulture selection strategy and the rotating flight strategy. Zheng et al.
proposed three strategies, selection accumulation mechanism, representative vulture selection
strategy and rotating flight strategy to improved the African vulture optimization algorithm,
which better balanced the balance between local search and global search [23]. Liu et al.
introduced quasi-oppositional learning and differential evolution operators to improve the
population diversity and enhancement algorithm of the algorithm. For the exploration abil-
ity [24], Hao et al. introduced tent chaos mapping and a time-varying mechanism optimization
algorithm to obtain the optimal solution and improve the convergence speed [25].

However, although most of the existing improved AVOA have improved optimization
performance and achieved satisfactory results in solving specific engineering problems,
they are not suitable for most optimization problems and still have some limitations and
uncertainties. The details are as follows:

1. During the exploration phase, the algorithm’s reliance solely on updates from the
optimal position diminishes population diversity, leading to slower convergence in
the initial stages.

2. With a poor ability to balance exploration and exploitation, the AVOA is sensitive to
local optimal solutions, and it is difficult to obtain ideal solutions.

In order to solve the above problems, this paper proposes an improved African
vulture optimization algorithm. The first part adds a random opposition-based learning
strategy in the initialization population stage of the algorithm to increase the diversity
of the population, allowing the algorithm to search the space more broadly in the early
stages. The second part introduces a disturbance factor in the exploration phase to increase
the randomness of the algorithm and improve the algorithm’s ability to escape from
the local optimum, thus balancing the exploration and exploitation of the algorithm. In
order to evaluate the effectiveness of the algorithm, this article conducted simulation
experiments using 23 benchmark test functions and the CEC2019 test suite. IROAVOA
performance results are compared with basic AVOA, ROAVOA, IAOVA, and seven other
swarm intelligence algorithms. The results show that the proposed IROAVOA has better
solution accuracy and convergence accuracy.

The remainder of this article is organized as follows. The original AVOA is briefly
introduced in Section 2. IROAVOA is introduced in Section 3. In Section 4, the performance
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of IROAVOA is analyzed using classic benchmark test functions. Section 5 discusses the
results, summarizes the study, and suggests possible future research areas.

2. Original African Vultures Optimization Algorithm

AVOA is a new metaheuristic algorithm proposed by Mirjalili et al. [16] in 2021. This
approach mimics the competitive and navigational behavior of African vultures. Known
for their unique physical characteristics, African vultures are regarded as intelligent and
strong creatures. One of the distinguishing characteristics of African vultures is that they take
appropriate actions in different situations depending on the current level of hunger (hunger
rate), which is also a characteristic of the AVOA. The solution process of the African vulture
optimization algorithm is shown in Figure 1. The mathematical model of the hunger rate is
shown in Equation (1).

Ft(t) = (2 × rand + 1)× z ×
(

1 − t
T

)
+ dt (1)

dt = h ×
(

sinw
(

π

2
× t

T

)
+ cos

(
π

2
× t

T

)
− 1
)

(2)

where Ft(t) is the vulture hunger rate of the i-th vulture in the t-th iteration. dt shows
a fixed parameter set before the algorithm works. t represents the current number of
iterations. T represents the maximum number of iterations, and xrand indicates a random
number between 0 and 1. h represents a random number between −2 and 2. z is a random
number between −1 and 1. w is a fixed value that is set to 2.5 in AVOA. When the value
drops below zero, it means that the vulture is in a hungry state. When the z increases to
zero, it means that the vulture is in a satiated state. In order to show the key characteristics
of the vulture, the first- or second-best vulture is selected as the leader vulture, and its
mathematical equation is shown in Equation (3).

Ri(t) =
{

BestVulture1 i f p > rand
BestVulture2 Otherwise

(3)

where Ri(t) is a randomly selected vulture. BestVulture1 and BestVulture2 represent the
first- and second-best vulture, respectively. p is a constant, which is set to 0.8. 
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Figure 1. African vulture optimization algorithm flowchart. 

  

Figure 1. African vulture optimization algorithm flowchart.
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2.1. Exploration Phase

When |Ft(t)| ≥ 1, vultures hunt for food in different areas. AVOA has entered the
exploration phase. Based on the movement of vultures to protect foods, it is divided into
two strategies. The mathematical model is as follows:

Pi(t + 1) =
{

Eq.(5) i f p1 ≥ randp1
Eq.(6) i f p1 < randp1

(4)

Pi(t + 1) = Ri(t)− Di(t)× Fi(t) (5)

Pi(t + 1) = Ri(t)− Fi(t) + rand × ((ub − lb)× rand × lb) (6)

Di(t) =|X × Ri(t)− Pi(t)| (7)

where Pt(t + 1) is the new position for the next iteration, and p1 is set to 0.6. randp1 is
a random number between 1 and 0. Di(t) indicates the distance between the current
vulture and the selected leader vulture, and X is a random number between −2 and
2. ub and lb represent upper and lower limits.

2.2. Exploitation Phase

When |Ft(t)| < 1, vultures hunt for food in different areas. AVOA has entered the
exploration phase. Based on the movement of vultures to protect foods, it is divided into
two strategies. The mathematical model is as follows:

Pi(t + 1) =
{

Eq.(9) i f p2 ≥ randp2

Eq.(10) i f p2 < randp2

(8)

Pi(t + 1) = Di(t)− (Fi(t) + rand)− di(t) (9)

Pi(t + 1) = Ri(t)− (S1 − S2) (10)

di(t) = Ri(t)− Pi(t) (11) S1 = Ri(t)×
(

rand×Pi(t)
2×π

)
× cos(Pi(t))

S2 = Ri(t)×
(

rand×Pi(t)
2×π

)
× sin(Pi(t))

(12)

where p2 is set to 0.4. Ri(t) is one of the best vultures. randp2 is a random number between
1 and 0. In the second stage, the value of F is less than 1. This stage simulates the vulture’s
accumulation of food and fierce competition for food:

Pi(t + 1) =
{

Eq.(14) i f p3 ≥ randp3

Eq.(15) i f p3 < randp3

(13)

Pi(t + 1) =
A1 + A2

2
(14)

Pi(t + 1) = Ri(t)−|di(t)|×Fi(t)× Levy(d) (15)
A1 = BestVulture1(t)− BestVulture1(t)−Pi(t)

2

BestVulture1(t)2−Pi(t)
2 × Fi(t)

A2 = BestVulture1(t)− BestVulture2(t)−Pi(t)
2

BestVulture2(t)−Pi(t)
2 × Fi(t)

(16)

Levy(d) = 0.01 × u

|v|
1
β

, u ∼ (0, σ2
u), v ∼ (0, σ2

v ) (17)

σu =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2(

β−1
2 )


1
β

(18)
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where p3 is set to 0.4. randp3 is a random number between 1 and 0. u and v are random numbers
that follow a Gaussian distribution. σv and β are set to 1 and 1.5. Γ is the standard gamma function.

3. Improved African Vulture Optimization Algorithm
3.1. Perturbation Operator

During the process of competition and navigation, the African vulture group mainly uses
the position information of the optimal vulture, gradually approaches them, and updates its
own position according to Equation (4). During the algorithm-solving process, a new optimal
solution is generated around the optimal solution. However, as the iteration proceeds, the
population diversity gradually decreases, which may cause the algorithm to fall into a local
optimum. In order to overcome this shortcoming, this paper introduces an interference factor
w in the exploration stage. The changing trend of this interference factor is shown in Figure 2.
In the initial stage of the algorithm, providing a random number can promote a wider search
and increase the exploration solution space possibility. In the later stages of the algorithm,
the introduction of random numbers helps to escape from the local optimal solution and
avoids falling into the dilemma of local search, making it more likely to find the global optimal
solution. The definition of perturbation operator is shown in Formula (19).

w = (0.5 × (0.1 + rand))× randn(0, 1) (19)

where rand is a random number between 1 and 0. randn(0, 1) is a random number obeying
the normal distribution with mean 0 and standard deviation 1. The vulture position update
in the exploration phase is defined as follows:

Pi(t + 1) = Ri(t)× (1 − w)− Di(t)× Fi(t)× w (20)

Pi(t + 1) = Ri(t)× w − Fi(t) + rand × ((ub − lb)× rand × lb) (21)
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3.2. Random Opposition-Based Learning

The bibliography on motion ecology provides a wealth of insights into the complex
patterns and dynamics of animal movement [26–28]. Meyer et al. predicted the movement
of springboks within the next hour with a certainty of approximately 20%, while the
remaining 80% of the movement is stochastic in nature, stemming from unaccounted
factors in the modeling algorithm and individual behavioral traits of the springboks [29].
Stochastic is of great significance in ecological and animal behavioral research. Opposition-
based learning is a method based on estimation and opposition estimation principles
proposed by Tizhoosh et al. [30]. It is inspired by the concept of opposition in the real world
and has been widely used in optimization algorithms, reinforcement learning, artificial
neural networks, and fuzzy systems [31]. Optimization usually starts with a candidate
solution, and the initial population and parameters are chosen based on randomness. If
the initial candidate solution is close to the optimal solution, the algorithm will converge
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quickly. Conversely, the initial candidate solution may be far away from the candidate
solution, in which case the algorithm will take longer to converge, or in the worst case,
the algorithm may not converge at all. Opposition learning causes candidate solutions
to generate opposite points, which can improve the convergence speed of the algorithm
under a certain probability. Therefore, the opposite point of each candidate solution can be
further explored. If it is found to be beneficial, we can consider using the opposite point as
a candidate solution for the next iteration.

Definition 1. Assume that x is a real number defined in the interval [L1, L2], and its opposite
point xop is defined as shown in Equations (22) and (23).

xop = L1 + L2 − x (22)

If L1 = 0 and L2 = 0, then:
xop = 1 − x (23)

Similarly, when going beyond two dimensions, we can define opposite positions.

Definition 2. Assume that p(x1, . . . , xD) is a point on the D-dimensional coordinate system, where
each xi is a real number in the interval [L1i, L2i], and the definition of the opposite point p̃ of p is
shown in Equation (24).

xiop = L1i + L2i − xi ∀i ∈ [1, D] (24)

where xiop is the coordinate of p̃.

The fixed distance between the reverse solution generated by the opposition-based
learning strategy and the current solution limits its randomness. In order to enhance the
diversity of the population and improve its ability to avoid falling into the local optimal
solution, Long W et al. proposed the random opposition-based learning strategy [32],
and its one-dimensional solution space is shown in Figure 3. This strategy is proposed to
further expand the search space and improve the randomness of the algorithm and the
population’s ability to avoid local optimality. Its definition is shown in Equation (25).

xiop = L1i + L2i − (rand × xi) ∀i ∈ [1, D] (25)

where rand is a random number between 1 and 0.
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3.3. Summary of the Proposed Method

In the African vulture optimization algorithm, the transition between exploration and
exploitation depends on the vulture’s hunger rate F. In the early stages of exploration, the
algorithm converges slowly due to the lack of diversity in the population. As the number
of iterations increases, the value of the hunger rate F gradually decreases, keeping the
algorithm in the exploitation stage. However, this algorithm has shortcomings, such as eas-
ily falling into local optimality and imbalance in exploration and exploitation capabilities.
To solve these problems, this paper first introduces a random opposition-based learning
strategy during population initialization to improve the diversity of the initial population.
Secondly, interference factors are introduced in the exploration phase of each population,
allowing the algorithm to explore more extensively in the search space, effectively improv-
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ing the ability to avoid falling into local optima, improving the global search capability
of the algorithm, and better balancing the algorithm’s explore and exploit. The solution
process of the improved African Vulture optimization algorithm is shown in Figure 4.

1 
 

 
Figure 4. Improved African vulture optimization algorithm flowchart.

3.4. Computational Complexity

The computational complexity of the AVOA hinges primarily on three key steps:
initialization, fitness evaluation, and the update of vulture position vectors. In the initial-
ization phase, assigning initial states to N vultures incurs a computational cost of O(N). As
the algorithm progresses to search for optimal positions and update the position vectors
of all vultures, the complexity arises from two main components: O(T × N), stemming
from the multiplication of the number of iterations and vultures, and O(T × N × D), which
encapsulates the impact of iterations, vultures, and the dimensionality of the problem.
By integrating these factors, the overall computational complexity of the AVOA can be
succinctly expressed as O(N × T × (1 + D)), effectively highlighting the interplay between
algorithm performance and the number of vultures, iterations, and the complexity of the
problem domain. Turning to the computational complexity of IROAVOA, consider the
worst situation, as each vulture updates the position using the random opposition study
perturbation factor throughout the iteration and then generates two candidate positions,
updating the computational complexity of all vulture positions to O (2 × T × 2 × N × D).
Therefore, the overall assumed complexity of IROAVOA is O(N × 2 × T × 2 × (1 + D)).

Compared with the original AVOA, the introduction of the random adversarial learn-
ing and perturbation factor increases the computational complexity to a certain extent.
However, these additional time costs can improve the search performance of the algorithm,
so the additional computational complexity is acceptable.

4. Discussion
4.1. Experimental Design and Parameter Setting

In order to verify that the IROAVOA has better optimization performance and ef-
fectiveness, a comparative experiment was first conducted between AVOA and the three
algorithms proposed in this article: IROAVOA, ROAVOA, and IAVOA. Then, IROAVOA
was compared with other classic algorithms PSO and GWO, and seven types of MVO,
WOA, MFO, TSA, and HHO were used for comparative experiments. The experiment
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used 23 benchmark test functions (F1–F23) [33] and the CEC2019 [34] test suite, as shown
in Tables 1–4. These benchmark functions are variations of classical functions in terms
of shifted, rotated, expanded, and combined. The benchmark test functions of Table 1
are unimodal benchmark functions with only one optimal solution and are often used
to verify the local exploitation stage of the algorithm. The benchmark test functions of
Table 2 are multimodal benchmark functions. The benchmark test functions of Table 3 are
fixed-dimensions multimodal. Multimodal benchmark functions are used to test the global
exploration capabilities of the algorithm. Dim represents the dimension of the function,
Range indicates the range of the function search space, and fmin represents the theoretical
optimal value of the function. The mathematical expressions and function characteristics of
the classic benchmark test functions and the CEC2019 test suite are shown in Table 4.

Table 1. Unimodal benchmark functions.

Number Name Benchmark Dim Range fmin

F1 Sphere F1 =
d
∑

i=1
x2

i
30 [−100, 100] 0

F2 Schwefel’problem2.22 F2 =
d
∑

i=1
|xi |+

d
∏
i=1

|xi | 30 [−10, 10] 0

F3 Schwefel’problem1.2 F3 =
d
∑

i=1

(
i

∑
j=1

xj

)2
30 [−100, 100] 0

F4 Schwefel’problem2.21 F4= max{|xi |, 1 ≤ i ≤ d} 30 [−100, 100] 0

F5 Rosenbrock
F5 =

d−1
∑

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
] 30 [−30, 30] 0

F6 Step F6 =
d
∑

i=1
(|xi+0.5|)2 30 [−100, 100] 0

F7 Noise F7 =
d
∑

i=1
ixi

4 + random[0, 1) 30 [−1.28, 1.28] 0

Table 2. Multimodal benchmark functions.

Number Name Benchmark Dim Range fmin

F8
Generalized

Schwfel’s problem F8 =
d
∑

i=1
−xisin(

√
|xi |
)

30 [−500, 500] −12,569.5

F9 Rastrigin F9= 10d +
d
∑

i=1

[
x2

i − 10 cos(2πxi)
] 30 [−5.12, 5.12] 0

F10 Ackley F10 =− 20 exp

(
−0.2

√
1
d

d
∑

i=1
x2

i

)
− exp

(
1
d

d
∑

i=1
cos(2πxi)

)
+ 20 + exp(1)

30 [−32, 32] 0

F11 Griewank F11 =
d
∑

i=1

x2
i

4000
−

d
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12
Generalized

penalized function 1

F12 =
π

d

{
10 sin2(πy1) +

d−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+(yd − 1)2

}
+

d
∑

i=1
µ(xi , 10, 100, 4)

where yi = 1 +
1
4
(xi + 1),

µ(xi , a, k, m) =

 k(xi − a)m,
0,
k(−xi − a)m,

xi > a
−a ≤ xi ≤ a
xi < −a

30 [−50, 50] 0

F13
Generalized

penalized function 2

F13= 0.1
{

sin2(3πx1) +
d
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xd − 1)2[1 + sin2(2πxd)

]}
+

d
∑

i=1
µ(xi , 5, 100, 4)

where µ(xi , a, k, m) =

 k(xi − a)m,
0,
k(−xi − a)m,

xi > a
−a ≤ xi ≤ a
xi < −a

30 [−50, 50] 0
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Table 3. Fixed-dimensions multimodal benchmark functions.

Number Name Benchmark Dim Range fmin

F14
Shekel’s foxholes

function F14 = (
1

500
+

25
∑

j=1

1

j +
2
∑

i=1

(
xi − aij

)6
)−1 2 [−65.536,

65.536] 1

F15 Kowalik’s function F15 =
11
∑

i=1

[
ai −

xi(b2
i + bix2)

b2
i + bix3 + x4

]2
4 [−5, 5] 0.0003

F17 Branin F17 = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1 −

1
8π ) cos(x1) + 10

2 [−5, 10]
[10, 15] 0.3788

F18
Goldstein–Price

function

F18 =
[
1 + (x1 + x2 + 1)2 · (19 − 14x1 + 3x2

1

−14x2 + 6x1x2 + 3x2
2)
]
×[

30 + (2x1 − 3x2
2)

2 · (18 − 32x1 + 12x2
1 + 48x2

2

−36x1x2 + 27x2
2)
]

2 [−2, 2] 3

F19 Hartmann 1 F19 = −
4
∑

i=1
ci exp(−

3
∑

j=1
aij(xj − pij)

2) 3 [0, 1] −3.86

F20 Hartmann 2 F20 = −
4
∑

i=1
ci exp(−

6
∑

j=1
aij(xj − pij)

2) 6 [0, 1] −3.32

F21 Shekel 1 F21 = −
5
∑

i=1

[
(x − ai)(x − ai)

T + ci

]−1
4 [0, 10]D −10.1532

F22 Shekel 2 F22 = −
7
∑

i=1

[
(x − ai)(x − ai)

T + ci

]−1
4 [0, 10]D −10.4028

F23 Shekel 3 F23 = −
10
∑

i=1

[
(x − ai)(x − ai)

T + ci

]−1
4 [0, 10]D −10.5363

Table 4. Descriptions of the CEC2019 test suite.

Number Name D Range Fmin

CEC-01 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192] 1
CEC-02 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384] 1
CEC-03 Lennard-Jones Minimum Energy Cluster 18 [−4, 4] 1
CEC-04 Rastrigin’s Function 10 [−100, 100] 1
CEC-05 Griewangk’s Function 10 [−100, 100] 1
CEC-06 Weierstrass Function 10 [−100, 100] 1
CEC-07 Modified Schwefel’s Function 10 [−100, 100] 1
CEC-08 Expanded Schaffer’s F6 Function 10 [−100, 100] 1
CEC-09 Happy Cat Function 10 [−100, 100] 1
CEC-10 Ackley Function 10 [−100, 100] 1

The experimental environment for the optimization test in this article is the Window11
operating system, Intel(R) Core(TM) i5–11155G7 CPU @2.50 GHz, 16 GB memory, and
MATLAB 2021a. In the algorithm optimization of this article, the parameter settings of each
algorithm are consistent with the references. The population size is 30, and the maximum
number of iterations is 500. Each optimization algorithm will be run independently on each
benchmark function 30 times, and the test results will be compared with the function and
the optimal value of the function. The results mainly include the best value (Best), the mean
(Mean), and the standard deviation (Std). The average value can verify the optimization
ability of the algorithm, and the standard deviation can verify the stability of the algorithm.
The parameter settings of all comparison algorithms are shown in Table 5.
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Table 5. Algorithm parameter setting.

Algorithm Parameter Value Algorithm Parameter Value

IROAVOA

L1 0.8
WOA

a [0, 2]
L2 0.2 b 2
W 2.5

MFO
a [−2,−1]

P1 0.6 b 1
P2 0.4

TSA
Pmin 1

P3 0.6 Pmax 4
GWO α [0, 2]

HHO
E1 [0, 2]

PSO

C1 2 E0 [−1, 1]
C2 2

MVO
WEPmax 1

wmin 0.2 WEPmin 0.2
wmax 0.9

4.2. Convergence Analysis

As shown in the convergence curve in Figures 5–7, the convergence speed and con-
vergence accuracy of the three improved algorithms in the single-peak test function F1–F5
are significantly improved compared to the traditional AVOA. For F6 and F7, even if
the algorithm falls into a local optimum, its convergence accuracy is better than AVOA.
For multimodal functions F10, F12, and fixed-dimensional multimodal test function F15,
IROAVOA has better convergence accuracy. For multimodal test functions F8–F9, F11, F13,
and fixed-dimensional multimodal test functions F16–F23, the four algorithms have the
same convergence accuracy, but the convergence speed of the three improved algorithms
is faster than the traditional AVOA. Whether for unimodal or multimodal test functions,
IROAVOA can provide better convergence.
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4.3. Analysis of 23 Groups of Benchmark Test Function Results

We conducted a comprehensive evaluation of the proposed improved algorithm based
on the unimodal and multimodal test functions described previously. Tables A1–A3 list
the results of the optimal value, mean, and standard deviation obtained by IROAVOA
and other algorithms for each benchmark test function (F1–F23). In order to ensure the
performance of fair comparison algorithms, the maximum number of iterations of all
comparison algorithms is set to 500, and the population number is set to 30. The results
show that the proposed IROAVOA exhibits excellent performance on most tested functions.

For the unimodal test functions (F1–F7), IROAVOA can effectively find the global
optimal value. Compared with other comparison algorithms, the solution accuracy of
the proposed improved algorithm is significantly improved. As shown in Tables A1–A3
and Figures 5 and 6, the mean and standard deviation of IROAVOA are small, and the
convergence speed is faster than other algorithms, indicating that IROAVOA shows the
best performance on these test functions and is better than other comparison algorithms.
For the multimodal test function (F8–F23), IROAVOA is significantly better than other
comparison algorithms in the test functions F12, F14–F15, and F17–F20. In the benchmark
test functions F9–F11, the performance of the algorithm is similar to HHO but significantly
better than GWO, PSO, MVO, WOA, MFO, and TSA. However, the performance of some
benchmark test functions of IROAVOA is not as good as other optimization algorithms.
Therefore, IROAVOA has certain limitations and requires further testing and application.
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4.4. Comparison with Basic AVOA and Two Variants of AVOA

To evaluate the effectiveness of each component, the improved IROAVOA was com-
pared with AVOA, ROAVOA improved based on random opposition learning strategy,
and IAOVA improved based on perturbation factor. Under the same experimental design,
23 different types of test functions in Tables 1–3 were tested simultaneously, and the optimal
values, mean values, and standard deviations were obtained as shown in Tables A1–A3.
To demonstrate the dynamic convergence performance of IROAVOA, the average optimal
fitness convergence curves of each test function are shown in Figures 5 and 6.

Based on the results, we can find that the performance of the three improved optimiza-
tion algorithms is superior to traditional AVOA. For the unimodal test functions (F1–F7),
IROAVOA outperforms other algorithms on most test functions. For F1 and F3, the four
algorithms can achieve the same optimal fitness value, but IROAVOA has slightly better
standard deviation than ROAVOA, IAVOA, and AVOA. For F5–F7, all four algorithms did
not reach the theoretical optimal value, indicating that IROAVOA has local development
potential. For the multimodal testing function (F8–F23), the three improved algorithms
showed slight improvements in both the optimal and average values. For F10 and F13–F15,
the average value of IROAVOA has reached the theoretical optimal value, and the perfor-
mance of the other two improved algorithms has also been improved. The three improved
algorithms have slightly improved the average values of most test functions, but the search
performance has only significantly improved. The main reason is that the traditional AVOA
algorithm itself has good search ability and can discover the theoretical optimal solution of
multimodal test functions, so the room for improvement is relatively small. These results
indicate that the performance of AVOA has been improved to a certain extent by applying
random opposition-based learning and perturbation factor.

4.5. CEC2019 Test Suite Result Analysis

In order to further illustrate the superiority of the improved algorithm in this article,
the IEEE CEC2019 test suite is used to evaluate the performance of IROAVOA in solving
complex numerical problems. The CEC2019 suite contains 10 complex single-objective test
functions. In order to ensure the fairness of the experiment, the proposed improved algo-
rithm and the other eight comparison algorithms were run independently on each function
30 times. The maximum number of iterations is set to 500, and the number of populations
is set to 30. Table 6 lists the optimal values, mean values, and standard deviation results of
the test results. The last row of the table shows the Friedman test results.

Table 6. CEC2019 experimental results of IROAVOA and other algorithms.

Benchmark
Function Index IROAVOA GWO PSO MVO WOA MFO TSA HHO

F1

Best 1.00 × 100 5.11 × 101 2.58 × 1010 9.20 × 103 2.19 × 103 9.11 × 104 2.72 × 101 1.00 × 100

Mean 1.67 × 10−2 1.20 × 103 7.09 × 1010 1.27 × 104 3.65 × 103 9.14 × 104 9.18 × 102 3.33 × 10−2

Std 1.29 × 10−1 1.64 × 103 2.76 × 1010 2.60 × 103 1.40 × 103 4.69 × 102 1.06 × 103 1.83 × 10−1

F2

Best 4.65 × 100 7.19 × 100 6.77 × 104 8.39 × 101 5.28 × 101 8.11 × 101 5.99 × 100 5.00 × 100

Mean 7.75 × 10−2 7.22 × 100 1.12 × 105 8.94 × 101 5.30 × 101 8.11 × 101 1.25 × 101 1.67 × 10−1

Std 6.00 × 10−1 2.18 × 10−2 1.53 × 104 3.61 × 100 3.67 × 10−1 3.45 × 10−2 4.55 × 100 9.13 × 10−1

F3

Best 5.53 × 100 1.28 × 101 1.33 × 101 1.30 × 101 1.13 × 101 1.11 × 101 1.37 × 101 8.02 × 100

Mean 9.21 × 10−2 1.39 × 106 1.37 × 101 3.89 × 107 1.00 × 1018 3.09 × 101 1.37 × 101 2.67 × 10−1

Std 7.13 × 10−1 4.79 × 106 7.14 × 10−6 2.13 × 108 3.05 × 1018 9.98 × 101 3.12 × 10−12 1.46 × 100

F4

Best 4.43 × 101 2.14 × 101 4.52 × 105 5.65 × 101 7.11 × 101 8.97 × 101 1.27 × 102 6.22 × 101

Mean 7.39 × 10−1 2.39 × 101 8.21 × 105 8.05 × 101 7.13 × 101 8.97 × 101 1.88 × 102 2.07 × 100

Std 5.72 × 100 3.85 × 10−2 2.64 × 105 1.33 × 101 3.26 × 10−1 8.07 × 10−14 2.43 × 101 1.14 × 101
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Table 6. Cont.

Benchmark
Function Index IROAVOA GWO PSO MVO WOA MFO TSA HHO

F5

Best 1.45 × 100 1.81 × 100 1.56 × 106 3.81 × 100 2.90 × 100 1.17 × 102 1.36 × 102 2.02 × 100

Mean 2.41 × 10−2 2.08 × 100 2.74 × 106 5.00 × 100 3.02 × 100 1.17 × 102 1.38 × 102 6.74 × 10−2

Std 1.87 × 10−1 2.82 × 10−2 8.93 × 105 6.26 × 10−1 1.57 × 10−1 7.70 × 10−5 2.22 × 100 3.69 × 10−1

F6

Best 7.02 × 100 1.09 × 101 6.63 × 100 7.94 × 100 9.35 × 100 5.45 × 100 1.11 × 101 9.30 × 100

Mean 1.17 × 10−1 2.00 × 101 1.81 × 101 8.94 × 100 1.19 × 101 5.45 × 100 2.11 × 101 3.10 × 10−1

Std 9.09 × 10−1 7.87 × 10−1 4.23 × 100 5.19 × 10−1 2.42 × 100 1.75 × 10−6 2.69 × 100 1.70 × 100

F7

Best 1.16 × 103 9.13 × 102 1.81 × 105 1.71 × 103 1.38 × 103 1.61 × 103 2.41 × 103 1.13 × 103

Mean 1.93 × 101 1.43 × 103 3.11 × 105 2.21 × 103 1.40 × 103 1.61 × 103 4.69 × 103 3.75 × 101

Std 1.50 × 102 7.81 × 100 1.05 × 105 2.89 × 102 3.53 × 101 5.69 × 100 6.40 × 102 2.06 × 102

F8

Best 4.46 × 100 5.31 × 100 5.53 × 100 5.45 × 100 5.06 × 100 5.33 × 100 5.59 × 100 4.89 × 100

Mean 7.44 × 10−2 5.88 × 100 6.00 × 100 6.00 × 100 5.10 × 100 5.33 × 100 6.00 × 100 1.63 × 10−1

Std 5.76 × 10−1 2.77 × 10−1 1.80 × 10−1 3.56 × 10−1 8.22 × 10−2 3.29 × 10−6 6.85 × 10−3 8.94 × 10−1

F9

Best 1.40 × 100 1.20 × 100 2.00 × 104 1.84 × 100 1.32 × 100 8.10 × 100 2.86 × 100 1.39 × 100

Mean 2.45 × 10−2 1.44 × 100 3.66 × 104 2.34 × 100 1.61 × 100 8.10 × 100 3.53 × 100 4.63 × 10−2

Std 1.90 × 10−1 5.70 × 10−2 1.32 × 104 2.14 × 10−1 1.27 × 10−1 1.54 × 10−5 2.80 × 10−1 2.54 × 10−1

F10

Best 2.11 × 101 2.15 × 101 2.15 × 101 2.15 × 101 2.14 × 101 2.11 × 101 2.15 × 101 2.14 × 101

Mean 3.52 × 10−1 2.27 × 101 2.27 × 101 2.26 × 101 2.24 × 101 2.11 × 101 2.27 × 101 7.12 × 10−1

Std 2.73 × 100 2.29 × 10−1 2.30 × 10−1 3.14 × 10−1 4.22 × 10−1 4.45 × 10−14 2.34 × 10−1 3.90 × 100

It can be seen from the data in Table 4 that for CEC2019, IROVAOA is better than the
other eight algorithms in the 10 test functions and can effectively find the global optimal
value. Although the standard deviation of the proposed algorithm is slightly inferior to
other algorithms, they all have smaller standard deviations than the traditional AVOA,
which shows that the improved IROAVOA has better stability. The above results show that
the performance of the proposed IROAVOA is more competitive and can effectively solve
various complex optimization problems.

4.6. Statistical Test Result Analysis

The mean and standard deviation are metrics to evaluate the overall stability of the
algorithm, but they do not fully reflect the results of each run. Due to the randomness of
the results of each run, it is not sufficient to rely only on fitness and standard values and
standard deviations to evaluate algorithm performance. In order to verify whether there
are differences between the proposed algorithm and other algorithms, this section uses the
Wilcoxon rank sum test [35] and the Friedman ranking test [36].

The Friedman ranking test ranks IROAVOA and other algorithms based on the fitness
obtained using Equation (26), where k is the number of algorithms, Rj is the average
ranking of the j-th algorithm, and n is the number of test checks. The test is performed by
assuming a distribution with k − 1 degrees of freedom. It first determines the ranking of
each algorithm independently and then calculates the average ranking to arrive at a final
ranking for each algorithm considered. Table 7 shows the Friedman ranking test result.
According to the results, the IROAVOA is significantly different from other algorithms in
most benchmark test functions. The overall ranking shows that the IROAVOA is better
than other algorithms.

Ff =
12n

k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(26)
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Table 7. Friedman’s statistical ranking results of the optimal value of 23 benchmark test functions of
the IROAVOA and other algorithms.

Figure
Friedman Rank

IROAVOA GWO PSO MVO WOA MFO TSA HHO AVOA

F1 1.18 5.00 8.77 7.17 4.00 8.07 6.00 3.00 1.82
F2 1.00 5.00 8.03 7.10 3.47 8.87 6.00 3.53 2.00
F3 1.00 4.27 7.03 6.00 8.97 8.00 4.73 3.00 2.00
F4 1.00 4.00 7.13 6.07 8.07 8.70 5.03 3.00 2.00
F5 1.03 4.23 8.90 7.13 5.00 7.97 5.77 2.93 2.03
F6 1.00 4.93 8.90 6.10 4.30 7.20 7.57 2.97 2.03
F7 1.80 4.27 7.60 7.37 4.67 9.00 5.80 2.13 2.37
F8 1.00 7.67 8.43 5.70 3.97 5.07 7.83 2.60 2.73
F9 2.48 5.00 7.93 6.33 2.55 7.57 8.17 2.48 2.48
F10 2.10 5.00 8.10 6.33 3.70 8.80 6.77 2.10 2.10
F11 3.10 3.90 8.77 7.13 3.22 8.10 4.58 3.10 3.10
F12 1.00 4.87 7.17 6.30 4.13 8.37 8.17 2.97 2.03
F13 1.03 5.73 8.43 4.20 5.07 8.53 7.03 3.00 1.97
F14 1.90 7.00 6.77 3.93 6.03 3.35 8.47 4.70 2.85
F15 1.43 5.10 6.27 7.07 5.97 7.67 4.87 3.50 3.13
F16 2.33 6.07 8.83 7.67 4.73 1.10 7.40 4.27 2.60
F17 2.05 4.87 9.00 4.80 6.70 1.95 7.83 5.80 2.00
F18 3.27 6.93 8.70 5.10 6.33 1.03 7.03 2.73 3.87
F19 2.03 5.80 8.93 4.00 7.37 1.27 5.97 6.77 2.87
F20 3.20 4.57 9.00 4.47 5.40 3.60 4.37 7.63 2.77
F21 1.48 3.97 8.93 5.17 5.47 3.92 6.50 7.17 2.40
F22 1.40 3.97 9.00 4.13 6.07 4.55 6.77 6.73 2.38
F23 1.68 4.23 8.70 4.77 5.90 3.40 6.83 6.90 2.58
Avg
Rank 1.72 5.06 8.23 5.83 5.26 5.92 6.50 4.04 2.44

Overall
Rank 1 4 9 6 5 7 8 3 2

The Wilcoxon rank sum test is a non-parametric statistical method with a significance
level set at 5%. If the p value is greater than 0.05, it means rejecting the null hypothesis,
that is, the performance of the IROAVOA is inferior to other comparison algorithms; if
the p value is less than 0.05, it means accepting the null hypothesis, indicating that the
performance of the IROAVOA is better than other algorithms. When the p value is NaN, it
means that the performance of the IROAVOA and the comparison algorithm are equivalent.
Table 6 lists the Wilcoxon rank sum test results for each benchmark test function. Table 8
shows Statistical results of Wilcoxon rank result. In order to describe the results more clearly,
(W/T/L) symbols are added to the last row of the table to illustrate the IROAVOA in the
number of wins, draws, and the number of failures. According to the results, IROAVOA
is better than AVOA on 15 benchmark test functions and better than GWO, PSO, MVO,
WOA, MFO, TSA, and HHO on 23 groups of benchmark test functions. This confirms that
the proposed improved algorithm has significant superiority.
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Table 8. Statistical results of Wilcoxon rank sum test of 23 benchmark test functions between
IROAVOA and other algorithms.

Figure
IROAVOA VS.

GWO PSO MVO WOA MFO TSA HHO AVOA

F1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 3.45 × 10−7

F2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F3 2.51 × 10−11 2.51 × 10−11 2.51 × 10−11 2.51 × 10−11 2.51 × 10−11 2.51 × 10−11 2.51 × 10−11 2.51 × 10−11

F4 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.50 × 10−11 6.72 × 10−10

F6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F7 3.34 × 10−11 3.02 × 10−11 3.02 × 10−11 6.52 × 10−9 3.02 × 10−11 3.02 × 10−11 1.67 × 10−1 1.09 × 10−1

F8 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F9 1.20 × 10−12 1.21 × 10−12 1.21 × 10−12 3.34 × 10−1 1.21 × 10−12 1.21 × 10−12 NaN NaN
F10 1.17 × 10−12 1.21 × 10−12 1.21 × 10−12 9.84 × 10−10 1.21 × 10−12 1.21 × 10−12 NaN NaN
F11 2.79 × 10−3 1.21 × 10−12 1.21 × 10−12 3.34 × 10−1 1.21 × 10−12 1.27 × 10−5 NaN NaN
F12 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F13 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 8.10 × 10−10

F14 2.34 × 10−11 2.34 × 10−11 2.34 × 10−11 2.34 × 10−11 6.83 × 10−1 2.34 × 10−11 2.34 × 10−11 8.89 × 10−2

F15 6.01 × 10−8 3.02 × 10−11 3.02 × 10−11 8.15 × 10−11 3.01 × 10−11 1.61 × 10−6 2.44 × 10−9 7.60 × 10−7

F16 5.14 × 10−12 5.14 × 10−12 5.14 × 10−12 5.14 × 10−12 8.99 × 10−11 5.14 × 10−12 1.56 × 10−11 2.08 × 10−2

F17 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 1.61 × 10−1 2.36 × 10−12 2.36 × 10−12 5.70 × 10−1

F18 3.47 × 10−10 3.34 × 10−11 2.02 × 10−8 1.03 × 10−6 2.56 × 10−11 5.49 × 10−11 1.17 × 10−2 2.06 × 10−1

F19 2.15 × 10−11 2.15 × 10−11 2.15 × 10−11 2.15 × 10−11 1.14 × 10−9 2.15 × 10−11 2.15 × 10−11 5.77 × 10−8

F20 2.75 × 10−3 3.02 × 10−11 1.06 × 10−3 5.83 × 10−3 1.56 × 10−1 1.67 × 10−1 1.85 × 10−9 2.34 × 10−1

F21 1.94 × 10−11 1.94 × 10−11 1.94 × 10−11 1.94 × 10−11 3.46 × 10−1 1.94 × 10−11 1.94 × 10−11 1.24 × 10−9

F22 2.15 × 10−11 2.15 × 10−11 2.15 × 10−11 2.15 × 10−11 1.17 × 10−1 2.15 × 10−11 2.15 × 10−11 5.18 × 10−11

F23 2.48 × 10−11 2.48 × 10−11 2.48 × 10−11 2.48 × 10−11 7.26 × 10−2 2.48 × 10−11 2.48 × 10−11 1.53 × 10−9

(W/T/L) 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 20/3/0 15/3/5

5. Engineering Design Problems
5.1. Pressure Vessel Design Problem

The pressure vessel design problem is designed to minimize vessel manufacturing
costs, and Figure 8 shows the design for this problem. The four design variables are
shell thickness Ts (s3), head thickness Th (s4), inner radius R (s1), and container length L
(s2, excluding the head), where TS and Th are integers of 0.0625 times, and R and L are
continuous variables. The specific mathematical model is shown in Equation (27).
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Compare the IROAVOA with AVOA and other optimization algorithms (such as GWO,
WOA, HHO, and MVO). The population size and maximum number of iterations are set
to 30 and 500, respectively. After running independently for 30 times, the optimal value
is reached. Under the same experimental results, the results obtained are in Table 9. As
can be seen from Table 9, IROAVOA has a smaller manufacturing cost and is more suitable
compared with other algorithms. Therefore, IROAVOA can achieve optimal costs when
solving such problems.
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min f (s) = 0.6224s1s3s4 + 1.7781s2s3
3 + 3.1661s2

1s4 + 19.84s2
1s3

g1 = −s1 + 0.0193s3 ≤ 0,
g2 = −s2 + 0.00954s3 ≤ 0
g3 = −πs2

3s4 − 4
3 πs3

3 + 1296000 ≤ 0
g4 = s4 − 240 ≤ 0
0 ≤ s1, s2 ≤ 99,
0 ≤ s3, s4 ≤ 200.

(27)

Table 9. Comparison of pressure vessel design problem results of various algorithms.

Algorithm Ts Th L R f (x) Worst Mean Std

IROAVOA 0.778271 0.384700 40.32492 199.9262 5885.50775 1.44 × 1011 2.40 × 109 1.86 × 1010

AVOA 0.780252 0.385680 40.42754 198.5041 5888.93379 5.89 × 103 1.96 × 102 1.08 × 103

GWO 0.779255 0.385775 40.37216 199.4523 5893.32353 1.82 × 1020 2.06 × 1019 4.56 × 1019

WOA 0.851433 0.618424 43.22549 163.1540 6788.05596 1.66 × 1025 6.19 × 1020 2.17 × 1021

MVO 0.866271 0.430271 44.86706 145.4594 6072.49998 1.37 × 1020 1.70 × 1019 3.68 × 1019

HHO 0.947994 0.458334 47.89274 115.9952 6331.09005 6.33 × 103 2.11 × 102 1.16 × 103

5.2. Welded Beam Design Problem

The welded beam design problem is to reduce the cost in the welded beam design
process. Figure 9 shows the design of the problem. The optimization problem can be
described as finding the shear stress (s1), bending stress (s2), beam bending load (s3), end
deflection (s4), and boundary condition constraints. The four design variables include the
length of the beam (l), the height (t), thickness (b), and weld thickness (h), which minimize
the design cost of manufacturing welded beams. The specific mathematical models are
shown in Formulas (28) and (29).
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30 and 500, respectively. After running independently for 30 times, the optimal value is
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obtained. It can be seen from Table 10 that IROAVOA achieves better results than other
algorithms and can, therefore, be better applied.

cos t f (s) = 1.1047s2
1s2 + 0.04811s3s4(14.0 + s2)

y1(s) = τ(s)− 13600 ≤ 0,
y2(s) = σ(s)− 30000 ≤ 0,
y3(s) = δ(s)− 0.25 ≤ 0,
y4 = s1 − s4 ≤ 0,
y5 = p − pc ≤ 0,
y6 = 0.125 − s1 ≤ 0,
y7 = 1.10471s2

1 + 0.04811s3s4(14. + s2)− 5.0 ≤ 0,
0.1 ≤ s1, s4 ≤ 2.0,
0.1 ≤ s2, s3 ≤ 10.0.

(28)

τ =
√

τ1 + 2τ1τ2(
s2
2r ) + τ2

2 , τ1 = Pd
s1s2

√
2
,

m = pd(i +
s2
2 ), j = 2

{√
2s1s2[

s2
2

12 +
(

s1+s3
2

)2
]

}
,

r =

√
s2

2
4 +

(
s1+s3

2

)2
, σ = 6pdi

s4s2
3

, δ = 6pdi3

ns2
3s4

,

pc =
4.013n

√
s2
3s6

4
36

i2 (1 − s3
2i

√
n

4m ),
m = 12 × 106, n = 30 × 106,
pd = 6000lb, i = 14in, τ2 = mr

j .

(29)

Table 10. Comparison of welded beam design problem results of various algorithms.

Algorithm τ (s1) θ (s2) Pc (s3) δ (s4) f (x) Worst Mean Std

IROAVOA 0.20563 3.2552 9.0356 0.20578 1.6955 9.43 × 1014 1.57 × 1013 1.22 × 1014

AVOA 0.20295 3.3033 9.0370 0.20573 1.6979 1.71 × 1017 5.71 × 1015 3.13 × 1016

GWO 0.20538 3.2591 9.0412 0.20581 1.6969 9.05 × 1015 7.41 × 1014 2.28 × 1015

WOA 0.17181 3.8612 9.4729 0.20365 1.7836 2.55 × 1030 4.58 × 1016 1.53 × 1017

MVO 0.20330 3.3073 9.0390 0.20579 1.6999 7.95 × 1016 9.41 × 1015 1.77 × 1016

HHO 0.19829 3.4453 8.9978 0.20751 1.7167 1.72 × 1000 5.72 × 10−2 3.13 × 10−1

6. Conclusions

In view of the shortcomings of the algorithm, such as poor global search ability and
poor ability to balance exploration and exploitation, this paper introduces an improved
IROAVOA based on a combination of random opposition-based learning and disturbance
factors. Opposition learning can generate opposite points for candidate solutions, and
adding randomness can remove the fixed distance between the generated reverse solution
and the current solution, further expanding the search space of the algorithm. Therefore,
in the initial stage, random opposition-based learning can increase the initial generation
of African vultures to enhance the population diversity and randomness of the algorithm
and promote a wider search of the solution space, thereby enhancing the algorithm’s
ability to delve into a wider range of potential solutions. In the exploration stage, the
perturbation operator helps African vultures avoid the dilemma of local search during
navigation, improves the algorithm’s ability to escape from local optima, and balances
the exploration and exploitation stages. In order to verify the effectiveness of IROAVOA,
simulations were conducted on 23 benchmark test functions and the IEEE CEC2019 test
suite, and the exploration and exploitation capabilities, as well as convergence of the
algorithm, were analyzed. The results show that IROAVOA outperforms traditional AVOA,
two AVOA variants (IAVOA, ROAVOA), and seven other optimization algorithms. In
ablation experiments, random opposition-based learning strategy and perturbation factor
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effectively improved the exploitation of AVOA and its ability to balance exploration and
exploitation since adding disturbance factors increases the time complexity of the algorithm.
In subsequent research work, we will further reduce the time complexity of the algorithm
and apply it to more practical engineering optimization problems.
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Appendix A

Table A1. Results of unimodal benchmark functions.

Benchmark
Function Index AVOA ROAVOA IAVOA IROAVOA

F1

Best 6.45 × 10−292 0.00 × 100 0.00 × 100 0.00 × 100

Mean 2.18 × 10−293 0.00 × 100 0.00 × 100 0.00 × 100

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

F2

Best 5.49 × 10−145 5.04 × 10−173 1.37 × 10−162 2.86 × 10−192

Mean 1.86 × 10−146 8.40 × 10−175 4.55 × 10−164 4.76 × 10−194

Std 1.02 × 10−145 0.00 × 100 2.33 × 10−163 0.00 × 100

F3

Best 1.78 × 10−222 1.06 × 10−280 1.08 × 10−240 5.74 × 10−284

Mean 6.02 × 10−224 1.79 × 10−282 3.84 × 10−242 9.85 × 10−286

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

F4

Best 5.19 × 10−149 5.32 × 10−166 4.74 × 10−163 7.36 × 10−193

Mean 1.75 × 10−150 8.86 × 10−168 1.59 × 10−164 1.23 × 10−194

Std 9.60 × 10−150 0.00 × 100 7.41 × 10−164 0.00 × 100

F5

Best 5.71 × 10−5 1.06 × 10−5 2.11 × 10−5 3.49 × 10−6

Mean 3.46 × 106 2.89 × 106 1.35 × 107 1.19 × 107

Std 1.90 × 107 2.24 × 107 7.39 × 107 9.21 × 107

F6

Best 1.73 × 10−3 8.48 × 10−9 1.70 × 10−7 5.36 × 10−9

Mean 5.98 × 10−5 3.89 × 10−7 9.64 × 10−7 7.69 × 10−7

Std 3.27 × 10−4 3.01 × 10−6 5.28 × 10−6 5.95 × 10−6

F7

Best 1.36 × 10−4 1.06 × 10−4 1.35 × 10−4 6.17 × 10−5

Mean 1.76 × 10−2 8.45 × 10−3 1.87 × 10−2 8.14 × 10−3

Std 9.64 × 10−2 6.55 × 10−2 1.03 × 10−1 6.31 × 10−2
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Table A2. Results of multimodal benchmark functions.

Benchmark
Function Index AVOA ROAVOA IAVOA IROAVOA

F8

Best −1.23 × 104 −1.25 × 104 −1.26 × 104 −1.26 × 104

Mean −4.10 × 102 −2.09 × 102 −4.19 × 102 −2.09 × 102

Std 2.25 × 103 1.62 × 103 2.29 × 103 1.62 × 103

F9

Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Mean 3.79 × 10−16 1.26 × 10−16 3.16 × 10−16 1.58 × 10−16

Std 2.08 × 10−15 9.78 × 10−16 1.73 × 10−15 1.22 × 10−15

F10

Best 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Mean 1.01 × 10−16 3.85 × 10−17 1.01 × 10−16 3.85 × 10−17

Std 5.51 × 10−16 2.98 × 10−16 5.51 × 10−16 2.98 × 10−16

F11

Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Mean 6.17 × 10−19 4.32 × 10−19 4.93 × 10−19 2.47 × 10−19

Std 3.38 × 10−18 3.34 × 10−18 2.70 × 10−18 1.91 × 10−18

F12

Best 3.01 × 10−8 6.48 × 10−10 8.90 × 10−9 2.31 × 10−10

Mean 1.93 × 10−7 1.26 × 10−8 2.07 × 10−7 2.78 × 10−8

Std 1.06 × 10−6 9.78 × 10−8 1.13 × 10−6 2.15 × 10−7

F13

Best 7.48 × 10−8 5.85 × 10−9 3.51 × 10−8 2.69 × 10−9

Mean 6.28 × 107 2.65 × 107 5.69 × 107 2.17 × 107

Std 3.44 × 108 2.05 × 108 3.12 × 108 1.68 × 108

Table A3. Results of fixed-dimensions multimodal benchmark functions.

Benchmark
Function Index AVOA ROAVOA IAVOA IROAVOA

F14

Best 1.10 × 100 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1

Mean 3.66 × 10−2 1.66 × 10−2 3.33 × 10−2 1.66 × 10−2

Std 2.00 × 10−1 1.29 × 10−1 1.82 × 10−1 1.29 × 10−1

F15

Best 4.42 × 10−4 3.58 × 10−4 3.84 × 10−4 3.13 × 10−4

Mean 1.48 × 10−5 6.10 × 10−6 1.29 × 10−5 5.37 × 10−6

Std 8.11 × 10−5 4.73 × 10−5 7.07 × 10−5 4.16 × 10−5

F16

Best −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100

Mean −3.44 × 10−2 −1.72 × 10−2 −3.44 × 10−2 −1.72 × 10−2

Std 1.88 × 10−1 1.33 × 10−1 1.88 × 10−1 1.33 × 10−1

F17

Best 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Mean 1.33 × 10−2 6.63 × 10−3 1.33 × 10−2 6.63 × 10−3

Std 7.27 × 10−2 5.14 × 10−2 7.27 × 10−2 5.14 × 10−2

F18

Best 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

Mean 1.00 × 10−1 5.00 × 10−2 1.00 × 10−1 5.00 × 10−2

Std 5.48 × 10−1 3.88 × 10−1 5.48 × 10−1 3.87 × 10−1

F19

Best −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100

Mean −1.27 × 10−1 −6.36 × 10−2 −1.29 × 10−1 −6.34 × 10−2

Std 6.96 × 10−1 4.93 × 10−1 7.05 × 10−1 4.91 × 10−1

F20

Best −3.29 × 100 −3.28 × 100 −3.28 × 100 −3.27 × 100

Mean −1.09 × 10−1 −5.28 × 10−2 −1.09 × 10−1 −5.45 × 10−2

Std 5.99 × 10−1 4.09 × 10−1 5.98 × 10−1 4.22 × 10−1

F21

Best −1.02 × 101 −1.02 × 101 −1.02 × 101 −1.02 × 101

Mean −3.38 × 10−1 −1.69 × 10−1 −3.38 × 10−1 −1.69 × 10−1

Std 1.85 × 100 1.31 × 100 1.85 × 100 1.31 × 100

F22

Best −1.04 × 101 −1.04 × 101 −1.04 × 101 −1.04 × 101

Mean −3.47 × 10−1 −1.73 × 10−1 −3.47 × 10−1 −1.73 × 10−1

Std 1.90 × 100 1.34 × 100 1.90 × 100 1.34 × 100

F23

Best −1.05 × 101 −1.05 × 101 −1.05 × 101 −1.05 × 101

Mean −3.51 × 10−1 −1.76 × 10−1 −3.51 × 10−1 −1.75 × 10−1

Std 1.92 × 100 1.36 × 100 1.92 × 100 1.36 × 100
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Table A4. Unimodal benchmark function results of IROAVOA and other algorithms.

Function Index IROAVOA GWO PSO MVO WOA MFO TSA HHO

F1

Best 0.00 × 100 2.17 × 10−27 3.79 × 102 1.34 × 100 1.70 × 10−73 2.01 × 103 2.07 × 10−21 6.35 × 10−95

Mean 0.00 × 100 2.17 × 10−27 1.26 × 103 1.44 × 100 1.87 × 10−73 2.01 × 103 2.29 × 10−21 2.12 × 10−96

Std 0.00 × 100 6.03 × 10−31 3.01 × 102 4.48 × 10−2 6.07 × 10−75 3.29 × 100 1.09 × 10−22 1.16 × 10−95

F2

Best 2.29 × 10−188 1.15 × 10−16 8.62 × 100 4.56 × 100 4.93 × 10−51 3.68 × 101 1.27 × 10−13 1.90 × 10−50

Mean 3.81 × 10−190 1.15 × 10−16 1.59 × 101 4.58 × 100 5.05 × 10−51 3.68 × 101 1.37 × 10−13 6.35 × 10−52

Std 0.00 × 100 1.69 × 10−20 2.10 × 100 1.00 × 10−2 4.48 × 10−53 2.69 × 10−2 4.55 × 10−15 3.48 × 10−51

F3

Best 6.02 × 10−293 1.39 × 10−5 1.31 × 103 2.23 × 102 4.18 × 104 2.06 × 104 1.45 × 10−4 2.34 × 10−74

Mean 1.03 × 10−294 1.39 × 10−5 1.71 × 104 2.24 × 102 4.19 × 104 2.28 × 104 4.12 × 10−4 7.82 × 10−76

Std 0.00 × 100 4.75 × 10−9 1.74 × 104 5.11 × 10−1 2.06 × 102 4.29 × 103 3.13 × 10−4 4.28 × 10−75

F4

Best 7.98 × 10−183 9.21 × 10−7 8.22 × 100 2.11 × 100 5.10 × 101 7.00 × 101 3.71 × 10−1 1.70 × 10−48

Mean 1.33 × 10−184 9.22 × 10−7 1.56 × 101 2.14 × 100 5.11 × 101 8.41 × 101 4.68 × 10−1 5.67 × 10−50

Std 0.00 × 100 5.33 × 10−10 2.28 × 100 1.32 × 10−2 1.05 × 10−1 1.22 × 101 5.37 × 10−2 3.11 × 10−49

F5

Best 2.96 × 10−6 2.68 × 101 1.41 × 104 3.96 × 102 2.81 × 101 1.63 × 104 2.87 × 101 1.28 × 10−2

Mean 8.36 × 106 2.68 × 101 1.29 × 105 3.97 × 102 2.81 × 101 3.43 × 104 3.03 × 101 4.28 × 10−4

Std 6.47 × 107 1.78 × 10−4 5.57 × 104 6.94 × 10−1 7.88 × 10−5 8.64 × 104 1.87 × 100 2.34 × 10−3

F6

Best 3.63 × 10−9 8.19 × 10−1 3.98 × 102 1.25 × 100 4.12 × 10−1 1.67 × 103 3.86 × 100 9.02 × 10−5

Mean 4.51 × 10−7 8.19 × 10−1 1.26 × 103 1.34 × 100 4.12 × 10−1 1.67 × 103 3.97 × 100 3.01 × 10−6

Std 3.49 × 10−6 2.09 × 10−5 3.08 × 102 4.49 × 10−2 1.53 × 10−4 6.33 × 100 6.39 × 10−2 1.65 × 10−5

F7

Best 6.72 × 10−5 1.79 × 10−3 3.83 × 10−2 3.62 × 10−2 3.43 × 10−3 3.89 × 100 1.01 × 10−2 1.33 × 10−4

Mean 8.64 × 10−3 5.09 × 10−1 6.29 × 10−1 5.30 × 10−1 5.06 × 10−1 4.92 × 100 5.01 × 10−1 4.43 × 10−6

Std 6.69 × 10−2 2.88 × 10−1 2.88 × 10−1 2.82 × 10−1 2.87 × 10−1 1.93 × 100 2.85 × 10−1 2.43 × 10−5

Table A5. Fixed-dimension test function results of IROAVOA and other algorithms.

Function Index IROAVOA GWO PSO MVO WOA MFO TSA HHO

F8

Best −1.26 × 104 −5.98 × 103 −5.35 × 103 −7.82 × 103 −9.90 × 103 −8.72 × 103 −5.64 × 103 −1.26 × 104

Mean −2.09 × 102 −5.88 × 103 −3.45 × 103 −7.82 × 103 −9.90 × 103 −8.72 × 103 −2.78 × 103 −4.19 × 102

Std 1.62 × 103 1.68 × 100 1.00 × 103 8.29 × 10−1 1.06 × 101 8.78 × 10−2 7.47 × 102 2.29 × 103

F9

Best 0.00 × 100 3.17 × 100 1.62 × 102 1.15 × 102 7.58 × 10−15 1.58 × 102 1.87 × 102 0.00 × 100

Mean 1.58 × 10−16 3.17 × 100 3.17 × 102 1.15 × 102 8.91 × 10−15 1.58 × 102 3.03 × 102 0.00 × 100

Std 1.22 × 10−15 5.95 × 10−4 4.08 × 101 2.13 × 10−2 3.22 × 10−15 5.71 × 10−2 3.10 × 101 0.00 × 100

F10

Best 8.88 × 10−16 1.03 × 10−13 5.87 × 100 1.85 × 100 4.32 × 10−15 1.39 × 101 2.30 × 100 8.88 × 10−16

Mean 4.24 × 10−17 1.07 × 10−13 8.46 × 100 1.87 × 100 4.32 × 10−15 1.39 × 101 2.57 × 100 2.96 × 10−17

Std 3.29 × 10−16 0.00 × 100 6.75 × 10−1 6.92 × 10−3 0.00 × 100 3.88 × 10−2 7.48 × 10−2 1.62 × 10−16

F11

Best 0.00 × 100 3.09 × 10−3 4.59 × 100 8.55 × 10−1 0.00 × 100 2.20 × 101 8.47 × 10−3 0.00 × 100

Mean 4.32 × 10−19 3.09 × 10−3 1.24 × 101 8.81 × 10−1 1.48 × 10−18 2.22 × 101 1.51 × 10−1 0.00 × 100

Std 3.34 × 10−18 1.54 × 10−6 2.62 × 100 1.18 × 10−2 5.23 × 10−18 2.21 × 10−1 1.26 × 10−1 0.00 × 100

F12

Best 2.42 × 10−10 5.05 × 10−2 3.88 × 100 2.19 × 100 2.79 × 10−2 9.79 × 100 8.08 × 100 5.81 × 10−6

Mean 5.14 × 10−8 5.05 × 10−2 6.31 × 102 2.20 × 100 2.79 × 10−2 6.91 × 105 1.61 × 103 1.94 × 10−7

Std 3.98 × 10−7 2.74 × 10−6 2.59 × 103 3.71 × 10−3 2.01 × 10−5 3.45 × 106 4.86 × 103 1.06 × 10−6

F13

Best 3.02 × 10−9 6.37 × 10−1 1.70 × 101 1.76 × 10−1 5.50 × 10−1 4.62 × 103 3.17 × 100 8.71 × 10−5

Mean 1.55 × 107 6.37 × 10−1 1.44 × 104 1.84 × 10−1 5.50 × 10−1 1.91 × 106 3.79 × 100 2.90 × 10−6

Std 1.20 × 108 5.20 × 10−5 2.41 × 104 3.91 × 10−3 1.37 × 10−3 8.59 × 106 2.13 × 10−1 1.59 × 10−5
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Table A6. Fixed-dimensions multimodal benchmark function results of IROAVOA and other algorithms.

Function Index IROAVOA GWO PSO MVO WOA MFO TSA HHO

F14

Best 9.98 × 10−1 5.24 × 100 3.13 × 100 9.98 × 10−1 2.73 × 100 2.19 × 100 8.43 × 100 1.62 × 100

Mean 1.66 × 10−2 5.24 × 100 3.55 × 102 9.98 × 10−1 2.86 × 100 2.19 × 100 1.46 × 102 5.41 × 10−2

Std 1.29 × 10−1 1.46 × 10−7 1.77 × 102 2.29 × 10−9 7.04 × 10−1 8.28 × 10−16 1.25 × 102 2.96 × 10−1

F15

Best 3.49 × 10−4 3.77 × 10−3 1.37 × 10−3 8.11 × 10−3 6.27 × 10−4 1.83 × 10−3 7.08 × 10−3 3.89 × 10−4

Mean 5.87 × 10−6 3.77 × 10−3 4.44 × 102 8.12 × 10−3 6.29 × 10−4 1.83 × 10−3 9.34 × 101 1.30 × 10−5

Std 4.54 × 10−5 4.34 × 10−6 2.39 × 103 1.21 × 10−5 7.52 × 10−6 7.75 × 10−7 5.11 × 102 7.09 × 10−5

F16

Best −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100

Mean −1.72 × 10−2 −1.03 × 100 −9.27 × 10−2 −1.03 × 100 −1.03 × 100 −1.03 × 100 −9.15 × 10−1 −3.44 × 10−2

Std 1.33 × 10−1 3.10 × 10−6 1.06 × 100 8.62 × 10−6 1.01 × 10−4 6.37 × 10−16 1.91 × 10−1 1.88 × 10−1

F17

Best 3.98 × 10−1 3.98 × 10−1 1.10 × 100 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Mean 6.63 × 10−3 3.98 × 10−1 2.14 × 101 3.98 × 10−1 4.02 × 10−1 3.98 × 10−1 5.18 × 100 1.33 × 10−2

Std 5.14 × 10−2 1.72 × 10−4 4.48 × 101 5.54 × 10−5 1.17 × 10−2 4.27 × 10−16 5.78 × 100 7.26 × 10−2

F18

Best 3.00 × 100 3.00 × 100 3.90 × 100 3.00 × 100 3.00 × 100 3.00 × 100 1.50 × 101 3.00 × 100

Mean 5.00 × 10−2 3.00 × 100 1.83 × 101 3.00 × 100 3.00 × 100 3.00 × 100 1.81 × 102 1.00 × 10−1

Std 3.87 × 10−1 3.57 × 10−4 2.02 × 101 8.06 × 10−5 6.34 × 10−3 6.52 × 10−15 5.52 × 102 5.48 × 10−1

F19

Best −3.86 × 100 −3.86 × 100 −3.71 × 100 −3.86 × 100 −3.85 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100

Mean −6.41 × 10−2 −3.86 × 100 −2.29 × 100 −3.86 × 100 −3.85 × 100 −3.86 × 100 −3.05 × 100 −1.29 × 10−1

Std 4.96 × 10−1 5.97 × 10−5 7.57 × 10−1 4.12 × 10−6 1.84 × 10−3 2.68 × 10−15 6.62 × 10−1 7.05 × 10−1

F20

Best −3.27 × 100 −3.25 × 100 −1.96 × 100 −3.27 × 100 −3.19 × 100 −3.23 × 100 −3.22 × 100 −3.10 × 100

Mean −5.42 × 10−2 −3.25 × 100 −3.12 × 10−1 −3.27 × 100 −3.19 × 100 −3.23 × 100 −2.59 × 100 −1.03 × 10−1

Std 4.20 × 10−1 2.16 × 10−5 4.51 × 10−1 6.73 × 10−6 3.83 × 10−4 1.89 × 10−15 4.24 × 10−1 5.67 × 10−1

F21

Best −1.02 × 101 −9.48 × 100 −1.73 × 100 −7.96 × 100 −8.93 × 100 −6.46 × 100 −6.78 × 100 −5.36 × 100

Mean −1.69 × 10−1 −9.47 × 100 −3.56 × 10−1 −7.96 × 100 −8.88 × 100 −6.46 × 100 −1.52 × 100 −1.79 × 10−1

Std 1.31 × 100 3.26 × 10−3 1.53 × 10−1 8.92 × 10−4 1.55 × 10−1 3.12 × 10−15 6.74 × 10−1 9.78 × 10−1

F22

Best −1.04 × 101 −1.00 × 101 −1.45 × 100 −7.99 × 100 −6.68 × 100 −6.82 × 100 −5.89 × 100 −5.25 × 100

Mean −1.73 × 10−1 −1.00 × 101 −3.98 × 10−1 −7.99 × 100 −6.66 × 100 −6.82 × 100 −1.50 × 100 −1.75 × 10−1

Std 1.34 × 100 3.24 × 10−3 1.91 × 10−1 1.09 × 10−3 4.12 × 10−2 1.73 × 10−15 7.71 × 10−1 9.59 × 10−1

F23

Best −1.05 × 101 −1.01 × 101 −1.77 × 100 −9.10 × 100 −7.04 × 100 −7.21 × 100 −6.67 × 100 −5.12 × 100

Mean −1.75 × 10−1 −1.01 × 101 −4.89 × 10−1 −9.10 × 100 −7.02 × 100 −7.21 × 100 −1.81 × 100 −1.71 × 10−1

Std 1.36 × 100 3.00 × 10−3 2.17 × 10−1 1.14 × 10−3 5.03 × 10−2 1.93 × 10−15 8.83 × 10−1 9.35 × 10−1
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