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Abstract: Depth image has been widely involved in various tasks of 3D systems with the advancement
of depth acquisition sensors in recent years. Depth images suffer from serious distortions near object
boundaries due to the limitations of depth sensors or estimation methods. In this paper, a simple
method is proposed to rectify the erroneous object boundaries of depth images with the guidance of
reference RGB images. First, an RGB–Depth boundary inconsistency model is developed to measure
whether collocated pixels in depth and RGB images belong to the same object. The model extracts the
structures of RGB and depth images, respectively, by Gaussian functions. The inconsistency of two
collocated pixels is then statistically determined inside large-sized local windows. In this way, pixels
near object boundaries of depth images are identified to be erroneous when they are inconsistent
with collocated ones in RGB images. Second, a depth image rectification method is proposed by
embedding the model into a simple weighted mean filter (WMF). Experiment results on two datasets
verify that the proposed method well improves the RMSE and SSIM of depth images by 2.556 and
0.028, respectively, compared with recent optimization-based and learning-based methods.

Keywords: depth image recovery; RGB–Depth boundary inconsistency; weighted mean filter

1. Introduction

Depth image usage has been involved in various tasks of 3D systems with the advances
in depth acquisition sensors in recent years, such as in 3D reconstruction, SLAM, and so on.
A depth image is generally acquired together with a reference RGB image. It provides the
structures of the scene and pixel-by-pixel distances from objects to the camera, which well
facilitates the relevant tasks to perceive the scene.

A depth image can be acquired by depth estimation or depth sensors. Estimation
methods have been extensively studied in the past decades [1,2]. In recent years, the
performance of depth estimation has been well improved by deep learning [3,4]. Estimated
depth images generally contain erroneous pixels near object boundaries due to the lack
of sufficient contexts in RGB images. Depth sensors provide a robust way to acquire
depth images, such as via structure light, ToF [5], and LiDAR. Structure light sensors such
as Kinect-v1 could acquire high-resolution depth images of close objects. However, a
depth image acquired by structure light generally contains missing contents near object
boundaries [6,7]. ToF sensors such as Kinect-v2 or LiDAR could effectively acquire the
depth images of distant objects. However, they often suffer from low-resolution and
noise problems, which consequently induce blurs in depth super-resolution. Therefore,
raw depth images generally contain serious distortions near object boundaries including
erroneous pixels, blurs, and noises. In this way, many depth-related applications [8,9] will
be seriously affected, and depth recovery becomes more and more important.

Depth image recovery have been widely studied in the past decades. Existing
methods can be roughly classified into two categories including single depth image
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recovery and RGB-guided depth image recovery. Single depth image recovery is an
ill-posed problem. Similar problems have been well studied for RGB images like
inpainting [10,11], super-resolution [12–14], filtering [15,16], and so on [17], which can
be adopted for depth image recovery. However, distortions of depth images are not
well addressed by these single depth image recovery methods, especially near object
boundaries. RGB-guided depth image recovery has been the dominant solution in recent
years, including filter-based, optimization-based, and learning-based methods. An RGB
image generally contains true object boundaries in the scene, which are consistent with
the ones in depth images. Filter-based methods and optimization-based methods are
often developed on the basis of image filters or optimization models such as the Markov
random field (MRF) [15,18], bilateral filter [16], guided filter [19,20], weighted mean
filter (WMF) [21], weighted median filter [22], and so on. Learning-based methods
often infer the confidence map of depth image based on a convolution neural network
(CNN) and then rectify low-confidence pixels, with the guidance of reference RGB
images, such as depth super-resolution and recovery [23–30]. However, learning-based
methods requires large-scale datasets for supervised training including RGB images
and high-quality and low-quality depth images. Unfortunately, most datasets lack
either high-quality or low-quality depth images. As a result, recent learning-based
methods [29,30] even perform worse than filter-based or optimization-based methods.

It is acknowledged that a depth image is generally composed of piece-wise flat regions
with discontinuous object boundaries. Because flat regions of depth images can be easily
recovered, rectifying erroneous object boundaries has been a challenge for depth image
recovery. Erroneous object boundaries in depth images may have a significant effect in the
development of relevant tasks. For example, view synthesis in 3D-TV generally requires
the object boundaries of depth and RGB images to be well aligned [31,32]. Erroneous object
boundaries in depth images may induce artifacts in synthesis images [33–35]. Therefore, it
is important to rectify erroneous object boundaries for depth image recovery. Generally
speaking, the object boundaries of a high-quality depth image should have two properties.
On one hand, object boundaries of depth images should be well aligned with the ones in
RGB images. On the other hand, object boundaries of depth images should clearly separate
the foreground from the background.

It has been verified that some filter-based and optimization-based methods can well
recover depth images. These methods are often realized by designing complicated weight
terms [17,36,37] or regularization terms [18,38–40]. However, most of these methods do not
explicitly rectify erroneous object boundaries in recovered depth images. In recent years, a
few methods have attempted to explicitly rectify erroneous boundaries in depth maps by
simple boundary detection, matching, or segmentation operations [41–43]. Once an object
boundary is wrongly observed in either an RGB image or depth image, erroneous object
boundaries will not be well rectified in recovered depth image.

In this paper, we first develop an RGB–Depth boundary inconsistency model to
identify erroneous pixels in depth images with the guidance of reference RGB images.
The model examines the inconsistency of collocated pixels in depth and RGB images. In
our solution, two collocated pixels are regarded to be consistent when they belong to
the same object in RGB and depth images. Otherwise, they are inconsistent. The model
extracts the boundaries of RGB and depth images by two Gaussian functions. The
inconsistency of two collocated pixels is then statistically determined inside large-sized
local windows. When two collocated pixels belong to the same object in RGB and depth
images, most collocated pixels in the two windows have large weight values and vice
versa. Then, the inconsistency of two collocated pixels is determined by accumulating
the weight values of these pixels in the windows. A large value indicates that the two
collocated pixels are consistent and vice versa.

We then propose a depth image rectification method based on the model. In our solu-
tion, it is equivalent to removing erroneous pixels near object boundaries. The RGB–Depth
inconsistency model is executed on depth images to identify erroneous pixels. Erroneous
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pixels are then corrected to rectify object boundaries in depth images. It is achieved by
embedding the model into the weight of a simple weighted mean filter (WMF) [21]. In this
way, all erroneous pixels of depth images are inactivated in the WMF to rectify erroneous
object boundaries of depth images. Note that other local filters or optimization models can
be adopted in the similar way.

Experiment results on two public datasets (MPEG [44] and Middlebury [45]) show
that the developed model identifies erroneous pixels near depth boundaries effectively.
Consequently, the depth image recovery method rectifies erroneous depth boundaries more
accurately compared with five recent optimization-based [36,37,41] and learning-based
methods [29,30]. In addition, the proposed method considerably reduces the number of
erroneous pixels of depth images by 75~86.6% compared with the baseline methods.

The main contributions are summarized as follows.
(1) A simple yet effective RGB–Depth boundary inconsistency model is developed to

explicitly identify erroneous pixels near depth boundaries with the guidance of RGB images.
(2) A depth image rectification method is proposed to rectify erroneous object bound-

aries for depth image recovery. It outperforms five recent optimization-based and learning-
based methods.

2. Related Works
2.1. Single Depth Image Recovery

Single image recovery has been extensively studied for natural images. Many existing
methods can be adopted or improved for depth image recovery. Inpainting methods [10]
can address the content missing problem of depth images acquired by structure light
sensors. Super-resolution methods [12] can address the low-resolution problem of depth
images acquired by TOF sensors. The weighted least squares (WLS) method and the
bilateral filter (BF) can smooth the flat regions and preserve the boundaries of depth im-
ages [15,16]. Moreover, a lot of image recovery methods have been improved by considering
the characteristics of depth images. Cai et al. improved the conventional low-rank low-
gradient inpainting approach to recover the missing content in single depth images [11].
Xie et al. jointly upgraded the resolution and removed the noises of a single depth im-
age with a robust coupled dictionary learning method [13,14]. Yang et al. recovered a
single depth image based on auto-regression correlations and further explored the spatial-
temporal redundancies for depth video recovery [17].

In recent years, machine learning techniques based on training datasets have provided
powerful tools to predict the missing contents and wrong boundaries of depth images.
Zhang et al. addressed the super-resolution problem by dividing depth images into edges
and smooth patches and learning two local dictionaries with sparse representation [23]. The
recent CNN has also been used for this problem. For example, Chen et al. proposed a depth
super-resolution method by acquiring a high-quality edge map prior with a CNN [24].
Ye et al. proposed a depth super-resolution framework with a deep edge-inference network
and edge-guided depth filling [25].

2.2. RGB-Guided Depth Image Recovery

Though significant advances have been made for single depth image recovery, depth
distortion problems have not been well addressed near object boundaries. For example,
missing contents near depth boundaries cannot be easily recovered. Therefore, depth
recovery with the guidance of a reference RGB image has been the dominant solution in
recent years. Some weighted image filtering frameworks, including the local methods of
the bilateral filter [16], guided filter [19], weighted median filter (MED) [22], and weighted
mean filter [21] and global methods of the Markov random field [15] and graph model [18]
can be adopted to handle this problem. This is achieved by redesigning new weights based
on the guidance image.

For example, Min et al. improved the quality of a depth video by increasing its reso-
lution and suppressing noise based on weighted mode filtering [15]. Liu et al. removed
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the texture copy artifacts in a depth image based on the WLS [37,46]. Zuo et al. jointly
addressed the texture copy artifacts and boundary blurs by explicitly measuring the incon-
sistency of object boundaries between RGB and depth images [20,41]. A lot of work has
addressed this problem by imposing new regularization terms [18,38–40]. Moreover, deep
learning has also been extensively used to recover depth images in recent years [26–28].
Besides RGB images, other priors can be used as guidance for depth image recovery [47,48].

3. Materials and Methods
3.1. Basic Principle of the Model

First of all, we model the structures of RGB and depth images, separately, because the
inconsistency of two collocated pixels is determined based on whether they belong to the
same object in RGB and depth images. For the current pixel at the location i in RGB image,
its structure is measured by the similarity between the current pixel and its neighbors at j
with the Gaussian function in Equation (1), where j belongs to the window Ωi centered at i.

ŴC
i,j = exp

(
−
∣∣Ii − Ij

∣∣2
2σ2

c

)
. (1)

Similarly, the structure of depth image is measured with another Gaussian function in
Equation (2) as follows:

ŴD
i,j = exp

(
−
∣∣Di − Dj

∣∣2
2σ2

d

)
. (2)

In Equations (1) and (2), Ii and Di denote the intensities of pixels at the location i in
RGB and depth images, respectively. The parameters σ2

c and σ2
d denote the variances of the

two Gaussian functions. The weight values ŴC
i,j and ŴD

i,j range within [0, 1]. Larger value
of the weights indicates that the current pixel Ii (or Di) and its neighbor one Ij (or Dj) likely
belong to a same object because the intensity values of pixels inside the same object are
often approximately equal. On the contrary, smaller value indicates that they do not belong
to the same object, i.e., one belongs to an object while the other belongs to another object or
the background.

The Gaussian functions in Equations (1) and (2) are quite similar with the general ones in
existing methods such as in [15,16,36,37,46,47,49–51]. However, they are essentially different in
two aspects. First, the radius r of the local window Ωi in Equations (1) and (2) is set very large in
our solution while it is often very small (e.g., r = 1 or r = 2) in the general ones. Second, domain
term is generally adopted in existing methods; however, it is inactivated in our solution.

Figures 1 and 2 illustrate the basic principle on how to measure the inconsistency of
two collocated pixels in RGB and depth images with Equations (1) and (2). In Figure 1, the
collocated pixels Ii and Di are consistent in the three examples, both of which belong to
the same object in RGB and depth images. We calculate ŴC

i,j and ŴD
i,j of the current pixel

and the local window Ωi is set as the whole image patches. The white regions of the two
weight maps well overlap with each other in these three examples. That means that most
collocated pixels in the window have larger values in both the two weight maps of RGB
and depth images. The larger the size of the window is, the more collocated pixels will
have large values in both of the two weight maps. By comparison, the two collocated pixels
at the location i in RGB and depth images are inconsistent in Figure 2, i.e., they do not
belong to the same object in RGB and depth images. In these examples, the white regions of
the two weight maps rarely overlap with each other. A few collocated pixels in the window
have large values in both of the two weight maps.

We then conclude the basic principle of the model as follows. When two collocated
pixels Ii and Di in RGB and depth images are consistent, a large number of collocated
pixels nearby have large values in both of the two weight maps. On the contrary, when
two collocated pixels Ii and Di are inconsistent, a few collocated pixels have large values
in both of the two weight maps. Then, the inconsistency of the collocated pixels Ii in RGB
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image and Di in depth image can be determined by counting the number of pixels in the
large-sized window Ωi. Larger pixel number indicates that the current pixel at the location
i in depth image is inconsistent with its collocated one in RGB image; otherwise, they are
consistent. A pixel near depth boundaries is considered to be an erroneous one when it is
inconsistent with its collocated one in RGB image.
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(a) RGB image, (b) weight map of RGB image, (c) depth image, and (d) weight map of depth image.

3.2. The RGB–Depth Boundary Inconsistency Model
3.2.1. Improving the Weights of RGB and Depth Images

It has been concluded that Equations (1) and (2) could well represent the inconsistency
of collocated pixels in RGB and depth images. The proposed model is derived from
Equations (1) and (2). However, we further make a few changes by considering the
characteristics of depth and RGB images. For the current pixel at the location i in RGB
and depth images, we calculate the weight maps with Equations (3) and (4) instead in the
large-sized window Ωi as follows:

WC
i,j = exp

−
∑k∈{R,G,B}

∣∣∣Ik
i − Ik

j

∣∣∣2
3 × 2σ2

c

, (3)
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WD
i,j = exp

(
−
(
Sigm

(∣∣Di − Dj
∣∣)(2N − 1

))2

2σ2
d

)
. (4)

Here, Ik
i denotes the pixel at the location i in the k-th channel (i.e., R, G, and B) of RGB

image, Di denotes the pixel at the location i in depth image, and N denotes the bit depth
of depth image. We then elaborate the differences between the improved weights in
Equations (3) and (4) and the ones in Equations (1) and (2).

Compared with Equation (1), Equation (3) jointly utilizes all three channels of RGB
image. The reason lies in the fact that measuring the inconsistency of collocated pixels
highly depends on the structures of objects in RGB image. However, a single channel may
not fully represent the structures of the scene, e.g., a boundary in red may not be observed
in the channels R and B of RGB image. In this scenario, the structures of the scene can be
well measured by the improved weight in Equation (3).

Compared with Equation (2), Equation (4) replaces the similarity of depth image∣∣Di − Dj
∣∣ by the sigmod function Sigm

(∣∣Di − Dj
∣∣), where

Sigm(x) =
1

1 + exp(−α · (x − β))
, (5)

It is acknowledged that a depth image is generally composed of piece-wise smooth
regions. So the weight WD

i,j is approximately to be either 0 or 1. However, due to the
limitation of depth acquisition techniques, the values of depth pixels may fluctuate slightly
inside the same object. In this scenario, the difference

∣∣Di − Dj
∣∣ inside an object may be

larger than 0 and the weight WD
i,j in Equation (2) may be much smaller than 1. The sigmod

function in Equation (5) well alleviates this problem. Small difference
∣∣Di − Dj

∣∣ can be
mapped to nearly 0 by the sigmod function. The weight values WD

i,j is then set to nearly 1
with the improved weight in Equation (4) and vice versa. Therefore, the improved weight
values WD

i,j of depth image is mainly composed of 0 and 1, which is in accordance with
the piece-wise characteristics of depth image. We totally provide a structure diagram in
Figure 3. It can be seen that our improved weights well hold the common problems of
RGB-D weights.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 17 
 

 

 
(a) (b) 

Figure 3. Diagram of the weights of RGB and depth images: (a) improvement of RGB weights; (b) 

improvement of depth weights. 

3.2.2. Measuring the Inconsistency of Collocated Pixels 

We then measure the inconsistency of two collocated pixels at the location i in depth 

and RGB images based on the weights in Equations (3) and (4). We have concluded most 

collocated pixels in the local window will have large values in both of the two weight 

maps when two collocated pixels are consistent. Otherwise, they are inconsistent. Our 

goal is to quantitatively measure the proportion of these collocated pixels inside the win-

dow Ω𝑖  based on the two weight maps 𝑊𝑖,𝑗
𝐶  and 𝑊𝑖,𝑗

𝐷 . We adopt the simple product oper-

ation 𝑊𝑖,𝑗
𝐶𝑊𝑖,𝑗

𝐷  for this purpose. Both 𝑊𝑖,𝑗
𝐶  and 𝑊𝑖,𝑗

𝐷  are within the range [0, 1]; thus, the pro-

duce values 𝑊𝑖,𝑗
𝐶  𝑊𝑖,𝑗

𝐷  are also within the range [0, 1]. Large value of the product 𝑊𝑖,𝑗
𝐶𝑊𝑖,𝑗

𝐷  

indicates that both the weight values 𝑊𝑖,𝑗
𝐶  and 𝑊𝑖,𝑗

𝐷  are large. On the contrary, small value 

of 𝑊𝑖,𝑗
𝐶𝑊𝑖,𝑗

𝐷  indicates that either 𝑊𝑖,𝑗
𝐶  or 𝑊𝑖,𝑗

𝐷  is small. 

The inconsistency of the two collocated pixels at the location i in RGB and depth im-

ages is then quantitatively measured by accumulating the product values 𝑊𝑖,𝑗
𝐶𝑊𝑖,𝑗

𝐷  of all 

collocated pixels in the window Ω𝑖  as follows: 

𝑊̂𝑖
𝐼𝑛𝑐 = ∑ 𝑊𝑖,𝑗

𝐶𝑊𝑖,𝑗
𝐷

𝑗∈𝛺𝑖

. (6) 

Larger value of 𝑊̂𝑖
𝐼𝑛𝑐 indicates that a large number of pixels have large product val-

ues 𝑊𝑖,𝑗
𝐶𝑊𝑖,𝑗

𝐷 . Then, the two collocated pixels at the location i are expected to be more con-

sistent with each other. Otherwise, smaller value of 𝑊̂𝑖
𝐼𝑛𝑐 indicates that the two collocated 

pixels are more inconsistent. Note that the value of 𝑊̂𝑖
𝐼𝑛𝑐 is related to the size of the local 

window Ω𝑖 . The larger the size of the window is, the more pixels may be involved. Con-

sequently, the produce values 𝑊𝑖,𝑗
𝐶𝑊𝑖,𝑗

𝐷  of more pixels will be acculumated in Equation (6). 

Therefore, we further normalize the model in Equation (6) as follows: 

𝑊𝑖
𝐼𝑛𝑐 =

∑ 𝑊𝑖,𝑗
𝐶𝑊𝑖,𝑗

𝐷
𝑗∈𝜔𝑖

∑ 𝑊𝑖,𝑗
𝐶

𝑗∈𝛺𝑖

. (7) 

The normalized value 𝑊𝑖
𝐼𝑛𝑐 ranges within [0, 1]. In additional, it is independent of 

the size of the window. 

Equation (7) provides the basic model to measure the inconsistency of two collocated 

pixels at the location i in depth and RGB images. It can be used in different applications. 

For example, we use this model to classify all pixels into erroneous ones and correct ones 

in depth image. To this end, we first binarize the model in Equation (7) as follows: 

𝑊𝑖
𝐵_𝐼𝑛𝑐 = {

1,𝑊𝑖
𝐼𝑛𝑐 > 𝑇

0,𝑊𝑖
𝐼𝑛𝑐 ≤ 𝑇

, (8) 

Figure 3. Diagram of the weights of RGB and depth images: (a) improvement of RGB weights;
(b) improvement of depth weights.

3.2.2. Measuring the Inconsistency of Collocated Pixels

We then measure the inconsistency of two collocated pixels at the location i in depth
and RGB images based on the weights in Equations (3) and (4). We have concluded most
collocated pixels in the local window will have large values in both of the two weight
maps when two collocated pixels are consistent. Otherwise, they are inconsistent. Our goal
is to quantitatively measure the proportion of these collocated pixels inside the window
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Ωi based on the two weight maps WC
i,j and WD

i,j . We adopt the simple product operation

WC
i,jW

D
i,j for this purpose. Both WC

i,j and WD
i,j are within the range [0, 1]; thus, the produce

values WC
i,j WD

i,j are also within the range [0, 1]. Large value of the product WC
i,jW

D
i,j indicates

that both the weight values WC
i,j and WD

i,j are large. On the contrary, small value of WC
i,jW

D
i,j

indicates that either WC
i,j or WD

i,j is small.
The inconsistency of the two collocated pixels at the location i in RGB and depth

images is then quantitatively measured by accumulating the product values WC
i,jW

D
i,j of all

collocated pixels in the window Ωi as follows:

Ŵ Inc
i = ∑

j∈Ωi

WC
i,jW

D
i,j . (6)

Larger value of Ŵ Inc
i indicates that a large number of pixels have large product values

WC
i,jW

D
i,j . Then, the two collocated pixels at the location i are expected to be more consistent

with each other. Otherwise, smaller value of Ŵ Inc
i indicates that the two collocated pixels

are more inconsistent. Note that the value of Ŵ Inc
i is related to the size of the local window

Ωi. The larger the size of the window is, the more pixels may be involved. Consequently,
the produce values WC

i,jW
D
i,j of more pixels will be acculumated in Equation (6). Therefore,

we further normalize the model in Equation (6) as follows:

W Inc
i =

∑j∈ωi
WC

i,jW
D
i,j

∑j∈Ωi
WC

i,j
. (7)

The normalized value W Inc
i ranges within [0, 1]. In additional, it is independent of the

size of the window.
Equation (7) provides the basic model to measure the inconsistency of two collocated

pixels at the location i in depth and RGB images. It can be used in different applications.
For example, we use this model to classify all pixels into erroneous ones and correct ones
in depth image. To this end, we first binarize the model in Equation (7) as follows:

WB_Inc
i =

{
1, W Inc

i > T
0, W Inc

i ≤ T
, (8)

Here, T ∈ [0, 1] denotes a predefined threshold T = 0.25 in our solution. In this way,
all pixels in depth and RGB images are determined to be inconsistent (WB_Inc

i = 1) or
consistent (WB_Inc

i = 0). A pixel in depth image is determined to be erroneous when it is
inconsistent with its collocated one in RGB image. This is because the pixel in RGB image
is often correct. In this way, all erroneous pixels in depth image can be identified. Note that
Equation (8) is not involved in the depth recovery method. It is only used as an example to
identify erroneous pixels of depth images in the experiment.

4. Depth Image Rectification

It has been shown in Section 3.1 that erroneous boundaries are mainly induced by
erroneous pixels and blurs in depth images. Our goal is to correct all erroneous pixels and
remove the blurs near object boundaries with the guidance of reference RGB images. A lot of
image processing frameworks can be adopted, such as the weighted mean filter (WMF) [21],
bilateral filter [16], Gaussian filter, guided filter [19], weighted median filter [22], Markov
random field [15], and graph model [18]. The developed model can be embedded into
these frameworks for depth image rectification. In this paper, we adopt the simple but
effective WMF [21], which suits for flat depth image with few textures. The ablation study
of other filter methods will be shown in Section 5.4.
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4.1. Framework of the General WMF

We first introduce the framework of the general WMF [21]. For a pixel at the location i
in the input depth image, it is filtered by weighted-averaging all pixels in the local window
Ni centered at the location i as follows:

∼
Di =

∑j∈Ni
Wi,jDj

∑j∈Ni
Wi,j

, (9)

Here, Di and
∼
Di denote the values of pixels at the location i in input and output depth

images, respectively. In the general WMF, the weight Wi,j is often defined based on the
values of pixels Di in the input depth image like the Gaussian weight WD

i,j in Equation (4).
In order to recover the depth image with the guidance of a reference RGB image, the weight
Wi,j is generally designed based on the values of both depth and RGB images. For example,
it can be achieved based on the bilateral filter as follows:

Wi,j = WC
i,jW

D
i,j , (10)

Here, WC
i,j and WD

i,j denote the Gaussian weights in Equations (3) and (4) based on RGB and
depth images, respectively. In this way, the WMF preserves the object boundaries of the
depth image with the guidance of the reference RGB image.

4.2. Weight Design Based on the Developed Model

In our method, we only update the weight Wi,j of the WMF in Equation (9) based on
the RGB–Depth boundary inconsistency model. It is known that the weight WC

i,jW
D
i,j in

Equation (10) often requires the structures of depth and RGB images to be well aligned.
Unfortunately, depth images generally contain erroneous pixels near object boundaries of
depth image. As a result, the structures of depth and RGB images are not well aligned near
object boundaries. These erroneous pixels need to be corrected for depth image recovery.
Therefore, these erroneous pixels of depth images need to be identified and inactivated in
the WMF. The developed model can be adopted for this purpose. The model measures the
inconsistency of collocated pixels in depth and RGB images and then identifies erroneous
pixels in depth images based on Equation (7). We redesign the weight Wi,j by considering
erroneous pixels and correct ones in depth images separately.

For erroneous pixels in depth images, their values are incorrect and these pixels are
inactivated in the weight of the WMF. In this case, we define the weight Wi,j based on the
weight of the RGB image WC

i,j as follows:

Winconsist
i,j = WC

i,jW
Inc
j , (11)

The weight W Inc
j ∈ [0, 1] denotes the inconsistency of the collocated pixels at the

location j in depth and RGB images. In this way, the erroneous pixel at the location j in
depth images is inactivated because the weight value W Inc

j is near to zero for erroneous
pixels and near to 1 for correct ones.

For correct pixels in depth images, their values are correct and these pixels are used in
the WMF. In this case, we define the weight Wi,j based on the weight WD

i,j of depth images
as follows:

Wconsist
i,j = WD

i,jW
Inc
j . (12)

Finally, the weight Wi,j is defined by combining the two weights in Equations (11) and (12)
as follows:

Wi,j =
(
1 − W Inc

i
)
Winconsist

i,j + W Inc
i Wconsist

i,j
=
(
1 − W Inc

i
)
WC

i,jW
Inc
j + W Inc

i WD
i,jW

Inc
j .

(13)
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The depth image rectification method is realized by updating the weight Wi,j of the
WMF in Equation (9) with the one in Equation (13). With this method, erroneous pixels in
depth images are corrected by correct pixels of RGB and depth images. Erroneous object
boundaries of depth images are then rectified by correcting all identified erroneous pixels.
Finally, the overall framework of our method is shown in Figure 4.
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5. Experiments and Analysis
5.1. Experiment Setting

Experiments were conducted on the dataset recommended by MPEG [44] and the Mid-
dlebury dataset [45]. Seven competitive baselines were used for comparison including the
robust weighted least squares method (denoted “RWLS”) [37], the auto-regression based
method (denoted “AR”) [36], the explicit edge inconsistency evaluation model (denoted
“EEIE”) [41], and four recent learning-based methods, i.e., the dynamic guidance CNN
(denoted “DGCNN”) [29], deformable kernel networks (denoted “DKN”) [30], the diffu-
sion model for depth enhancement (denoted “DM”) [52], and structure-guided networks
(denoted “SGN”) [53]. Note that the well-trained models of the DGCNN [29], DKN [30],
DM [52], and SGN [53] released by the authors were directly adopted for fair comparison.

There are multiple parameters in the two improved weights in Equations (3) and (4). All
these parameters are determined by training on our test dataset. First, our model requires the
size of the local window Ωi to be large enough compared with erroneous regions in depth
images. The radius of the window is finally fixed to be r = 30 for both of the two weights
in Equations (3) and (4). Second, the standard variances in Equations (3) and (4) are set
as (σc, σd) = (10, 5) to well differentiate the foreground from the background in RGB and
depth images. Third, the two parameters of the sigmod function in Equation (5) are set as
(α, β) = (0.04, 125). In addition, N in Equation (4) is generally set as 8 for 8-bit depth images.

5.2. Visual Results

We first show the visual results of the depth image rectification method. Figure 5 show
some enlarged depth images, which are from the whole depth images in Figures 6 and 7.
It is clear that object boundaries in raw depth images are distorted seriously by erroneous
pixels. Figure 5h shows that the proposed method fully removes erroneous pixels near object
boundaries in depth images. Thereby, erroneous object boundaries are rectified accurately. The
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results in the first, third, and sixth rows of Figure 5 show that the proposed method even well
rectifies tiny object boundaries in depth images. The object boundaries in all these rectified
depth images in Figure 5h are very clear and sharp. By comparison, most the baseline methods
well smooth flat regions in depth images. However, they fail to rectify erroneous object
boundaries in depth images as in Figure 5c–g. In these results, a large number of erroneous
pixels still remained in recovered depth images. For example, the method AR in Figure 5c
well smoothed the flat regions. However, this method did not fully correct erroneous pixels
and remove blurs near depth boundaries. Similarly, the RWLS method in Figure 5d and EIEF
method in Figure 5e well remove blurs near depth boundaries. However, erroneous pixels are
not well corrected. The results of the two learning-based methods, the DGCNN and DKN, in
Figure 5f,g are similar. Figures 6 and 7 further show the results on whole depth images. It is
seen that most erroneous object boundaries in depth images are rectified accurately compared
with the baseline methods.

The effectiveness of a depth image rectification method benefits from the RGB–Depth
boundary inconsistency model. In our solution, erroneous pixels in depth images are
identified explicitly by the developed model. Erroneous object boundaries in depth images
are accurately rectified by correcting these erroneous pixels. By comparison, most baseline
methods do not explicitly identify and correct erroneous pixels in depth images. As a result,
erroneous object boundaries in depth images cannot be rectified accurately such as in the
results in Figures 5–7.
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Figure 6. Visual results of on whole depth images from the MPEG dataset: (a) RGB image,
(b) raw depth, (c) AR [36], (d) RWLS [37], (e) EIEF [41], (f) DGCNN [29], (g) DKN [30], (h) DM [52],
(i) SGN [53], and (j) proposed.
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Figure 7. Visual results on whole depth images from the Middlebury2014 dataset: (a) RGB image,
(b) raw depth, (c) AR [36], (d) RWLS [37], (e) EIEF [41], (f) DGCNN [29], (g) DKN [30], (h) DM [52],
(i) SGN [53], and (j) proposed.

5.3. Quantitative Results

We then test the quantitative results of the depth image rectification method. Table 1
concludes the RMSE values on Middlebury2014. The proposed method considerably im-
proves the RMSE of recovered depth images by 1.56~3.34 (2.91 on average) compared
with the seven baseline methods. Indeed, the proposed method outperforms the baseline
methods on most individual examples as in Table 1. The effectiveness of the proposed
method benefits from the RGB–Depth boundary inconsistency model. The baseline meth-
ods could well smooth flat regions of depth images; however, erroneous object boundaries
could not be well rectified. By comparison, the developed model identifies most erroneous
pixels in depth images. These erroneous pixels are fully corrected by the depth image
rectification method. Table 2 concludes the SSIM results on Middlebury2014. The proposed
method improves the SSIM values of recovered depth images by 0.011~0.060 (0.029 on
average). Similar to what is shown in Table 1, the proposed method outperforms the
baseline methods on most individual test examples.
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Table 1. RMSE values for Middlesbury2014 (lower is better). The best results are in bold.

Input AR [35] RWLS
[36] EIEF [40] DGCNN

[29] DKN [30] DM [52] SGN [53] Proposed

Adirondack 13.95 13.74 13.92 12.12 13.34 14.18 14.02 11.55 9.19
Backpack 8.44 8.05 8.39 8.32 8.77 8.91 8.59 8.44 7.86
Bicycle1 19.59 21.78 19.14 16.09 18.26 21.31 19.72 15.58 9.89

Cable 10.36 10.12 10.33 10.07 10.83 10.69 9.70 11.41 7.14
Classroom1 10.13 10.16 10.06 8.95 9.95 10.90 9.99 7.43 7.31

Couch 12.37 12.22 12.35 11.98 12.25 14.22 13.81 13.17 12.60
Flowers 11.48 11.21 11.33 10.35 11.08 12.00 11.75 9.58 8.18

Jadeplant 33.35 23.63 23.44 23.88 23.39 25.71 23.47 25.38 20.66
Mask 21.93 21.93 21.90 18.69 21.53 20.80 20.93 23.28 16.73

Motorcycle 8.13 8.14 8.04 7.67 8.74 9.17 7.66 8.45 7.98
Piano 9.22 7.71 9.04 6.76 9.61 8.57 8.42 8.19 6.13
Pipes 13.11 13.15 13.12 11.82 13.12 14.01 13.07 12.51 11.34

Playroom 28.55 31.12 28.58 27.10 27.86 27.93 27.73 28.07 24.58
Playtable 4.73 4.46 4.53 3.82 6.38 4.90 4.77 3.72 3.49
Recycle 5.16 4.62 4.59 5.04 6.25 5.37 5.17 4.67 4.82
Shelves 19.23 19.21 19.17 17.70 19.08 19.84 19.34 17.06 10.83
Shopvac 33.38 33.58 33.58 32.21 33.12 38.24 39.47 41.08 39.49

Sticks 4.65 4.40 4.53 4.76 5.62 6.43 16.85 7.44 4.78
Storage 10.18 10.21 9.91 9.65 10.78 11.07 10.54 10.07 9.04
Sword1 9.65 9.62 9.71 10.45 9.77 10.94 10.25 10.78 10.16
Sword2 22.67 22.29 22.52 21.53 21.70 24.18 23.32 20.23 19.59

Umbrella 23.96 23.85 23.91 23.02 23.07 24.58 23.89 21.76 14.69
Vintage 9.69 10.25 9.73 8.61 10.79 10.11 9.96 12.71 6.63

Avg. 12.75 12.65 12.39 11.60 12.96 13.38 12.78 12.18 10.04

Proposed–
Avg. −2.71 −2.61 −2.35 −1.56 −2.92 −3.34 −2.74 −2.14 -

Table 2. SSIM values for Middlesbury2014 (larger is better).

Input AR [35] RWLS
[36] EIEF [40] DGCNN

[29] DKN [30] DM [52] SGN [53] Proposed

Adirondack 0.916 0.932 0.927 0.926 0.894 0.903 0.919 0.932 0.951
Backpack 0.918 0.920 0.917 0.915 0.881 0.907 0.930 0.907 0.930
Bicycle1 0.794 0.840 0.821 0.839 0.795 0.762 0.796 0.834 0.883

Cable 0.915 0.920 0.916 0.921 0.874 0.901 0.918 0.901 0.934
Classroom1 0.934 0.941 0.937 0.943 0.912 0.913 0.939 0.939 0.934

Couch 0.915 0.921 0.916 0.917 0.887 0.882 0.954 0.918 0.918
Flowers 0.893 0.900 0.901 0.899 0.841 0.867 0.892 0.916 0.916

Jadeplant 0.870 0.869 0.874 0.866 0.835 0.825 0.883 0.839 0.890
Mask 0.886 0.893 0.892 0.889 0.804 0.862 0.884 0.844 0.911

Motorcycle 0.903 0.902 0.904 0.900 0.839 0.877 0.977 0.917 0.897
Piano 0.920 0.929 0.928 0.926 0.882 0.909 0.919 0.900 0.928
Pipes 0.863 0.864 0.863 0.861 0.819 0.825 0.858 0.858 0.858

Playroom 0.813 0.813 0.820 0.825 0.776 0.786 0.821 0.751 0.848
Playtable 0.951 0.956 0.957 0.955 0.866 0.940 0.954 0.959 0.959
Recycle 0.945 0.958 0.958 0.949 0.914 0.937 0.949 0.961 0.961
Shelves 0.809 0.816 0.816 0.819 0.784 0.796 0.802 0.805 0.844
Shopvac 0.707 0.712 0.705 0.711 0.683 0.653 0.706 0.653 0.693

Sticks 0.962 0.968 0.968 0.956 0.923 0.914 0.983 0.966 0.966
Storage 0.878 0.887 0.887 0.885 0.799 0.862 0.920 0.949 0.891
Sword1 0.917 0.916 0.915 0.907 0.886 0.899 0.925 0.916 0.925
Sword2 0.798 0.828 0.814 0.833 0.786 0.768 0.825 0.853 0.867

Umbrella 0.845 0.859 0.854 0.857 0.835 0.827 0.842 0.853 0.886
Vintage 0.972 0.970 0.970 0.972 0.866 0.965 0.965 0.940 0.970
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Table 2. Cont.

Input AR [35] RWLS
[36] EIEF [40] DGCNN

[29] DKN [30] DM [52] SGN [53] Proposed

Avg. 0.884 0.892 0.890 0.890 0.843 0.860 0.885 0.878 0.903

Proposed–
Avg. 0.019 0.011 0.013 0.013 0.060 0.043 0.018 0.025 -

Notably, the recent learning-based methods [29,30,52,53] do not work well, as
shown in Table 1. The reason lies in two aspects. On the one hand, learning-based
methods generally require large-scale datasets with both GT and low-quality depth
images for training. Unfortunately, most public datasets do not contain low-quality
depth images. On the other hand, GT depth images in these public datasets still include
a few erroneous object boundaries due to the limitations of depth acquisition techniques.
As a result, misalignment occurs between GT depth images and reference RGB images.
However, most learning-based methods are trained on well-aligned datasets. Some
recent learning-based methods such as DM [52] and SGN methods [53] may perform
better than the DGCNN [29] and DKN [30] methods. But they still suffer from the
misalignment of RGB and GT depth images.

5.4. Ablation Study

Parameter analysis: Figure 8 gives the analysis of parameters in our model, including
σc in Equation (3), σD in Equation (4), α and β in Equation (5), and T in Equation (8). We
adopt the metric RMSE in Middlebury2014 to analyze the parameters. First, σc and σD are
increased from 1 to 15 at the interval of 5. These two parameters control the variance of the
Gaussian function. We verify that the best choice for σc is 10 and the best choice for σD is 5.
The results also demonstrate that our model performs best when α equals 0.04, β equals
125, and T equals 0.25.
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Ablation study for RGB–Depth boundary inconsistency model: For pair comparison,
we also provide the results of the WMF method without our RGB–Depth boundary inconsis-
tency model (denoted “BIM”). While removing the BIM, the framework will be degraded as
a common WMF [21], denoted as ”w/o BIM”. Our final model is denoted “with BIM”. The
quantitative results in Table 3 demonstrate the effectiveness of our RGB–Depth boundary
inconsistency model. It can be seen that the BIM works better than ‘without BIM’ using
the RMSE but 0.002 worse using the SSIM. This is because the WMF equipped with our
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boundary inconsistency model works better near depth edges. However, some unnecessary
sharp edges in depth maps lead to the degradation of the SSIM. This phenomenon is also
verified by the qualitative results in Figure 9.

Table 3. Ablation study of RGB–Depth boundary inconsistency model.

RMSE SSIM Sharp edge Smooth

with BIM 10.04 0.903 better worse
w/o BIM 10.49 0.905 worse better
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Ablation study of different filter methods: As explained in Section 4, our RGB–Depth
boundary inconsistency model can be applied to other filter methods. In Table 4, we
replace the WMF with two other filters including the weighted median filter [22] (denoted
as “median”) and guided filter [19] (denoted as “guided”). Our final solution based on
weighted mean filter is denoted as “mean”. The results demonstrate that our final solution
based on the WMF achieves the best performance.

Table 4. Ablation study of different filter methods.

RMSE SSIM

mean 10.04 0.903
median 10.19 0.903
guided 10.17 0.902

6. Conclusions and Discussion

In this paper, a simple yet effective RGB–Depth boundary inconsistency model has
been developed to identify erroneous pixels in raw depth images. A depth image rectifica-
tion method has then been proposed by embedding the model into a weighted mean filter
(WMF) to rectify erroneous object boundaries in depth images. Experiment results have
verified that the proposed method outperforms recent optimization-based methods and
learning-based methods. Our future work will focus on two aspects. On the one hand, the
robustness of the method needs to be well improved. On the other hand, the developed
model can be combined with learning-based methods to improve the accuracy.
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