Depth Image Rectification Based on an Effective RGB–Depth Boundary Inconsistency Model
Abstract
:1. Introduction
2. Related Works
2.1. Single Depth Image Recovery
2.2. RGB-Guided Depth Image Recovery
3. Materials and Methods
3.1. Basic Principle of the Model
3.2. The RGB–Depth Boundary Inconsistency Model
3.2.1. Improving the Weights of RGB and Depth Images
3.2.2. Measuring the Inconsistency of Collocated Pixels
4. Depth Image Rectification
4.1. Framework of the General WMF
4.2. Weight Design Based on the Developed Model
5. Experiments and Analysis
5.1. Experiment Setting
5.2. Visual Results
5.3. Quantitative Results
5.4. Ablation Study
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Zheng, N.; Shum, H. Stereo matching using belief propagation. IEEE Trans. Pattern. Anal. Mach. Intell. 2003, 25, 787–800. [Google Scholar]
- Saxena, A.; Sun, M.; Ng, A.Y. Make3D: Learning 3D scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 824–840. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Gong, M.; Wang, C.; Batmanghelich, K.; Tao, D. Deep ordinal regression network for monocular depth estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2002–2011. [Google Scholar]
- Lee, J.; Heo, M.; Kim, K.; Kim, C. Single-image depth estimation based on Fourier domain analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 330–339. [Google Scholar]
- Zanuttigh, P.; Marin, G.; Dal Mutto, C.; Dominio, F.; Minto, L.; Cortelazzo, G.M. Time-of-Flight and Stucture Light Depth Cameras; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Qiao, Y.; Jiao, L.; Yang, S.; Hou, B.; Feng, J. Color correction and depth-based hierarchical hole filling in free viewpoint generation. IEEE Trans. Broadcast. 2019, 65, 294–307. [Google Scholar] [CrossRef]
- Li, F.; Li, Q.; Zhang, T.; Niu, Y.; Shi, G. Depth acquisition with the combination of structured light and deep learning stereo matching. Signal Process. Image Commun. 2019, 75, 111–117. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, W.; Li, W. Blind stereoscopic video quality assessment: From depth perception to overall experience. IEEE Trans. Image Process. 2017, 27, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Li, N. Natural language stitching using depth maps. arXiv 2022, arXiv:2202.06276. [Google Scholar]
- Criminisi, A.; Perez, P.; Toyama, K. Region Filling and Object Removal by Exemplar-Based Image Inpainting. IEEE Trans. Image Process. 2004, 13, 1200–1212. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, S.; Cai, D. Depth image inpainting: Improving low rank matrix completion with low gradient regularization. IEEE Trans. Image Process. 2017, 26, 4311–4320. [Google Scholar] [CrossRef]
- Part, S.C.; Kyu, M.K.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 2003, 20, 21–26. [Google Scholar]
- Xie, J.; Feris, R.S.; Yu, S.-S.; Sun, M.-T. Joint super resolution and denoising from a single depth image. IEEE Trans. Multimed. 2015, 17, 1525–1537. [Google Scholar] [CrossRef]
- Xie, J.; Feris, R.S.; Sun, M.-T. Edge-guided single depth image super resolution. IEEE Trans. Image Process. 2016, 25, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Min, D.; Choi, S.; Lu, J.; Ham, B.; Sohn, K.; Do, M.N. Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 2014, 23, 5638–5653. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the IEEE International Conference on Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846. [Google Scholar]
- Yang, J.; Ye, X.; Frossard, P. Global auto-regressive depth recovery via iterative non-local filtering. IEEE Trans. Broadcast. 2019, 65, 123–137. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, D.; Chen, R.; Ji, X.; Zhao, D.; Gao, W. Depth super-resolution via joint color-guided internal and external regularizations. IEEE Trans. Image Process. 2019, 28, 1636–1645. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, H.S.; Oh, B.T. Depth map upsampling with a confidence-based joint guided filter. Signal Process. Image Commun. 2019, 77, 40–48. [Google Scholar] [CrossRef]
- Zhang, P.; Li, F. A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE Signal Process. Lett. 2014, 21, 1280–1283. [Google Scholar] [CrossRef]
- Ma, Z.; He, K.; Wei, Y.; Sun, J.; Wu, E. Constant time weighted median filtering for stereo matching and beyond. In Proceedings of the IEEE International Conference on Computer Vision, Columbus, OH, USA, 23–28 June 2014; pp. 49–56. [Google Scholar]
- Zhang, H.; Zhang, Y.; Wang, H.; Ho, Y.S.; Feng, S. WLDISR: Weighted local sparse representation-based depth image super-resolution for 3D video system. IEEE Trans. Image Process. 2019, 28, 561–576. [Google Scholar] [CrossRef]
- Chen, B.; Jung, C. Single depth image super-resolution using convolutional neural networks. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; pp. 1473–1477. [Google Scholar]
- Ye, X.; Duan, X.; Li, H. Depth super-resolution with deep edge-inference network and edge-guided depth filling. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; pp. 1398–1402. [Google Scholar]
- Wen, Y.; Sheng, B.; Li, P.; Lin, W.; Feng, D.D. Deep color guided coarse-to-fine convolutional network cascade for depth image super-resolution. IEEE Trans. Image Process. 2019, 28, 994–1006. [Google Scholar] [CrossRef]
- Ni, M.; Lei, J.; Cong, R.; Zheng, K.; Peng, B.; Fan, X. Color-guided depth map super resolution using convolutional neural network. IEEE Access 2017, 5, 26666–26672. [Google Scholar] [CrossRef]
- Jiang, Z.; Yue, H.; Lai, Y.-K.; Yang, J.; Hou, Y.; Hou, C. Deep edge map guided depth super resolution. Signal Process. Image Commun. 2021, 90, 116040. [Google Scholar] [CrossRef]
- Gu, S.; Guo, S.; Zuo, W.; Chen, Y.; Timofte, R.; Van Gool, L.; Zhang, L. Learned dynamic guidance for depth image reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2437–2452. [Google Scholar] [CrossRef]
- Kim, B.; Ponce, J.; Ham, B. Deformable kernel networks for joint image filtering. Int. J. Comput. Vis. 2020, 129, 579–600. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, Y.; Yu, L. 3D-TV System with Depth-Image-Based Rendering: Architectures, Techniques and Challenges; Springer: New York, NY, USA, 2013. [Google Scholar]
- Zhao, Y.; Zhu, C.; Chen, Z.; Yu, L. Depth no-synthesis-error model for view synthesis in 3-D video. IEEE Trans. Image Process. 2011, 20, 2221–2228. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Li, S.; Zheng, J.; Gao, Y.; Yu, L. Texture-aware depth prediction in 3D video coding. IEEE Trans. Broadcast. 2016, 62, 482–486. [Google Scholar] [CrossRef]
- Yuan, H.; Kwong, S.; Wang, X.; Zhang, Y.; Li, F. A virtual view PSNR estimation method for 3-D videos. IEEE Trans. Broadcast. 2016, 62, 134–140. [Google Scholar] [CrossRef]
- Xu, X.; Po, L.-M.; Ng, K.-H.; Feng, L.; Cheung, K.-W.; Cheung, C.-H.; Ting, C.-W. Depth map misalignment correction and dilation for DIBR view synthesis. Signal Process. Image Commun. 2013, 28, 1023–1045. [Google Scholar] [CrossRef]
- Yang, J.; Ye, X.; Li, K.; Hou, C.; Wang, Y. Color-guided depth recovery from RGB-D data using an adaptive autoregressive model. IEEE Trans. Image Process. 2014, 23, 3443–3458. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Yang, J.; Wu, Q. Robust color guided depth map restoration. IEEE Trans. Image Process. 2017, 26, 315–327. [Google Scholar] [CrossRef]
- Jiang, Z.; Hou, Y.; Yue, H.; Yang, J.; Hou, C. Depth super-resolution from RGB-D pairs with transform and spatial domain regularization. IEEE Trans. Image Process. 2018, 27, 2587–2602. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, D.; Chen, R.; Ji, X.; Zhao, D.; Gao, W. Depth restoration from RGB-D data via joint adaptive regularization and thresholding on manifolds. IEEE Trans. Image Process. 2019, 28, 1068–1079. [Google Scholar] [CrossRef]
- Dong, W.; Shi, G.; Li, X.; Peng, K.; Wu, J.; Guo, Z. Color-guided depth recovery via joint local structural and nonlocal low-rank regularization. IEEE Trans. Multimedia 2017, 19, 293–301. [Google Scholar] [CrossRef]
- Zuo, Y.; Wu, Q.; Zhang, J.; An, P. Explicit edge inconsistency evaluation model for color-guided depth map enhancement. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 439–453. [Google Scholar] [CrossRef]
- Xiang, S.; Yu, L.; Chen, C.W. No-reference depth assessment based on edge misalignment errors for t + d images. IEEE Trans. Image Process. 2016, 25, 1479–1494. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, R.; Wang, W.; Li, D.; Gao, W. Color image-guided boundary-inconsistent region refinement for stereo matching. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 1155–1159. [Google Scholar] [CrossRef]
- Domanski, M.; Grajek, T.; Klimaszewski, K.; Kurc, M.; Stankiewicz, O.; Stankowski, J.; Wegner, K. Multiview Video Test Sequences and Camera Parameters, Document M17050, ISO/IEC JTC1/SC29/WG11 MPEG, Oct. 2009. Available online: https://www.mpeg.org/ (accessed on 19 August 2024).
- Scharstein, D.; Pal, C. Learning conditional random fields for stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 14–19 June 2007; pp. 1–8. [Google Scholar]
- Liu, W.; Chen, X.; Yang, J.; Wu, Q. Variable bandwidth weighting for texture copy artifacts suppression in guided depth upsampling. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 2072–2085. [Google Scholar] [CrossRef]
- Lei, J.; Li, L.; Yue, H.; Wu, F.; Ling, N.; Hou, C. Depth map super-resolution considering view synthesis quality. IEEE Trans. Image Process. 2017, 26, 1732–1745. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Liu, Z.; Wu, Q.; Zhang, Z.; Jia, Y. Depth super-resolution on RGB-D video sequences with large displacement 3D motion. IEEE Trans. Image Process. 2018, 27, 3571–3585. [Google Scholar] [CrossRef]
- Jung, S.-W. Enhancement of image and depth map using adaptive joint trilateral filter. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 258–269. [Google Scholar] [CrossRef]
- Lo, K.-H.; Wang, Y.-C.F.; Hua, K.-L. Edge-preserving depth map upsampling by joint trilateral filter. IEEE Trans. Cybern. 2018, 48, 371–384. [Google Scholar] [CrossRef]
- Yang, Q.; Ahuja, N.; Yang, R.; Tan, K.-H.; Davis, J.; Culbertson, B.; Apostolopoulos, J.; Wang, G. Fusion of median and bilateral filtering for range image upsampling. IEEE Trans. Image Process. 2013, 22, 4841–4852. [Google Scholar] [CrossRef] [PubMed]
- Metzger, N.; Daudt, R.-C.; Schindler, K. Guided depth super-resolution by deep anisotropic diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 18237–18246. [Google Scholar]
- Wang, Z.; Yan, Z.; Yang, J. SGNet: Structure guided network via gradient-frequency awareness for depth map super-resolution. In Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; pp. 5823–5831. [Google Scholar]
Input | AR [35] | RWLS [36] | EIEF [40] | DGCNN [29] | DKN [30] | DM [52] | SGN [53] | Proposed | |
---|---|---|---|---|---|---|---|---|---|
Adirondack | 13.95 | 13.74 | 13.92 | 12.12 | 13.34 | 14.18 | 14.02 | 11.55 | 9.19 |
Backpack | 8.44 | 8.05 | 8.39 | 8.32 | 8.77 | 8.91 | 8.59 | 8.44 | 7.86 |
Bicycle1 | 19.59 | 21.78 | 19.14 | 16.09 | 18.26 | 21.31 | 19.72 | 15.58 | 9.89 |
Cable | 10.36 | 10.12 | 10.33 | 10.07 | 10.83 | 10.69 | 9.70 | 11.41 | 7.14 |
Classroom1 | 10.13 | 10.16 | 10.06 | 8.95 | 9.95 | 10.90 | 9.99 | 7.43 | 7.31 |
Couch | 12.37 | 12.22 | 12.35 | 11.98 | 12.25 | 14.22 | 13.81 | 13.17 | 12.60 |
Flowers | 11.48 | 11.21 | 11.33 | 10.35 | 11.08 | 12.00 | 11.75 | 9.58 | 8.18 |
Jadeplant | 33.35 | 23.63 | 23.44 | 23.88 | 23.39 | 25.71 | 23.47 | 25.38 | 20.66 |
Mask | 21.93 | 21.93 | 21.90 | 18.69 | 21.53 | 20.80 | 20.93 | 23.28 | 16.73 |
Motorcycle | 8.13 | 8.14 | 8.04 | 7.67 | 8.74 | 9.17 | 7.66 | 8.45 | 7.98 |
Piano | 9.22 | 7.71 | 9.04 | 6.76 | 9.61 | 8.57 | 8.42 | 8.19 | 6.13 |
Pipes | 13.11 | 13.15 | 13.12 | 11.82 | 13.12 | 14.01 | 13.07 | 12.51 | 11.34 |
Playroom | 28.55 | 31.12 | 28.58 | 27.10 | 27.86 | 27.93 | 27.73 | 28.07 | 24.58 |
Playtable | 4.73 | 4.46 | 4.53 | 3.82 | 6.38 | 4.90 | 4.77 | 3.72 | 3.49 |
Recycle | 5.16 | 4.62 | 4.59 | 5.04 | 6.25 | 5.37 | 5.17 | 4.67 | 4.82 |
Shelves | 19.23 | 19.21 | 19.17 | 17.70 | 19.08 | 19.84 | 19.34 | 17.06 | 10.83 |
Shopvac | 33.38 | 33.58 | 33.58 | 32.21 | 33.12 | 38.24 | 39.47 | 41.08 | 39.49 |
Sticks | 4.65 | 4.40 | 4.53 | 4.76 | 5.62 | 6.43 | 16.85 | 7.44 | 4.78 |
Storage | 10.18 | 10.21 | 9.91 | 9.65 | 10.78 | 11.07 | 10.54 | 10.07 | 9.04 |
Sword1 | 9.65 | 9.62 | 9.71 | 10.45 | 9.77 | 10.94 | 10.25 | 10.78 | 10.16 |
Sword2 | 22.67 | 22.29 | 22.52 | 21.53 | 21.70 | 24.18 | 23.32 | 20.23 | 19.59 |
Umbrella | 23.96 | 23.85 | 23.91 | 23.02 | 23.07 | 24.58 | 23.89 | 21.76 | 14.69 |
Vintage | 9.69 | 10.25 | 9.73 | 8.61 | 10.79 | 10.11 | 9.96 | 12.71 | 6.63 |
Avg. | 12.75 | 12.65 | 12.39 | 11.60 | 12.96 | 13.38 | 12.78 | 12.18 | 10.04 |
Proposed–Avg. | −2.71 | −2.61 | −2.35 | −1.56 | −2.92 | −3.34 | −2.74 | −2.14 | - |
Input | AR [35] | RWLS [36] | EIEF [40] | DGCNN [29] | DKN [30] | DM [52] | SGN [53] | Proposed | |
---|---|---|---|---|---|---|---|---|---|
Adirondack | 0.916 | 0.932 | 0.927 | 0.926 | 0.894 | 0.903 | 0.919 | 0.932 | 0.951 |
Backpack | 0.918 | 0.920 | 0.917 | 0.915 | 0.881 | 0.907 | 0.930 | 0.907 | 0.930 |
Bicycle1 | 0.794 | 0.840 | 0.821 | 0.839 | 0.795 | 0.762 | 0.796 | 0.834 | 0.883 |
Cable | 0.915 | 0.920 | 0.916 | 0.921 | 0.874 | 0.901 | 0.918 | 0.901 | 0.934 |
Classroom1 | 0.934 | 0.941 | 0.937 | 0.943 | 0.912 | 0.913 | 0.939 | 0.939 | 0.934 |
Couch | 0.915 | 0.921 | 0.916 | 0.917 | 0.887 | 0.882 | 0.954 | 0.918 | 0.918 |
Flowers | 0.893 | 0.900 | 0.901 | 0.899 | 0.841 | 0.867 | 0.892 | 0.916 | 0.916 |
Jadeplant | 0.870 | 0.869 | 0.874 | 0.866 | 0.835 | 0.825 | 0.883 | 0.839 | 0.890 |
Mask | 0.886 | 0.893 | 0.892 | 0.889 | 0.804 | 0.862 | 0.884 | 0.844 | 0.911 |
Motorcycle | 0.903 | 0.902 | 0.904 | 0.900 | 0.839 | 0.877 | 0.977 | 0.917 | 0.897 |
Piano | 0.920 | 0.929 | 0.928 | 0.926 | 0.882 | 0.909 | 0.919 | 0.900 | 0.928 |
Pipes | 0.863 | 0.864 | 0.863 | 0.861 | 0.819 | 0.825 | 0.858 | 0.858 | 0.858 |
Playroom | 0.813 | 0.813 | 0.820 | 0.825 | 0.776 | 0.786 | 0.821 | 0.751 | 0.848 |
Playtable | 0.951 | 0.956 | 0.957 | 0.955 | 0.866 | 0.940 | 0.954 | 0.959 | 0.959 |
Recycle | 0.945 | 0.958 | 0.958 | 0.949 | 0.914 | 0.937 | 0.949 | 0.961 | 0.961 |
Shelves | 0.809 | 0.816 | 0.816 | 0.819 | 0.784 | 0.796 | 0.802 | 0.805 | 0.844 |
Shopvac | 0.707 | 0.712 | 0.705 | 0.711 | 0.683 | 0.653 | 0.706 | 0.653 | 0.693 |
Sticks | 0.962 | 0.968 | 0.968 | 0.956 | 0.923 | 0.914 | 0.983 | 0.966 | 0.966 |
Storage | 0.878 | 0.887 | 0.887 | 0.885 | 0.799 | 0.862 | 0.920 | 0.949 | 0.891 |
Sword1 | 0.917 | 0.916 | 0.915 | 0.907 | 0.886 | 0.899 | 0.925 | 0.916 | 0.925 |
Sword2 | 0.798 | 0.828 | 0.814 | 0.833 | 0.786 | 0.768 | 0.825 | 0.853 | 0.867 |
Umbrella | 0.845 | 0.859 | 0.854 | 0.857 | 0.835 | 0.827 | 0.842 | 0.853 | 0.886 |
Vintage | 0.972 | 0.970 | 0.970 | 0.972 | 0.866 | 0.965 | 0.965 | 0.940 | 0.970 |
Avg. | 0.884 | 0.892 | 0.890 | 0.890 | 0.843 | 0.860 | 0.885 | 0.878 | 0.903 |
Proposed–Avg. | 0.019 | 0.011 | 0.013 | 0.013 | 0.060 | 0.043 | 0.018 | 0.025 | - |
RMSE | SSIM | Sharp edge | Smooth | |
---|---|---|---|---|
with BIM | 10.04 | 0.903 | better | worse |
w/o BIM | 10.49 | 0.905 | worse | better |
RMSE | SSIM | |
---|---|---|
mean | 10.04 | 0.903 |
median | 10.19 | 0.903 |
guided | 10.17 | 0.902 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Zhao, X.; Li, A.; Yang, M. Depth Image Rectification Based on an Effective RGB–Depth Boundary Inconsistency Model. Electronics 2024, 13, 3330. https://doi.org/10.3390/electronics13163330
Cao H, Zhao X, Li A, Yang M. Depth Image Rectification Based on an Effective RGB–Depth Boundary Inconsistency Model. Electronics. 2024; 13(16):3330. https://doi.org/10.3390/electronics13163330
Chicago/Turabian StyleCao, Hao, Xin Zhao, Ang Li, and Meng Yang. 2024. "Depth Image Rectification Based on an Effective RGB–Depth Boundary Inconsistency Model" Electronics 13, no. 16: 3330. https://doi.org/10.3390/electronics13163330
APA StyleCao, H., Zhao, X., Li, A., & Yang, M. (2024). Depth Image Rectification Based on an Effective RGB–Depth Boundary Inconsistency Model. Electronics, 13(16), 3330. https://doi.org/10.3390/electronics13163330