
Citation: Wei, W.; Wang, J.; Xie, X.;

Liu, J.; Su, P. Real-Time Dense Visual

SLAM with Neural Factor

Representation. Electronics 2024, 13,

3332. https://doi.org/10.3390/

electronics13163332

Academic Editor: Janos Botzheim

Received: 4 July 2024

Revised: 9 August 2024

Accepted: 20 August 2024

Published: 22 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Real-Time Dense Visual SLAM with Neural Factor Representation
Weifeng Wei 1,† , Jie Wang 2,†, Xiaolong Xie 3 , Jie Liu 2 and Pengxiang Su 2,*

1 School of Information Engineering, Nanchang University, Nanchang 330031, China;
416100220248@email.ncu.edu.cn

2 School of Software, Nanchang University, Nanchang 330031, China; 8008121372@email.ncu.edu.cn (J.W.);
ndliujie@ncu.edu.cn (J.L.)

3 School of Mathematics and Computer Science, Nanchang University, Nanchang 330031, China;
416100210092@email.ncu.edu.cn

* Correspondence: supengxiang@ncu.edu.cn
† These authors contributed equally to this work.

Abstract: Developing a high-quality, real-time, dense visual SLAM system poses a significant chal-
lenge in the field of computer vision. NeRF introduces neural implicit representation, marking a
notable advancement in visual SLAM research. However, existing neural implicit SLAM methods
suffer from long runtimes and face challenges when modeling complex structures in scenes. In this
paper, we propose a neural implicit dense visual SLAM method that enables high-quality real-time
reconstruction even on a desktop PC. Firstly, we propose a novel neural scene representation, en-
coding the geometry and appearance information of the scene as a combination of the basis and
coefficient factors. This representation allows for efficient memory usage and the accurate modeling
of high-frequency detail regions. Secondly, we introduce feature integration rendering to significantly
improve rendering speed while maintaining the quality of color rendering. Extensive experiments on
synthetic and real-world datasets demonstrate that our method achieves an average improvement of
more than 60% for Depth L1 and ATE RMSE compared to existing state-of-the-art methods when
running at 9.8 Hz on a desktop PC with a 3.20 GHz Intel Core i9-12900K CPU and a single NVIDIA
RTX 3090 GPU. This remarkable advancement highlights the crucial importance of our approach in
the field of dense visual SLAM.

Keywords: dense visual SLAM; computer vision; neural implicit representation; feature integration
rendering

1. Introduction

The primary goal of dense visual simultaneous localization and mapping (SLAM) is
to estimate the pose of a visual sensor (such as an RGB-D camera) while constructing dense
3D maps of unknown environments. It has wide applications in the fields of autonomous
driving, robotics, and virtual/augmented reality. Traditional visual SLAM methods such
as [1–3] employ multi-view geometry to achieve robust camera tracking and represent
scene maps using point clouds. However, this discrete form of scene representation
typically requires substantial memory resources and exhibits heightened sensitivity to
environmental conditions.

The emergence of neural radiance fields (NeRF) [4] demonstrates that neural implicit
representation has powerful spatial continuous representation capabilities, giving full
play to their advantages in dense visual SLAM. Unlike traditional SLAM methods, neu-
ral implicit SLAM does not require feature point-based multi-view stereo matching or
hand-crafted loss terms. Instead, it uses neural radiance fields to represent a scene and
uses multi-layer perceptrons (MLPs) to decode the scene’s attributes. iMAP [5] utilizes a
single MLP as scene representation, constructing a loss function via volume rendering to
iteratively optimize the scene representation and estimate camera poses. NICE-SLAM [6]

Electronics 2024, 13, 3332. https://doi.org/10.3390/electronics13163332 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13163332
https://doi.org/10.3390/electronics13163332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2119-1937
https://orcid.org/0000-0002-9016-6287
https://orcid.org/0009-0008-0257-0900
https://doi.org/10.3390/electronics13163332
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13163332?type=check_update&version=1

Electronics 2024, 13, 3332 2 of 17

introduces hierarchical feature grids and pre-trained tiny-MLPs for scene representation.
This can locally update the constructed map, avoiding catastrophic forgetting. Afterward,
ESLAM [7] and Co-SLAM [8] utilize axis-aligned feature planes and hash grids for scene
representation, respectively. Compared to NICE-SLAM [6], they have a lower memory
footprint growth rate.

However, the above methods have some issues. For scene representation, the model
size of NICE-SLAM [6] grows cubically with the range of a scene map, and higher resolu-
tion grids are required to accurately represent the fine details in the scene, which further
increases memory usage and training costs. Despite ESLAM [7] only having a quadratic
memory footprint growth rate, it remains sensitive to the size of the map. In addition,
axis-aligned feature planes decompose scene information along co-ordinate axes. If critical
features or structures are not aligned with the main co-ordinate axes, axis-aligned trans-
formations struggle to capture them effectively. Due to the hash grid being prone to hash
collisions at fine scales, Co-SLAM [8] faces challenges in reconstructing detailed regions of
a scene. Furthermore, Co-SLAM [8] uses a customized CUDA framework to accelerate the
neural implicit SLAM system, which exhibits limited scalability when addressing down-
stream tasks in neural implicit dense visual SLAM. For color rendering, these methods use
ray marching through query and volume rendering space points for scene color rendering.
This process requires querying the RGB values of all points along the ray, resulting in huge
MLP query costs and affecting the real-time performance of the neural implicit dense visual
SLAM system.

In order to further balance accuracy and performance, we are inspired by [9,10] to
utilize neural factors for neural implicit dense visual SLAM scene representation and
propose employing a neural rendering method similar to [11], namely feature integration
rendering to improve the real-time performance of neural implicit SLAM. This enables
us to reconstruct detailed scene maps in real time without being affected by the memory
growth associated with incremental reconstruction. In general, our contributions include
the following:

• We propose a novel scene representation based on neural factors, demonstrating
higher-quality scene reconstruction and a more compact model memory footprint in
large-scale scenes.

• In order to address insufficient real-time performance due to high MLP query costs in
previous neural implicit SLAM methods, we introduce an efficient rendering approach
using feature integration. This improves real-time performance without relying on a
customized CUDA framework.

• We conducted extensive experiments on both synthetic and real-world datasets to
validate our design choices, achieving competitive performance against baselines in
terms of 3D reconstruction, camera localization, runtime, and memory usage.

2. Related Work

This section provides a comprehensive overview of related works, categorizing them
into traditional dense visual SLAM methods and highlighting the significant advance-
ments in neural implicit representations that have recently garnered substantial attention.
Section 2.1 reviews traditional dense visual SLAM methods, tracing their evolution from
early tracking and mapping architectures to recent approaches that integrate deep neural
networks for enhanced performance. Section 2.2 explores the advancements in neural im-
plicit representations, with a particular focus on their applications in novel view synthesis
and 3D reconstruction. Finally, Section 2.3 delves into the incorporation of neural implicit
representations in dense visual SLAM, highlighting the latest systems and the challenges
they address.

2.1. Traditional Dense Visual SLAM

Most of the existing dense visual SLAM methods follow the tracking and mapping
architecture proposed by PTAM [12]. DTAM [13] introduces the first dense visual SLAM

Electronics 2024, 13, 3332 3 of 17

system, utilizes cost volume for scene representation, and employs a dense per-pixel
approach for tracking and mapping. KinectFusion [14] proposes a pioneering method
for real-time scene reconstruction using an RGB-D camera as a sensor. They employ
iterative closest point (ICP) for tracking and utilize TSDF-Fusion to update scene geometry
for mapping. BAD-SLAM [15] utilizes dense surfels to represent a scene. These surface
elements can be efficiently updated through direct bundle adjustment (BA). Some recent
works [16–19] further improve the accuracy and robustness of dense visual SLAM systems
compared to traditional methods by combining deep neural networks with a traditional
visual SLAM framework.

2.2. Neural Implicit Representations

NeRF [4] has garnered extensive research interest in novel view synthesis and 3D
reconstruction due to its continuous scene representation and memory efficiency. However,
this MLP-based neural implicit representation requires a long training time. Subsequent
works have adopted hybrid scene representations, encoding scene information into features
and anchoring these features onto specific data structures such as octrees [20,21], voxel
grids [22,23], tri-planes [24], and hash grids [25]. These methods significantly accelerate
training speeds at the cost of increased memory usage. These methods provide support for
the real-time performance of neural implicit dense visual SLAM methods.

2.3. Neural Implicit Dense Visual SLAM

More recently, neural implicit representations have become popular in dense visual
SLAM. iMAP [5] first proposes a neural implicit dense visual SLAM system that uses
a single MLP for tracking and mapping. While it exhibits efficient memory usage, it
faces catastrophic forgetting in large-scale scenes. NICE-SLAM [6] introduces hierarchical
feature grids for scene representation to avoid forgetting and achieve large-scale scene
reconstruction, but it has a higher memory usage growth rate. While ESLAM [7] utilizes
axis-aligned feature planes to reduce memory footprint growth rate, this representation
will produce axis-aligned bias and make it difficult to handle complicated structures in
the scene. Vox-fusion [26] employs a sparse octree for scene representation and does
not require a predefined scene bounding box. However, vox-fusion [26] uses a larger
voxel size and only includes surface points with valid depth measurements during ray
sampling, resulting in poor scene reconstruction quality. Co-SLAM [8] employs a hash
grid for scene representation and one-blob encoding for hole-filling, but it faces challenges
with hash conflicts in detailed scene areas, resulting in artifacts in reconstructed scenes.
Point-SLAM [27] adopts neural point clouds for better 3D reconstruction, yet it demands
significant training time, meaning a lack of real-time performance. Therefore, how to better
balance the accuracy, speed, and memory footprint of neural implicit dense visual SLAM is
a challenging problem that needs to be solved.

3. Method

Figure 1 shows an overview of our work. We utilize two sets of factor grids with
respective decoders to represent the geometry and appearance of the scene. We use the
estimated camera pose to cast a ray for each pixel, sampling 3D points by ray marching and
querying the network to render the depth and color values for each pixel. By minimizing
our proposed loss functions, we are able to optimize both the camera poses and scene
representation simultaneously. Section 3.1 describes our scene representation in detail.
Section 3.2 introduces feature integration color rendering, and Section 3.3 introduces the
details of tracking, mapping, and loss functions.

Electronics 2024, 13, 3332 4 of 17

Figure 1. Overview. (1) Scene representation: We use two different sets of factor grids to represent the
scene geometry and appearance, respectively. In order to simplify our overview, we use the symbol ∗ to
denote both geometry, g, and appearance, a, e.g., b∗(xi) can be either bg(xi) or ba(xi). For sample points
along the ray, we query the basis and coefficient factors for depth and feature integration rendering.
(2) Mapping process: We uniformly sample pixels from a selected set of keyframes and jointly optimize
scene representation and camera poses of these keyframes. (3) Tracking process: Factor grids and MLPs
remain fixed, and only the camera pose of each input frame in the RGB-D stream is estimated.

3.1. Neural Factors Representation

In contrast to [6–8,26], which directly encodes scene information into features, we
encode scene information into basis and coefficient factors, utilizing the combination of
these factors as the features. Since the geometry of a scene generally converges faster
than its appearance, utilizing a unified factors model to jointly represent both can readily
lead to the forgetting of geometry learning in the scene. This reduces pose estimation
robustness. Therefore, we adopt different basis and coefficient factors to represent the
geometry and appearance of the scene, respectively. The basis and coefficient factors are
implemented via learnable tensor grids. For the basis factors, we implement them using
the multi-level tensor grids Bl

g and Bl
a, where each level of resolution increases linearly; this

enables us to model the different frequencies of information in the scene more accurately.
For the coefficient factors, we use the single-level tensor grids Cg and Ca. Specifically, For
N-sampled points xi = o + zid, i ∈ {1, . . . , N} along the ray, where o denotes camera
origin, and zi corresponds to the depth value of sampled point xi, we query the geometry
basis factor, bg(xi), and geometry coefficient factor, cg(xi), from the geometry basis grids
and geometry coefficient grid via trilinear interpolation. By element-wise multiplying the
geometry basis factor with the geometry coefficient factor of the sampled point, we obtain
the geometry feature fg(xi) of xi. We obtain the appearance feature fa(xi) of sampled point
xi similarly. Then, we input the geometry feature of the sampled point into the geometry
decoder MLPg to decode the truncated signed distance (TSDF) value s(xi) of xi:

s(xi) = MLPg(fg(xi)) (1)

In order to allocate a sampled point weight to rendering depth and color, we adopt a
method similar to [7] to convert the TSDF value into weight for rendering along the ray:

σ(xi) = 1 − exp(−β · sigmod(−s(xi) · β)) (2)

wi = σ(xi)
i−1

∏
j=1

(
1 − σ(xj)

)
(3)

Electronics 2024, 13, 3332 5 of 17

where σ(xi) is the volume density of xi and β is a hyperparameter. Therefore, the rendered
depth of the ray is

D̂(r) =
N

∑
i=1

wizi (4)

3.2. Feature Integration Rendering

Previous neural implicit dense visual SLAM methods [5–8,26,27] obtain rendered pixel
color by querying the raw color of sampled points and relying on volume rendering by
using a marching camera ray. However, this rendering approach is relatively inefficient
for implementing a real-time neural implicit dense visual SLAM system. In our work,
instead of decoding the appearance features of sampled points to raw colors, we input the
appearance feature of the entire ray into the color decoder to obtain the final rendered pixel
color. Compared to [11], which uses a large MLP to ensure color rendering quality, our
method requires only a shallow MLP to achieve high-quality color reconstruction, thereby
reducing the number of parameters that require optimization during backpropagation. This
further balances the quality and efficiency of the neural implicit SLAM system. Specifically,
after obtaining the appearance features and weights of all sampled points along the ray, we
approximate the overall appearance feature of the ray by performing a weighted summation
of the appearance features of all sampled points along the ray:

fa(r) =
N

∑
i=1

wi fa(xi) (5)

the ray feature fa(r) is decoded into rendered pixel color by using the color decoder MLPa.

Ĉ(r) = MLPa(fa(r)) (6)

3.3. Training

This section details the training process of our method. The tracking and mapping
processes are performed synchronously during training. The tracking process estimates
the camera pose for each input frame, and the mapping process jointly optimizes the scene
representation and the camera poses of selected keyframes. Both processes require iterative
optimization by minimizing losses. Section 3.3.1 introduces the loss functions used in the
optimization process, while Sections 3.3.2 and 3.3.3 describe the tracking and mapping
processes in detail, respectively.

3.3.1. Loss Functions

In order to optimize scene representation and camera poses, we apply color loss, depth
loss, free-space loss, and SDF loss. The color loss is the L2 loss between the rendered pixel
color Ĉ(r) and the ground truth pixel color C(r):

Lc =
1
|R| ∑

r∈R
(C(r)− Ĉ(r))2 (7)

Similarly, the depth loss is the L2 loss between the ground truth depth D(r) and the
rendered depth D̂(r) of the pixel.

Ld =
1

|Rvd| ∑
r∈Rvd

(D(r)− D̂(r))2 (8)

where R is a set of pixels, and Rvd denotes the camera rays with a valid depth in R. In order
to achieve more accurate surface reconstruction, we employed a depth sensor measurement
to approximate the SDF loss. When the sampled point is far from the truncation region,
we apply the free-space loss, L f s, to enforce consistency between the TSDF value and

Electronics 2024, 13, 3332 6 of 17

the truncation distance. When the sampled point is within the truncation region, tr,
i.e., |zi − D(r)| < tr, we apply SDF loss Lsd f to learn the surface geometry within the
truncated region.

L f s =
1

|Rvd| ∑
r∈Rvd

1

|P f s
r |

∑
xi∈P f s

r

(s(xi)− tr)2 (9)

Lsd f =
1

|Rvd| ∑
r∈Rvd

1
|Pt

r |
∑

xi∈Pt
r

(s(xi) + zi − D(r))2 (10)

where P f s
r denotes the sampled points along the ray located between the camera origin

and the surface truncation region of the depth sensor measurement, while Pt
r denotes the

sampled points along the ray within the truncation region.
The global loss function we use is as follows:

L = λcLc + λdLd + λ f sL f s + λsd fLsd f (11)

where λc, λd, λ f s, and λsd f are weighting coefficients. We employ the same global loss
function in both tracking and mapping but set different weighting coefficients. Furthermore,
following [7], we use different SDF loss coefficients for the sampling points at the center
and the tail of the truncation region.

3.3.2. Tracking

During tracking, we first initialize the camera pose of the current frame, i, and then
obtain a copy of the factor grids and MLPs from the mapping process and keep the
parameters in them fixed, only optimizing the transformation matrix Ti ∈ SE(3) in the
world co-ordinate for frame i. Since the first frame is assigned the ground truth camera pose,
the tracking process starts from the second frame. We apply a constant speed assumption
to initialize the camera pose for frame i:

Ti = Ti−1T−1
i−2Ti−1, i >= 2 (12)

we assume that i = 0 represents the first frame. If i = 1, it is initialized directly using the
camera pose of the first frame. For the current frame, |Rt| pixels are randomly selected to
participate in iterative optimization. During this process, we only update the camera pose,
and the factor grids and decoders remain fixed.

3.3.3. Mapping

When the SLAM system starts, we first perform the mapping process. For the first
input frame, similar to previous neural implicit SLAM methods [5–8,26,27], we read the
ground truth camera pose to fix the origin of the world co-ordinate system. Next, we
perform ray sampling on the first frame for iterative optimization to initialize the learnable
parameters in the scene representation. For subsequent input frames, we perform the
mapping process to jointly optimize the scene representation and camera poses for every
four input frames, which is similar to [6–8]. During joint optimization, we define a keyframe
window as having a size of W. If the keyframe list has fewer than or equal to W keyframes,
we select all keyframes for joint optimization; otherwise, we select W keyframes from the
keyframe list that are co-viewed with the current frame. If the last keyframe is not included,
we add it. After selecting the keyframes, we also add the current frame to the set. For
these selected keyframes, we evenly distribute |Rm| pixels across these frames for joint
optimization. After the joint optimization is completed, we add the current frame to the
keyframe list.

Electronics 2024, 13, 3332 7 of 17

4. Experiments

This section presents the experimental validation of our method. Comprehensive
evaluations on both synthetic and real-world datasets are conducted to demonstrate the
effectiveness of our method. The experiments are designed to test the performance of our
method in terms of localization accuracy, reconstruction quality, runtime, and memory us-
age. Section 4.1 outlines the experimental setup, including the datasets used, the baselines,
the evaluation metrics, the hyperparameters, and post-processing. Section 4.2 presents
the reconstruction evaluation results, and Section 4.3 discusses the camera localization
evaluation. Section 4.4 analyzes runtime and memory usage. Finally, Section 4.5 conducts
an ablation study to validate our design choices.

4.1. Experimental Setup

In Section 4.1, we describe the experimental setup in detail. Section 4.1.1 discusses
the datasets used for evaluation. Section 4.1.2 introduces the baselines against which we
compare our method. Section 4.1.3 outlines the evaluation metrics employed to assess
performance. Section 4.1.4 details the hyperparameters used in our experiments. Finally,
Section 4.1.5 explains the post-processing steps applied to meshes.

4.1.1. Datasets

We evaluated our method using the Replica [28], ScanNet [29], and TUM-RGBD [30]
datasets. In this study, we selected eight synthetic scenes from Replica [28] and six real-
world scenes from ScanNet [29] to evaluate localization and reconstruction; we selected
three real-word scenes from TUM-RGBD [30] to evaluate localization. For tracking evalua-
tion, the ground-truth camera poses of ScanNet [29] were obtained using BundleFusion [31].

4.1.2. Baselines

We compare our method to existing state-of-the-art neural implicit dense visual SLAM
methods: iMAP [5], NICE-SLAM [6], Vox-Fusion [26], ESLAM [7], Co-SLAM [8], and
Point-SLAM [27]. Note that iMAP* and Vox-Fusion* denote the results we reproduced
using the corresponding open-source codes.

4.1.3. Evaluation Metrics

We evaluated the reconstructed mesh using 3D metric accuracy (cm), completion (cm),
and completion ratio (%) and a 2D metric depth, L1 (cm). Accuracy (cm) is then defined as
the average distance between points on the reconstructed mesh and their nearest points
on the ground truth mesh. Completion (cm) is similarly defined as the average distance
between the sampled points on the ground-truth mesh and their nearest sampled points
on the reconstructed mesh. The completion ratio (%) denotes the percentage of points
in the reconstructed mesh with a completion distance under 5 cm. For Depth L1 (cm),
following [7], we render depth in both the reconstructed and ground truth meshes for
1000 synthetic views. These views are uniformly sampled within the mesh, and views
not observed by the input frames are rejected. For the evaluation of camera localization,
we adopt ATE RMSE (cm) [30]. The quantitative results for tracking and mapping are the
averages of five runs.

4.1.4. Hyperparameters

Default settings. For scene representation, we uniformly set the truncation distance
tr to 6 cm and β to 10. We employed a total of six levels of grids with linearly increasing
resolution as our basis grids. We set resolutions similar to [10]: [32, 128]T · min(a−b)

1024 , where a
and b are scene bounding boxes. The channels for each level of basis grids are [4, 4, 4, 2, 2, 2]T ,
respectively. The coefficient grid has a single level with a resolution of 32. Both geometry
and appearance feature vectors have 18 channels. The geometry decoder is a single-layer
MLP with 64 channels in the hidden layer; the color decoder uses a two-layer MLP with
128 channels. We used Rt = 2000 pixels as the default for tracking and Rm = 4000 pixels for

Electronics 2024, 13, 3332 8 of 17

mapping. For the mapping process, we set the following loss coefficients: λc = 5, λd = 0.1,
λ f s = 5, λcenter = 2000, and λtail = 10. For the tracking process, we set λc = 5, λd = 0.1,
λ f s = 10, λcenter = 5000, and λtail = 50.

For the learning rates, all tensor grids have a unified rate of 0.02, while the decoders
have a learning rate of 0.005. For the keyframe selection strategy, we follow [6] and provide
two different approaches: (1) Overlap: we selected keyframes that have a visual overlap
with the current frame. (2) Global: we randomly drew a subset of keyframes from the
keyframe list. The keyframe window size, W, was consistently set at 20. We used the first
keyframe selection strategy as our default setting.

Replica settings. For the Replica dataset [28], we performed eight iterations for
tracking and 15 iterations for mapping. We used regular sampling Ns = 32 points along
each ray and Ni = 8 points near the surface. The learning rates for the rotation matrix and
translation vector were set at 0.001 and 0.002, respectively. We employed the default loss
coefficients and keyframe selection strategy.

ScanNet settings. For the ScanNet dataset [29], we performed 15 iterations for tracking
and 30 iterations for mapping. We used regular sampling Ns = 48 points along each
ray and Ni = 8 points near the surface. The learning rates for the rotation matrix and
translation vector were set at 0.0025 and 0.0005, respectively. For the loss coefficients, we
set λcenter = 500 for the tracking and mapping processes and used the default settings for
the rest. In addition, we used the global keyframe selection strategy.

TUM-RGBD settings. For the TUM-RGBD dataset [30], we set Ns = 48 and Ni = 8.
We performed 60 iterations for mapping and 200 iterations for tracking, and we randomly
sampled 5000 rays for each scene. The learning rates of both the rotation matrix and the
translation vector were set at 0.0025. In addition, we set λcenter = 6000 for tracking and
mapping. The global keyframe selection strategy was also employed.

4.1.5. Post-Processing

After processing all input frames, we generated a 3D mesh based on the scene represen-
tation using the marching cubes algorithm [32]. Since the neural representation can predict
scene information beyond the frustum range, which is unfair in evaluation, we needed
to perform an additional mesh culling step before evaluating the 3D mesh. Specifically,
we culled all regions that are not within any camera frustum. For a fair comparison, other
baseline methods also employed this culling strategy for the quantitative results.

4.2. Reconstruction Evaluation

We show qualitative comparisons of the Replica [28] and ScanNet [29] datasets in
Figures 2–5, and we report quantitative comparisons of the Replica dataset [28] in Table 1.
We used meshlab [33] to visualize all meshes. Due to the incomplete ground truth mesh of
the ScanNet dataset [29], we only provide a qualitative analysis of geometric reconstructions
for this dataset, similar to previous work [5–8,27]. Our method outperforms the baselines
on average, and compared to other baseline methods, it exhibits superior performance
in recovering the fine details of the scenes. Our method achieves higher-quality scene
reconstruction, even in real-world scenes with noise, and is able to complete unobserved
areas of the input frame.

Electronics 2024, 13, 3332 9 of 17

Figure 2. Comparison of qualitative results for reconstruction using the Replica dataset [28].

Figure 3. Comparison of qualitative results for reconstruction using the Replica dataset [28]. We
visualize the untextured meshes.

Electronics 2024, 13, 3332 10 of 17

Figure 4. Comparison of qualitative results for reconstruction using ScanNet [29].

Figure 5. Qualitative reconstruction using the ScanNet dataset [29]. We visualize the untextured meshes.

Electronics 2024, 13, 3332 11 of 17

Table 1. Reconstruction results for eight synthetic scenes using the Replica dataset [28]. Bold
formatting is used to emphasize the data in the table. The up/down arrow (↑/↓) indicates that
a larger/smaller indicator is better. The symbol (*) denote the results we reproduced using the
corresponding open-source codes.

Method Metric room0 room1 room2 office0 office1 office2 office3 office4 Avg.

Acc. ↓ 5.75 5.44 6.32 7.58 10.25 8.91 6.89 5.34 7.06
Comp. ↓ 5.96 5.38 5.21 5.16 5.49 6.04 5.75 6.57 5.69

Comp. Ratio (%) ↑ 67.13 68.91 71.69 70.14 73.47 63.94 67.68 62.30 68.16iMAP * [5]

Depth L1 ↓ 5.55 5.47 6.93 7.63 8.13 10.61 9.66 8.44 7.8

Acc. ↓ 1.47 1.21 1.66 1.28 1.02 1.54 1.95 1.60 1.47
Comp. ↓ 1.51 1.27 1.65 1.74 1.04 1.62 2.57 1.67 1.63

Comp. Ratio (%) ↑ 98.16 98.71 96.42 95.98 98.83 97.19 92.05 97.34 96.83NICE-SLAM [6]

Depth L1 ↓ 3.38 3.03 3.76 2.62 2.31 4.12 8.19 2.73 3.77

Acc. ↓ 1.08 1.05 1.21 1.41 0.82 1.31 1.34 1.31 1.19
Comp. ↓ 1.07 1.97 1.62 1.58 0.84 1.37 1.37 1.44 1.41

Comp. Ratio (%) ↑ 99.46 94.76 96.37 95.80 99.12 98.20 97.55 97.32 97.32Vox-Fusion * [26]

Depth L1 ↓ 1.62 10.43 3.06 4.12 2.05 2.85 3.11 4.22 3.93

Acc. ↓ 1.11 1.14 1.17 0.99 0.76 1.36 1.44 1.24 1.15
Comp. ↓ 1.06 1.37 1.14 0.92 0.78 1.33 1.36 1.16 1.14

Comp. Ratio (%) ↑ 99.62 97.49 97.86 99.07 99.25 98.81 98.48 98.96 98.69Co-SLAM [8]

Depth L1 ↓ 1.54 6.41 3.05 1.66 1.68 2.71 2.55 1.82 2.68

Acc. ↓ 1.07 0.85 0.93 0.85 0.83 1.02 1.21 0.97 0.97
Comp. ↓ 1.12 0.88 1.05 0.96 0.81 1.09 1.42 1.05 1.05

Comp. Ratio (%) ↑ 99.06 99.64 98.84 98.34 98.85 98.60 96.80 98.60 98.60ESLAM [7]

Depth L1 ↓ 0.97 1.07 1.28 0.86 1.26 1.71 1.43 1.18 1.18

Acc. ↓ 0.98 0.76 0.84 0.76 0.59 0.90 1.06 1.0 0.86
Comp. ↓ 0.99 0.78 0.94 0.79 0.66 0.94 1.11 1.07 0.91

Comp. Ratio (%) ↑ 99.65 99.76 99.13 99.50 99.41 99.21 98.95 99.23 99.36Ours

Depth L1 ↓ 0.84 0.76 1.04 0.68 0.90 1.24 1.07 0.61 0.89

4.3. Camera Localization Evaluation

We report the quantitative comparisons of the three datasets in Tables 2–4. In addition,
Figure 6 shows a qualitative comparison of camera trajectories for the scene0207 scene
of the ScanNet dataset [29]. Our method has more robust tracking performance in both
synthetic and real-world datasets and significantly reduces the impact of trajectory drift.
This is due to the fact that our method has a more accurate scene representation and is able
to guide the tracking process to achieve higher camera localization accuracy.

Table 2. Camera localization results (ATE RMSE [cm] ↓) in eight synthetic scenes using the Replica
dataset [28]. Bold formatting is used to emphasize the data in the table. The down arrow (↓)
indicates that a smaller indicator is better. The symbol (*) denote the results we reproduced using the
corresponding open-source codes.

Method room0 room1 room2 office0 office1 office2 office3 office4 Avg.

iMAP * [5] 3.88 3.01 2.43 2.67 1.07 4.68 4.83 2.48 3.13
NICE-SLAM [6] 1.76 1.97 2.2 1.44 0.92 1.43 2.56 1.55 1.73
VoxFusion * [26] 0.73 1.1 1.1 7.4 1.26 1.87 0.93 1.49 1.98

CoSLAM [8] 0.82 2.03 1.34 0.6 0.65 2.02 1.37 0.88 1.21
ESLAM [7] 0.71 0.7 0.52 0.57 0.55 0.58 0.72 0.63 0.63

Point-SLAM [27] 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72 0.52

Ours 0.48 0.37 0.35 0.32 0.24 0.43 0.38 0.35 0.37

Electronics 2024, 13, 3332 12 of 17

Table 3. Camera localization results (ATE RMSE [cm] ↓) in six real-world scenes using the ScanNet
dataset [29]. Bold formatting is used to emphasize the data in the table. The down arrow (↓) indicates that
a smaller indicator is better. The symbol (*) denote the results we reproduced using the corresponding
open-source codes.

Scene ID 0000 0059 0106 0169 0181 0207 Avg.

iMAP * [5] 32.2 17.3 12.0 17.4 27.9 12.7 19.42
NICE-SLAM [6] 13.3 12.8 7.8 13.2 13.9 6.2 11.2
VoxFusion * [26] 11.6 26.3 9.1 32.3 22.1 7.4 18.13

CoSLAM [8] 7.9 12.6 9.5 6.6 12.9 7.1 9.43
ESLAM [7] 7.3 8.5 7.5 6.5 9.0 5.7 7.4

Point-SLAM [27] 10.24 7.81 8.65 22.16 14.77 9.54 12.19

Ours 6.8 7.8 7.2 5.6 10.3 4.2 6.98

Table 4. Camera localization results (ATE RMSE [cm] ↓) in three real-world scenes using TUM-RGBD
[30]. Bold formatting is used to emphasize the data in the table. The down arrow (↓) indicates that a
smaller indicator is better. The symbol (*) denote the results we reproduced using the corresponding
open-source codes.

Method fr1/desk fr2/xyz fr3/office Avg.

iMAP * [5] 5.9 2.2 7.6 5.23
NICE-SLAM [6] 2.72 31 15.2 16.31
VoxFusion * [26] 3.2 1.6 25.4 10.06

CoSLAM [8] 2.88 1.85 2.91 2.55
ESLAM [7] 2.47 1.11 2.42 2.00

Point-SLAM [27] 4.34 1.31 3.48 3.04

Ours 2.11 1.32 2.48 1.97

(a) (b)

(c) (d)

Figure 6. Camera trajectories of (a) NICE-SLAM [6], (b) Co-SLAM [8], (c) ESLAM [7] and (d) our
method for scene0207 from the ScanNet dataset [29].

Electronics 2024, 13, 3332 13 of 17

4.4. Runtime and Memory Usage Analysis

We report the runtime and memory usage for the room0 scene from the Replica
dataset [28] in Table 5. The runtimes were analyzed on a desktop PC with a 3.20 GHz Intel
Core i9-12900K CPU and a single NVIDIA RTX 3090 GPU. FPS (Hz) is calculated based
on the total runtime of the system, and the number of parameters is the sum of the model
size of the scene representation and decoders. Our method has the fastest iteration time
during the mapping process. iMAP [5] uses a single MLP to represent the entire scene, so
it has constant spatial complexity. Vox-Fusion [26] reduces memory usage by lowering
voxel resolution, but it results in missed details in scene modeling. Both ESLAM [7] and
Co-SLAM [8] utilize feature compression. ESLAM [7] projects features onto axis-aligned
feature planes, leading to potential axis-aligned bias. In contrast, Co-SLAM [8] employs
hash grids to store the explicit features of sampling points. Hash storage offers certain
advantages in reducing memory usage, but it also suffers from hash conflicts, which can
lower the reconstruction quality of complex scenes. Although our method is consistent
with NICE-SLAM [6] when using tensor grids to store features, it demonstrates significantly
more advantages in terms of memory usage compared to NICE-SLAM [6]. Furthermore,
we discuss the effect of scene map size on memory usage in Figure 7. For memory usage,
both NICE-SLAM [6] and ESLAM [7] are sensitive to map size, whereas our method is not
affected by map size, making it more suitable for large-scale scenes.

Table 5. Runtime and memory usage comparison using Replica [28] room0. Bold formatting is used to
emphasize the data in the table. The up/down arrow (↑/↓) indicates that a larger/smaller indicator is
better. The symbol (*) denote the results we reproduced using the corresponding open-source codes.

Method Tracking Time Mapping Time FPS Param.
(ms/it) ↓ (ms/it) ↓ (Hz) ↑ (MB) ↓

iMAP * [5] 34.63 20.15 0.18 0.22
NICE-SLAM [6] 7.48 30.59 0.71 11.56
Vox-Fusion * [26] 11.2 52.7 1.67 1.19

Co-SLAM [8] 6.15 14.33 10.5 0.26
ESLAM [7] 7.11 20.32 5.6 6.79

Point-SLAM [27] 12.23 35.21 0.29 27.23
Ours 6.47 10.14 9.8 10.15

Figure 7. Comparison of the relationship between map size and memory usage changes. We select
some scenes from the Replica [28] and ScanNet [29] datasets for evaluation.

4.5. Ablation Study

In this section, we report a series of ablation experiments to validate our design choices.
The experimental details are as follows: (1) We did not use separate factor grids; instead,
we employed a set of factor grids to represent both scene geometry and appearance. (2) We

Electronics 2024, 13, 3332 14 of 17

eliminated the multi-level basis grids setup, setting only a single level for basis grids. (3)
We did not utilize feature integration rendering, instead continuing to employ traditional
volume rendering.

Tables 6–8 show a quantitative comparison of the aforementioned three settings with
our complete model in terms of localization and reconstruction for the Replica [28] and
ScanNet [29] datasets. Our full model has higher accuracy and better completion than
other setups. Figure 8 shows the effect of using feature integration rendering on color
rendering. When compared to our method without feature integration rendering, our
full model achieves a 60% improvement in rendering speed while maintaining rendering
quality and is even competitive for peak signal-to-noise ratio (PSNR).

Table 6. Ablation results for reconstruction in eight synthetic scenes using the Replica dataset [28].
Bold formatting is used to emphasize the data in the table. The up/down arrow (↑/↓) indicates that a
larger/smaller indicator is better.

Method Metric room0 room1 room2 office0 office1 office2 office3 office4 Avg.

Acc. ↓ 1 0.82 0.86 0.76 0.66 0.98 1.13 1.08 0.91
w/o separate Comp. ↓ 1.04 0.85 0.96 0.8 0.72 1 1.17 1.12 0.94
factor grids Comp. Ratio (%) ↑ 99.47 99.62 99.14 99.54 99.31 99.35 98.90 99.09 99.3

Depth L1 ↓ 0.92 1.13 1.22 0.75 1.20 1.17 1.53 1.31 1.22

Acc. ↓ 1.11 0.97 1.03 1.05 1.06 1.0 1.18 1.12 1.07
w/o multi-level Comp. ↓ 1.04 1 1.24 0.93 0.98 0.98 1.19 1.16 1.06

basis grids Comp. Ratio (%) ↑ 99.63 99.49 97.46 99.58 98.62 99.52 98.99 98.92 99.03
Depth L1 ↓ 0.91 1.65 2.75 1.12 1.76 1.66 1.67 1.29 1.60

Acc. ↓ 0.98 0.79 0.86 0.79 0.73 0.93 1.08 1.03 0.90
w/o feature Comp. ↓ 1.01 0.81 0.98 0.82 0.71 0.96 1.14 1.09 0.94

integration rendering Comp. Ratio (%) ↑ 99.51 99.73 98.94 99.55 99.32 99.41 98.84 99.28 99.32
Depth L1 ↓ 0.82 0.89 1.22 0.7 1.01 1.57 1.23 0.77 1.03

Ours (Complete model)

Acc. ↓ 0.98 0.76 0.84 0.76 0.59 0.90 1.06 1.0 0.86
Comp. ↓ 0.99 0.78 0.94 0.79 0.66 0.94 1.11 1.07 0.91

Comp. Ratio (%) ↑ 99.65 99.76 99.13 99.50 99.41 99.21 98.95 99.23 99.36
Depth L1 ↓ 0.84 0.76 1.04 0.68 0.90 1.24 1.07 0.61 0.89

Table 7. Ablation results (ATE RMSE [cm] ↓) for camera localization in eight synthetic scenes using
the Replica dataset [28]. Bold formatting is used to emphasize the data in the table. The down arrow
(↓) indicates that a smaller indicator is better.

Method room0 room1 room2 office0 office1 office2 office3 office4 Avg.

w/o separate 0.62 0.92 0.59 0.41 0.54 0.56 0.56 0.57 0.59factor grids

w/o multi-level 0.63 1.67 0.67 0.92 1.48 0.56 0.60 0.86 0.92basis grids

w/o feature 0.54 0.6 0.42 0.35 0.24 0.41 0.47 0.36 0.42integration rendering

Ours (Complete model) 0.48 0.37 0.35 0.32 0.24 0.43 0.38 0.35 0.37

Table 8. Ablation results (ATE RMSE [cm] ↓) for camera localization in six real-world scenes using
the ScanNet [29] dataset. Bold formatting is used to emphasize the data in the table. The down arrow
(↓) indicates that a smaller indicator is better.

Scene ID 0000 0059 0106 0169 0181 0207 Avg.

w/o separate factor grids 7.4 8.5 8.1 6.2 10.8 4.4 7.57
w/o multi-level basis grids 7.3 9.9 8.0 6.0 11.9 5.9 8.17

w/o feature integration rendering 7.3 8.5 7.6 6.4 10.8 4.5 7.51

Ours (Complete model) 6.8 7.8 7.2 5.6 10.3 4.2 6.98

Electronics 2024, 13, 3332 15 of 17

Ours (w/o feature integration rendering) Ours (Complete model) Ground Truth
PSNR: 32.20 PSNR: 32.51

Rendering FPS: 2.63 Rendering FPS: 4.23

Figure 8. Ablation results for feature integration rendering for Replica [28] room0.

5. Conclusions

In this paper, we present a novel neural implicit dense visual SLAM method. Extensive
experiments demonstrate that our approach is capable of reconstructing high-fidelity scenes
in real time. The following are the notable contributions of our method:

(1) We propose a novel scene representation method for neural implicit SLAM that
encodes both the geometric and appearance information of a scene as a combination
of the basis and coefficient factors. Compared to existing state-of-the-art methods, this
representation not only enables higher-quality scene reconstruction but also exhibits
a more stable memory growth rate when dealing with incremental reconstruction
tasks for large-scale scenes. Furthermore, by employing multi-level tensor grids
for the basis factors and a single-level tensor grid for the coefficient factors, our
method can more accurately model high-frequency detail regions within the scene.
Additionally, this representation significantly enhances camera localization accuracy,
thereby demonstrating greater robustness in large-scale scenes.

(2) In order to enhance the rendering efficiency of neural implicit SLAM, we introduce
an efficient rendering approach based on feature integration. Feature integration
rendering calculates the approximate features of rays by using a weighted summation
of the features at sampling points and then feeds these into a shallow MLP to decode
the final pixel colors. Compared to traditional volumetric rendering methods, this
rendering approach significantly reduces the number of MLP queries during the color
rendering stage, thereby improving real-time performance. Additionally, our method
does not rely on customized CUDA frameworks, offering better scalability.

(3) We conducted extensive experiments on both synthetic and real-world datasets to
validate our design choices. Our method shows competitive performance compared
to existing state-of-the-art methods in terms of 3D reconstruction, camera localization,
runtime, and memory usage. Specifically, for 3D reconstruction, we demonstrate both
qualitative and quantitative results for the Replica dataset [28] and qualitative results
for the ScanNet dataset [29]. The qualitative results indicate that our method performs
better in regions with complex details. In terms of quantitative results, our method’s
Depth L1 average outperforms other methods by 61%. For camera localization,
we conduct comprehensive quantitative evaluations across three datasets, and our
method’s ATE RMSE average improves by 75%, 46%, and 68%, respectively, compared
to existing state-of-the-art methods. We validate the effectiveness of feature integration
rendering through a series of ablation studies. In terms of color rendering, our method
achieves a 60% speedup compared to traditional volume rendering while maintaining
nearly the same PSNR. Additionally, we conduct quantitative experiments to analyze
the memory footprint of our method. As the scene map grows, the memory usage of
our method remains stable. Even though ESLAM [7] employs feature compression,
our method remains competitive in large-scale scenes.

Nonetheless, it is crucial to recognize the following limitations of our method:

(1) Our approach does not use compression storage for factor grids, which maintains
high memory efficiency for large-scale scenes but still consumes memory resources
for small-scale or object-centric scenes. Future work will explore more memory-

Electronics 2024, 13, 3332 16 of 17

efficient scene representation methods to enhance memory usage efficiency without
compromising localization accuracy and reconstruction quality.

(2) Due to the utilization of feature integration rendering, our method is prone to artifacts
in color rendering when dealing with input frames that have extreme motion blur.
In order to address this challenge, future work will focus on designing a deblurring
process for the neural implicit SLAM framework. This process will perform blur
detection and processing operations on each input frame, ensuring consistency of
scene content across multi-view inputs. Consequently, this will enhance the robustness
of our neural implicit SLAM method in the presence of extreme motion blur situations.

Author Contributions: Conceptualization, W.W. and J.W.; Methodology, W.W. and J.W.; Software,
W.W. and J.W.; Validation, W.W. and J.W.; Formal Analysis, W.W., J.W. and P.S.; Investigation, W.W.
and J.W.; Resources, X.X. and J.L.; Data Curation, J.W.; Writing—Original Draft Preparation, W.W.
and J.W.; Writing—Review and Editing, J.W., X.X. and P.S.; Visualization, W.W.; Supervision, J.L. and
P.S.; Project Administration, P.S.; Funding Acquisition, P.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China, grant num-
ber 62262040.

Data Availability Statement: The data that support the findings of this study are openly available at
Replica, ScanNet and TUM-RGBD were accessed on 9 November 2023.

Acknowledgments: I am deeply grateful to my supervisor for their indispensable guidance and
support during this research. I also appreciate everyone who contributed to this study in any capacity.
The authors would like to thank the anonymous reviewers for their insightful comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot.

2015, 31, 1147–1163. [CrossRef]
2. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot.

2017, 33, 1255–1262. [CrossRef]
3. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. Orb-slam3: An accurate open-source library for visual,

visual–inertial, and multimap slam. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]
4. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance

fields for view synthesis. Commun. ACM 2021, 65, 99–106. [CrossRef]
5. Sucar, E.; Liu, S.; Ortiz, J.; Davison, A.J. iMAP: Implicit mapping and positioning in real-time. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6229–6238.
6. Zhu, Z.; Peng, S.; Larsson, V.; Xu, W.; Bao, H.; Cui, Z.; Oswald, M.R.; Pollefeys, M. Nice-slam: Neural implicit scalable encoding

for slam. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 12786–12796.

7. Johari, M.M.; Carta, C.; Fleuret, F. Eslam: Efficient dense slam system based on hybrid representation of signed distance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023;
pp. 17408–17419.

8. Wang, H.; Wang, J.; Agapito, L. Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural Real-Time SLAM. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023;
pp. 13293–13302.

9. Chen, A.; Xu, Z.; Geiger, A.; Yu, J.; Su, H. Tensorf: Tensorial radiance fields. In Proceedings of the European Conference on
Computer Vision, Tel Aviv, Israel, 23–27 June 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 333–350.

10. Chen, A.; Xu, Z.; Wei, X.; Tang, S.; Su, H.; Geiger, A. Factor fields: A unified framework for neural fields and beyond. arXiv 2023,
arXiv:2302.01226.

11. Han, K.; Xiang, W.; Yu, L. Volume Feature Rendering for Fast Neural Radiance Field Reconstruction. arXiv 2023, arXiv:2305.17916.
12. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007 6th IEEE and ACM

International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; IEEE: Piscataway, NJ, USA,
2007; pp. 225–234.

13. Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time. In Proceedings of the
2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011;
pp. 2320–2327.

https://github.com/facebookresearch/Replica-Dataset
http://www.scan-net.org/
https://cvg.cit.tum.de/data/datasets/rgbd-dataset
http://doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.1145/3503250

Electronics 2024, 13, 3332 17 of 17

14. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A.
Kinectfusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on
Mixed and Augmented Eeality, Basel, Switzerland, 26–29 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 127–136.

15. Schops, T.; Sattler, T.; Pollefeys, M. Bad slam: Bundle adjusted direct rgb-d slam. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 134–144.

16. Bloesch, M.; Czarnowski, J.; Clark, R.; Leutenegger, S.; Davison, A.J. Codeslam—Learning a compact, optimisable representation
for dense visual slam. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–23 June 2018; pp. 2560–2568.

17. Teed, Z.; Deng, J. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras. Adv. Neural Inf. Process. Syst. 2021,
34, 16558–16569.

18. Sucar, E.; Wada, K.; Davison, A. NodeSLAM: Neural object descriptors for multi-view shape reconstruction. In Proceedings of
the 2020 International Conference on 3D Vision (3DV), Fukuoka, Japan, 25–28 November 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 949–958.

19. Li, R.; Wang, S.; Gu, D. DeepSLAM: A robust monocular SLAM system with unsupervised deep learning. IEEE Trans. Ind.
Electron. 2020, 68, 3577–3587. [CrossRef]

20. Takikawa, T.; Litalien, J.; Yin, K.; Kreis, K.; Loop, C.; Nowrouzezahrai, D.; Jacobson, A.; McGuire, M.; Fidler, S. Neural geometric
level of detail: Real-time rendering with implicit 3d shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11358–11367.

21. Yu, A.; Li, R.; Tancik, M.; Li, H.; Ng, R.; Kanazawa, A. Plenoctrees for real-time rendering of neural radiance fields. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 5752–5761.

22. Sun, C.; Sun, M.; Chen, H.T. Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 5459–5469.

23. Li, H.; Yang, X.; Zhai, H.; Liu, Y.; Bao, H.; Zhang, G. Vox-surf: Voxel-based implicit surface representation. IEEE Trans. Vis.
Comput. Graph. 2022, 30, 1743–1755. [CrossRef] [PubMed]

24. Chan, E.R.; Lin, C.Z.; Chan, M.A.; Nagano, K.; Pan, B.; De Mello, S.; Gallo, O.; Guibas, L.J.; Tremblay, J.; Khamis, S.; et al. Efficient
geometry-aware 3d generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16123–16133.

25. Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph. (TOG) 2022, 41, 1–15. [CrossRef]

26. Yang, X.; Li, H.; Zhai, H.; Ming, Y.; Liu, Y.; Zhang, G. Vox-Fusion: Dense tracking and mapping with voxel-based neural implicit
representation. In Proceedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Singapore,
17–21 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 499–507.

27. Sandström, E.; Li, Y.; Van Gool, L.; Oswald, M.R. Point-slam: Dense neural point cloud-based slam. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 18433–18444.

28. Straub, J.; Whelan, T.; Ma, L.; Chen, Y.; Wijmans, E.; Green, S.; Engel, J.J.; Mur-Artal, R.; Ren, C.; Verma, S.; et al. The Replica
dataset: A digital replica of indoor spaces. arXiv 2019, arXiv:1906.05797.

29. Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 5828–5839.

30. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal,
7–12 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 573–580.

31. Dai, A.; Nießner, M.; Zollhöfer, M.; Izadi, S.; Theobalt, C. Bundlefusion: Real-time globally consistent 3d reconstruction using
on-the-fly surface reintegration. ACM Trans. Graph. (ToG) 2017, 36, 1. [CrossRef]

32. Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. In Seminal Graphics: Pioneering
Efforts that Shaped the Field; Association for Computing Machinery: New York, NY, USA, 1998; pp. 347–353.

33. Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. Meshlab: An open-source mesh processing tool.
In Proceedings of the Eurographics Italian Chapter Conference, Salerno, Italy, 2–4 July 2008; Volume 2008, pp. 129–136.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIE.2020.2982096
http://dx.doi.org/10.1109/TVCG.2022.3225844
http://www.ncbi.nlm.nih.gov/pubmed/36459607
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3072959.3054739

	Introduction
	Related Work
	Traditional Dense Visual SLAM
	Neural Implicit Representations
	Neural Implicit Dense Visual SLAM

	Method
	Neural Factors Representation
	Feature Integration Rendering
	Training
	Loss Functions
	Tracking
	Mapping

	Experiments
	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics
	Hyperparameters
	Post-Processing

	Reconstruction Evaluation
	Camera Localization Evaluation
	Runtime and Memory Usage Analysis
	Ablation Study

	Conclusions
	References

