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Abstract: Streaming data are present all around us. From traditional radio systems streaming audio
to today’s connected end-user devices constantly sending information or accessing services, data
are flowing constantly between nodes across various networks. The demand for appropriate outlier
detection (OD) methods in the fields of fault detection, special events detection, and malicious
activities detection and prevention is not only persistent over time but increasing, especially with
the recent developments in Telecommunication systems such as Fifth Generation (5G) networks
facilitating the expansion of the Internet of Things (IoT). The process of selecting a computationally
efficient OD method, adapted for a specific field and accounting for the existence of empirical data,
or lack thereof, is non-trivial. This paper presents a thorough survey of OD methods, categorized
by the applications they are implemented in, the basic assumptions that they use according to the
characteristics of the streaming data, and a summary of the emerging challenges, such as the evolving
structure and nature of the data and their dimensionality and temporality. A categorization of
commonly used datasets in the context of streaming data is produced to aid data source identification
for researchers in this field. Based on this, guidelines for OD method selection are defined, which
consider flexibility and sample size requirements and facilitate the design of such algorithms in
Telecommunications and other industries.

Keywords: outlier detection; streaming data; 5G; IoT; computational complexity; machine learning;
deep learning

1. Introduction

In the real world, various technologies and applications generate large volumes of
timestamped data at high speed. These streams of information, also known as streaming
data, are generated by industrial processes [1], Internet of Things (IoT) devices in the sports
and health industries, sensors monitoring the environment [2], crops in the agricultural
sector [3], autonomous systems sensors such as self-driving cars in the transport indus-
try, telecommunication networks and sensors [4], payments and trading systems in the
financial sector [5,6], and many more fields. Outlier detection (OD) methods consider
the sudden changes, anomalies, rare occurrences, and exceptions in radio frequency (RF)
samples or user behavior data and use them to improve the resource allocation or system
control functions of wireless communication networks in real-time [7]. Such applications
include functions related to resource management, orchestration and customization in
wireless networks, for example, covariance-based detection of inaccurate RF measurements
in spectrum sensing and countering the falsification of local measurements by malicious
nodes in cognitive radio (CR) networks, histogram-based analysis of the location-based
measurement accuracy of Wireless Sensor Networks (WSNs), deep learning (DL)-based
key performance indicator (KPI) prediction for user profile classification, clustering of
user data records for anomalous events prediction in mobile networks [8], traffic classifi-
cation in IoT networks [9], mean likelihood-based prediction of process-specific data in
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industrial IoT mobile networks, and machine learning (ML)-based traffic demand and
user behavior prediction for proactive radio resource management in fifth-generation (5G)
mobile networks.

The goal of this paper is to conduct a systematic review of the literature on OD
in streaming data in general, with a specific focus on applications in the information
technology (IT) and telecommunications industries. Additionally, it provides researchers
with an overview of the detection methods across papers, as well as their key assumptions,
and links them to the type of outlier they are best suited for based on their assumptions and
their application. Finally, it concludes with a mapping of the advantages and disadvantages
of various methods and the list of publicly available datasets used in the literature for
training, testing, and performance benchmarking.

1.1. Literature Review Strategy

The systematic literature review strategy described in Figure 1 was used for this
article on OD in streaming data with a specific focus on applications in the telecommunica-
tions sector and other industries. While searching for the relevant literature, specialized
databases such as Google Scholar, Institute of the Electrical and Electronic Engineers (IEEE)
journals, and Science Direct were used. The keywords “outlier detection”, “anomaly detec-
tion”, “streaming data”, “computational efficiency”, “high-dimensionality”, “concepts”,
and “methods” were employed in the initial search. Then, surveys or literature review
papers were filtered to those published within the last 5 years, while papers related to
applications, state-of-the-art methods, and improvement were only filtered with regards
to their relevance while the year of publication was not considered. The output was then
reviewed by reading the introduction, contributions, and conclusions of the papers to
identify which ones were subject to the relevant criteria of streaming data, computational
efficiency, and high-dimensional data, or applications in telecommunications and other
industries. With this approach, the relevant papers were selected and then read to extract
information on the methods used, the areas of application, and the challenges described.
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1.2. Structure of This Paper

The rest of this paper is organized as indicated in Figure 2. Section 2 describes the
characteristics of streaming data and outliers and introduces the problem of their detection,
as well as how it improves in related surveys, and summarizes the contributions of this
work. Then, Section 3 surveys the broad categories of OD, including statistics-based OD,
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ML-based OD, and DL-based OD, i.e., methods that include the training of neural networks
(NNs). The applications of the OD methods are summarized in Section 4. Consequently,
Sections 5 and 6 describe the types of outliers and the assumptions that are made for the
OD, as well as the performance metrics, respectively. Section 7 provides the advantages
and disadvantages of OD. The key findings of this survey and their implications for future
work in OD algorithm design and development are summarized in Section 8. This paper is
concluded in Section 9.
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1.3. Contributions

This paper surveys OD in streaming data in a holistic manner, accounting for all the
limitations encountered in various related surveys, and facilitates the future development
of OD methods by providing the following contributions:

• A summary of the key challenges related to OD in streaming data with a focus on data
processing approaches, computational complexity, and the optimal types of detectable
outliers. This will facilitate the choice of the best method for specific detection problems
based on a particular set of assumptions.

• An overview of the advantages and disadvantages of OD methods for streaming data.
The methods are organized into broader categories (statistics, ML, and DL) to facilitate
the selection of the most appropriate method depending on the detection challenges,
i.e., the available data, sample size requirements, the method’s capability to process
the temporal changes in the data, and its computational complexity.

• A summary of the applications of OD methods in the telecommunications industry
and other sectors is given, as well as datasets commonly used for training, testing, and
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benchmarking in the literature. This will aid researchers in identifying the right data
sources for developing and testing new OD methods in different fields.

2. Basics of Streaming Data, Outlier Detection, and Related Surveys
2.1. Streaming Data and Processing

Streaming data differ from data at rest by the fact that they flow continuously, without
defined boundaries, and can change over time. In essence, streaming data are unbound
and dynamic. While the unbound characteristic is straightforward and easy to understand,
it is important to clarify what a dynamic data stream means. Streaming data are not
always predictable, and the number of features (or classes) within the data may change
over time. For instance, a new feature may appear in the data, or an existing feature may
vanish. Classes within an existing feature might increase or decrease over time. These
appearances and disappearances of classes are known as concept evolution [10]. Streaming
data distributions can also change over time, and this is known as concept drift [11]. Both
concept drift and concept evolution describe the dynamic characteristic of streaming data.
This particularity of streaming data poses challenges to the use of data processing and
analytic methods, designed around finite data at rest (i.e., the complete dataset stored
securely), without accounting for streaming data variability. Additionally, the flow rate
of streaming data has been both increasing and varied due to continuously expanding
data volume and velocity (number of events per second), influenced by advancements in
data storage and transmission throughput in the IT and telecommunications industries,
as well as the variable data production rate by various sources. Moreover, the unbound
nature of streaming data poses computational challenges to computer systems, which are
naturally limited in storage space, buffering capacity, and processing power. With all these
considerations in mind and OD already being complex enough with static data, streaming
data pose even more challenges. It is, therefore, imperative to extend existing OD methods
to streaming data or develop new detection methods and data management approaches.
Such methods should consider the nature of streaming data, which is dynamic as opposed
to data at rest and therefore affects the data processing mechanism used in the context of
streaming data. The common approach for data pre-processing is to split the data stream
into windows and apply existing or adapted detection methods to each of them. Questions
related to the determination of the window size and boundary have led to the definition of
several windowing mechanisms:

• Time-based windowing—timeslots to delimit windows and data that arrive within
a particular timeframe is then considered as a complete subset of the data stream.
This subset is processed through analytics and aggregations performed within its
boundaries. Given any data stream generating data over time t, the stream can be
divided into time windows of time length c starting from the time t0. The window
size c is generally fixed and user-defined in most of the literature based on empirical
data, but it can also be dynamic via a systematic approach. This mechanism allows
precise control over time intervals and is suitable for time-sensitive data, but it is not
adaptable to variable data rates and requires time synchronization [12–14].

• Count-based windowing—this mechanism is based on the number of observations
received rather than the duration of the windows. The number of observations n is set
as the count threshold based on empirical data and a window is considered completed
every time the number of observations since the last window reaches the user-defined
threshold [15,16]. This approach is suitable for a data stream with a known pattern
and from which analysis is sensitive to the sample size. This mechanism is simple to
implement and is effective for streams with constant event rates but is inflexible in
handling time variability. It is also unsuitable for time-sensitive analysis. It can be
used for detecting peaks or for frequency estimation in a data stream.

• Landmark-based windowing—In this case, data drive the way the window is selected.
This method is used, for instance, in the field of network data analysis for security [17],
where streams are segmented by flow and analyzed for intrusion detection. Traffic
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flows are identified within communication sessions and used as complete sliding
windows. The advantages of this mechanism are that it allows for flexible start points
and is suitable for event-triggered analysis. However, it has increased complexity in
managing dynamic window boundaries and its window size is potentially unbounded.

The following window types for application in the windowing mechanisms presented
above can be found in the literature:

• A sliding window [18–20] is used to delete all data and refresh the window slide with
the most recent data, for which window size is fixed, assuming that all slides have
equal importance. It can be time-based or count-based.

# A special type of count-based sliding window is the eviction window for which
a fixed number of data points overlap between the slides and observations are
refreshed based on an eviction policy.

• A damped window [21–23] is based on the assumption that recent data are more
important than older data and operates by assigning a higher weight to the most
recent data [24].

• A landmark window [23], also known as the time fading window approach, considers
data between a fixed point in time in the future called landmark and the current time.

# Session windows are special types of landmarks for which the boundaries of
the window are defined by the session start and end points.

• A tumbling window, for which the slide distance d is equal to its size s, indicative
of non-overlapping consecutive windows, s = d. This presents the advantage of
performing a small cross-sectional analysis on each window.

• Hopping using a fixed window size and a fixed-length step between windows. When
the jump length is shorter than the window size, an overlap is maintained between
windows; otherwise, there will be gaps between windows and potentially missed
data points.

Table 1 presents a comparison of the window types according to the mechanisms they
are used in and the way in which their boundaries are defined. In this Table, streaming
data window types are grouped by mechanism and classified by the following five criteria:

# Boundary: indicating if the windows’ starting and ending points are fixed or variable.
# Overlap: indicating if a data overlap is observed while moving from one window

to another.
# Number of passes: indicating if an observation is likely to be maintained across

multiple windows.
# Sequence tracking: indicating if the window mechanism requires keeping track of the

window sequence.
# Historical data tracking: indicative of whether the window type needs to keep track

of information on previous windows such as session identity number.

The Table shows that except for the tumbling windows, all other mechanisms allow
overlap between windows, making them memory-intensive. Additionally, any computation
performed will be executed more than once on the data (number of passes) when windows
overlap, leading to higher computational complexity. Moreover, to implement a particular
window mechanism, it is required to keep track of either the time or the data points of the
previous window (i.e., the historical data) to define the following window, which adds
to the computational complexity when processing streaming data. When it comes to the
landmark-type window, it is theoretically undetermined regardless of whether there is
an overlap or historical data tracking, and regardless of the number of passes. This is
because the landmark point is determined on a case-by-case basis unless it is applied for the
whole session (i.e., the landmark is defined based on the activity performed in the specific
application), as described above. Consequently, this is the only window type with dynamic
boundaries. Therefore, it may be used for applications that require lower computational
complexity, while time tracking is still available.
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Table 1. Window type comparison according to the mechanisms they are used in and the way in
which their boundaries are defined.

Type Mechanism Boundaries Overlap Number of
Passes

Sequence
Tracking

Historical Data
Tracking

Tumbling Time-based Fixed No One No No

Damped Time-based Fixed Yes More than one Yes Yes

Hopping Time-based Fixed Yes More than one No Yes

Sliding Time-based Fixed Yes More than one Yes No

Sliding
(Eviction) Count-based Fixed Yes More than one No Yes

Landmark Landmark-based Dynamic Undetermined Undetermined Yes Undetermined

Landmark
(Session) Activity-based Dynamic Yes More than one No Yes

Throughout this paper, computational complexity will be expressed using the notation
O, which will generally be represented as a function of the dataset size n and dimension k,
or other parameters to be defined when needed.

2.2. Data Dimensionality

Dimensionality is an additional component of streaming data that may complexify
its processing. Some papers classify data as low and high-dimensional spaces depending
on the number of features or dimensions d versus the number of observations n. The
size of a dataset corresponds to the tuple (n × d), representing the size of the dataset. A
high-dimensional dataset is defined as one for which the number of features d is greater
or equal to the number of observations n, d ≥ n [25]. Some papers consider a dataset
as high-dimensional if it contains 10 or more features [26]. High-dimensional data are
often mentioned in the literature dealing with imaging or pattern analysis such as in the
field of mass spectrometry [27], geospatial imagery analysis [28], and more. Given the
small amount of data used, a challenge of high-dimensional data is the reproducibility [29]
of the results. Through this paper, we will classify any dataset with 1–4 features as low-
dimensional, 5–9 as medium-dimensional, and any with 10 or more features as high-
dimensional. As indicated in the literature, low-dimensional datasets comprise fewer than
10 dimensions [30]. In some cases, especially those related to distance-based and most
statistical-based methods, good performance has been reported for dimensionality d ≤ 5.
A further explanation for this classification is given in Section 7.1.

2.3. Outlier Characteristics and Detection

An outlier is commonly defined as an observation that deviates greatly from the rest
of the data distribution, leading to the hypothesis that it does not belong to it [31]. Three
different types of outliers are mentioned in the literature: global, contextual, and collective
outliers [32–34]. An outlier can be of one or more types [35] depending on the dataset.
Global outliers, also known as point outliers, are detected by analyzing the entire data
space to identify observations that deviate from the normal distribution of the data. These
outliers represent one or more points that are considered anomalous within the context of
the entire dataset, considering only its spatial distribution. Local outliers represent one or
more static outliers within a data subset with only spatial awareness. Contextual outliers
use both the context of the observation (e.g., time, date, and location) and its behavior
(e.g., the actual information measured) to determine their outlierness. In this case, the
spatiotemporal context plays a role in discriminating data that otherwise would appear
normal using the global detection approach. This category represents one or more dynamic
outliers within a subset determined by a specific time or space context. A further group
of contextual outliers are the point outliers in temporal data and subsequent outliers [36].
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Collective outliers try to capture the concepts of frequency of occurrence and group outliers
from within a dataset. A group of outlying observations with spatial proximity [37], which
are also spread across a few time intervals [38] within the same dataset, are considered
collective outliers. This type includes more than one (both static and dynamic) outlier
generated by the same process and is an effect of an underlying problem that generates
abnormal observations. They are observed in systematic human errors or machinery faults
in industrial processes, which generate erroneous values.

OD is the process of identifying deviation from within a dataset produced by the
same data generation mechanism. Any random error or data generated by an interfering
process different from the observed data can be classified as noise. Noisy data carry no
meaningful information in the context of analysis and should be filtered out of the observed
data before performing any analysis, while outliers need to be dealt with more cautiously
depending on the analytic requirements and may not always be removed. Furthermore,
prior knowledge [39] of the data’s behavior could be an asset in determining if new
observations are consistent with previously observed data or if they are candidate outliers.
This prior knowledge of the data, also known as “a priori”, is used as the ground truth,
which in temporal data constitutes frequent patterns [40] versus surprising patterns [41,42]
represented by outliers over time. Several references are related to anomaly detection and
this term is sometimes used interchangeably with OD. However, it is important to make a
slight differentiation between the two terms. Although the process for detecting anomalies
is similar to that for OD [43,44], not all outliers are anomalies. The key difference is that
some outliers are simply rare but valid observations, while anomalies typically indicate
invalid, erroneous, or failure-related data. Consequently, the mechanisms for handling
them differ. Anomalies are generally suppressed or flagged for immediate attention,
whereas outliers may be addressed through different approaches after detection. Since this
paper focuses solely on the detection phase and does not address post-detection handling,
“anomaly detection” should be understood to refer to OD.

2.4. Related Surveys

This paper presents a survey of OD in streaming data using the most common statis-
tical, ML, and DL methods found in the literature, including their major applications in
various industries, their fitness for the OD task based on various characteristics such as
efficiency, computational performance, data type, and data dimensionality, and the type of
outlier they are most likely to detect. Several preceding OD surveys are summarized here
(Table 2) in terms of their scope, advantages, and limitations.

Table 2. Comparison of relevant surveys on OD methods and their applications.

Survey Scope of Reference
Survey Advantages Limitations Our Contributions

Duraj, A., et.
al. [45]

Experimental study
comparing the

performance of a few
statistical algorithms for

OD.

Conducted a detailed
performance analysis allowing
the comparison of methods by
OD count and algorithm time.

Analysis is limited to
univariate data

analysis.

Our survey covers OD in
multivariate data.

Fernandes,
G., et al. [46]

A comprehensive survey
on network anomaly

detection.

Covers 5 domains of network
anomaly detection.

Applications are
limited to the security

perspective and do not
account for events or

fault detection.

Our survey provides a
broader coverage of

detection by outlier types
and applications on various

types of outliers by
industry.
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Table 2. Cont.

Survey Scope of Reference
Survey Advantages Limitations Our Contributions

Dwivedi,
R.K., et. al.

[47]

Outlier detection
strategies in WSNs.

Covers most OD methods in
detail and proposes a

structured classification of
outlier source by noise/error,
malicious attack, or specific

events.

Does not provide
guidance on OD

method selection by
problem type.

Our survey provides OD
method selection guidelines,
based on streaming data

characteristics and
detection tasks.

Dwivedi,
R.K., et. al.

[47]

Survey of Machine
learning-based OD
methods in WSNs.

Detailed review of ML
methods and their application

for OD in WSNs.
Limited to ML Methods

Our survey covers a
broader range of

methods including
statistical-, ML-, and
DL-based methods.

Wang, H., et.
al. [48]

Survey of OD methods
proposed between

2000–2016.

Provides an extensive analysis
of most methods, tools,

datasets, and performance
metrics used in the literature.

Slightly covers DL
methods and does not

cover applications.

Our survey provides a
summary of the

applications and covers
recent DL methods

including state-of-the-art
transformers.

Habeeb, R.
A. A., et al.

[49]

Survey of real-time
anomaly detection in Big

Data.

Provides a detailed taxonomy
for classifying studies

performing anomaly detection
in Big Data by methods used,
applications, technology, and

type of outliers.

Does not cover the
computational

complexity of the
method in detail. Does

not cover the
advantages and

disadvantages of
methods by streaming

data challenge.

Our survey categorizes
the computational

complexity by method.

Samara,
M.A., et. al.

[50]

Survey of OD in IoT
networks

Provides a summary of
challenges of OD in IoT.

Applications are
limited to IoT

networks.

Our survey covers a
wider range of

Telecommunications and
industrial applications.

Gaddam, A.,
et. al. [51]

Fault Detection in IoT
networks.

Provides a methodology for
sensor faults determination in

IoT using various methods.

Applications are
limited to IoT fault
detection. Does not

cover concept
evolution cases.

Our survey outlines OD
methods for handling

concept drift or evolution in
data streams.

Souiden, I.,
et. al. [52]

OD in high-dimensional
data.

Developed 2 taxonomies of
OD methods in

high-dimensional data.

Does not provide
applications per OD

method or
recommendations on

method selection.

Our survey categorizes
OD methods by application
and provides several OD
selection recommendations
based on the data structure.

Even though these surveys provide a helpful overview of OD in select fields, none of
them combine the categorization of OD methods, key assumptions in relation to detection
according to streaming data challenges, advantages, and disadvantages, computational
complexity, evaluation metrics, and review of their use by application. These gaps are
addressed in this paper as indicated in the Contributions column of Table 2.

3. Methods for OD
3.1. Statistical-Based Methods

The statistical-based OD (SBOD) approach is one of the traditional OD methods and
assumes that every dataset has an underlying distribution and the probability of each
observation of belonging or not to the distribution can be computed and tested. There are
two major approaches to SBOD, namely the parametric and non-parametric methods.
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Parametric methods are grouped according to their applicability to data by their
dimensionality. We distinguish here between univariate and multi-variate data. A summary
of the most important parametric methods is given as follows:

• Gaussian-based OD (GBOD) is one of the most frequently used parametric methods
that assumes normally distributed data around its mean with a variance σ2, denoted
as N

(
, σ2). Among the GBOD applied to univariate distributions, the Z-score method

gives a measure distance to the mean of each observation by standard deviation [53].
The standard deviation (SD) method is similar to Z-score, but it is the raw untrans-
formed data that are used. Further, the extreme studentized deviate (ESD) method,
also called Grubbs’ test [54], assumes near normality and removes a user-defined num-
ber of outliers n from a data set X by conducting a series of tests T that identify each
point with the maximum deviation from the mean while removing them iteratively
from the data, i.e., Ti =

max{|x−xi |}
σi

, where x ∈ X, i = 1, . . . n.
• These methods apply to a univariate distribution centered around their mean and

for which normal data lie within a standard deviation of k from the mean, i.e., ± kσ.
Gaussian methods are more suitable for global OD and are sensitive to extreme values
as they use the mean and the standard deviation [55] in their detection process. They
are not designed for temporal/sequential dependency and perform best on univariate
numerical data with large sample sizes [56]. Popular variants of ESD are generalized
ESD (GESD), online sequential ESD [54], and seasonal hybrid ESD (SHESD) [57,58],
which are robust for data with a high percentage of outliers. Two major drawbacks
of ESD are that the outlier threshold is user-defined, and that its iterative detection
approach will make it too slow for time-sensitive detection in streaming data.

• The Boxplot-based (BPOD) method, also known as Tukey’s method, was proposed in
1977 [59] and leverages the Boxplot to detect extreme values at both whiskers [60–62].
It uses the median as the central tendency measure and the inter-quartile range (IQR)
to measure the dispersion of the data and is more suitable for univariate symmetric
distributions [62].

• The Median Absolute Deviation (MAD) is another method based on the median that
uses, as a scale estimator, the overall median Me of all observations’ deviation to the
median of the distribution, as follows: Me = median ∨ xi − median(x)∨, i = 1, 2, . . .,
n, where xi is the observation number i. A point will be classified as an outlier if it
is c ∗ Me distance away from the distribution’s median, denoted as dian(x)± c ∗ Me,
with c higher than 2, 2.5, or 3. MAD assumes that the dataset has a symmetric
distribution [63]. Both BPOD and MAD methods are based on robust statistics, assume
a symmetric distribution of the data, and are less sensitive to outliers when compared
to the Z-score and the SD-based methods. Their efficiency on a Gaussian distribution,
also known as Gaussian efficiency [63], are 37% for MAD and up to 82% for BPOD
based on the IQR. This indicates that unless the distribution is preliminary known to
be skewed, its skewness is to be validated.

• Regression-based OD (RBOD) is another commonly used parametric method that
fits a regression model to the data, estimates the residuals, and flags observations
with larger residuals as outliers [64]. This method is suitable for OD on multivariate
data streams within the sub-space of a sliding window, and it detects outliers in the
context of a dependency between univariates while completely ignoring uncorrelated
dimensions. Additionally, in real-world data, regression assumptions, i.e., the linearity
of the relationship between univariates, the independence and non-multicollinearity of
univariates, and the normality and homoscedasticity of the residuals, generally do not
hold, making it challenging to use data with no prior information on the distribution.
RBOD is suitable for contextual OD and can be used for global OD if all dimensions
are considered in the regression model.

• Copula-based OD (COPOD) is another method based on the concept of copulas first de-
fined by Sklar (1959) [65] that focuses on capturing the correlation between univariates
of multivariate distributions with continuous marginals. The copula theorem stipu-
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lates in simple terms that for any multivariate random distribution, a joint distribution
function can be derived as a combination of the hidden link between the marginal
distributions, called copula, and the actual marginal distributions [66]. This separation
allows analysis of the correlation between the distributions without a priori informa-
tion about the actual distribution of the marginals. Another important component of
this theorem is that if the random variables are continuous, then the copula is unique,
which means this can be used to uniquely represent the cumulative distribution of
multivariate random variables in the interval [0, 1]. The major families of copulas are
independence copulas, applicable when the marginals are independent of each other,
elliptical copulas based on standard distributions such as the Gaussian or Student-T,
and Archimedean copulas, popular in representing multivariate distributions in the
real world for their ability to model lower tail dependency (Clayton copula), asymmet-
ric tail dependency (Gumbel copula), or symmetric with both negative and positive
dependencies (Frank copula). These copulas use one or more parameters to express
the correlation between marginals. A nonparametric family of copulas, known as
empirical copulas, are used in studies for OD [67,68], where no assumption on the
dependency function is made but instead the data are used to construct such a func-
tion. An advantage of using this method is that it may be used without making any
prior assumption of the marginal distributions [69] and is applicable to the analysis of
heavy-tailed non-linear dependencies [70]. Their applications related to OD have been
explored in the field of dimensionality reduction, synthetic data generation, or signal
denoising by baselining and decoupling [71,72]. A drawback of the copula is that
it represents only the dependence between the marginals and infers no information
about them. Additionally, selecting the appropriate copula distribution to use for data
representation is non-trivial, hence [69] proposes an unsupervised copula selection
algorithm for OD. COPOD is suitable for contextual outliers as the outlierness is
determined in the context of the inherent link between the univariates.

• The Gaussian Mixture Model (GMM) is a weighted multivariate Gaussian model,
which assumes that any multivariate distribution is a weighted combination of its uni-
variate marginal distributions that all follow a Gaussian distribution [73]. This model
relies on Expectation Maximization (EM), which is an iterative algorithm that first
estimates the log likelihood of any data point belonging to a prior distribution [74] and
then uses the maximum likelihood estimator to find the optimum log likelihood [75]
under the assumption that the posterior distribution is known. Major challenges of
the GMM models in detecting outliers in streaming data are reflected in their time
greediness and requirement for multiple passes on the data to estimate the model.
Additionally, the model requires user-defined parameters for its initialization as well
as for the training phase. It is therefore suitable for multidimensional numeric data
streams comprising historical data, from which the GMM parameters can be initialized
and a prior distribution constructed. In this manner, a distribution can be learned from
a live data stream before applying the OD on new data once the model is initialized.
Since GMM-OD detects outliers by constructing a joint distribution and estimating the
likelihood of belonging of each point to this distribution, it is very suitable for OD in
multimodal distributions. These outliers are then considered as contextual because
their outlierness is subject to the degree to which they are associated with the mixture
model. It can be used for global OD as well.

Non-parametric methods are developed to overcome the limitations of the parametric
approach when the distribution is not normal (skewed) or when the data are nominal or
ordinal [76]. These methods are also known as distribution-free and are sometimes the
only options when the normal assumption of parametric methods does not hold. Several
non-parametric methods are used for detecting outliers in data. The most common ones
are the histogram-based and kernel-based methods.

• Histogram-based OD (HBOD) relies on the frequency of a continuous data distribu-
tion to compute a histogram of each continuous feature or a relative histogram of the
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frequency of all categories for each categorical feature in any multivariate distribu-
tion [77]. The approach for building a histogram h of a feature f of a dataset with n
observations starts with values ordering and the definition of the number of bins k that
will be used to build the histogram. Then, the data are grouped into the same number
of ordered observations n

k , which are then represented. The shape of the distribution
is impacted by the histogram bin width selection, which determines the density of
the histogram, i.e., the bins’ width is inversely proportionate to the density. The bin
width can either be fixed or dynamic and the latter is recommended [75] for real-time
data if the distribution is unknown and there are peaks or periods without data, which
would result in gaps in the histogram if a fixed bin is used. The author points out that
dynamic bin selection is less sensitive to such extremes or to outliers.

• The kernel-based OD (KBOD) method was introduced in 2007 [78] and is based on the
identification of the density of points around each point of a dataset in an Euclidean
space using the kernel density estimator (KDE) as the nonparametric density function
and as the basis to mark an observation as an outlier. KBOD assumes non-negative,
symmetrical, and normally distributed data. The kernel density is used in combination
with the reachability distance estimator and the local density estimates (LDEs) of all
neighbors of an observation, from which the local density factor (LDF), a continuous
measurement of the risk of outlierness, is calculated. The authors of [78] report greater
performance of KBOD at detecting local outliers over other methods such as the local
outlier factor (LOF) and local correlation integral (LOCI). One of the challenges of
KBOD is the impossibility of detecting outliers in multimodal distributions, as a point
considered normal in one of the dimensions would be marked as an outlier in other
sub-distributions of the dataset. KDE relies on the nearest neighbors [79] to determine
a point density as opposed to the LOF which uses the full space. This makes KBOD
a good candidate for contextual outliers, even though it can detect global outliers
as well.

3.2. ML-Based Methods

A summary of the most prominent ML-based OD methods is given as follows:

• The distance-based OD (DBOD) method is a supervised ML method that leverages
the spatial distribution of points in the space S and assumes that in an n-dimensional
dataset, a distance d can be calculated between the observations. It uses distance
metrics such as the Euclidean, Mahalanobis, and the cosine similarity or the Manhattan
distance. The basic assumption of proximity-based methods is that similarity is
defined by spatial closeness and the higher the dissimilarity measure or distance,
the more likely the observation is an outlier. Any point in the space S is therefore
considered normal if it has at least k neighbours at a maximum distance d. Any point
not meeting these criteria is a candidate outlier to the rest of the dataset. Detection
performance depends on user-defined parameters, distance metric selection, and
the dataset. This method makes no prior distribution assumption but assumes time
invariance. Additionally, DBOD performance suffers in high-dimensional data due to
its reliance on the distance metric, the limit of which tends to zero in medium-to-higher
dimensions (k ≥ 5). This is also known as the curse of dimensionality. Its complexity
O(·) is a quadratic of the dataset size n [80] and the number of dimensions k and can be
expressed as O(n ∗ log(n) ∗ k) [81] or O

(
n2 ∗ k

)
in the worst case. Several innovative

approaches were developed to adapt to these challenges by tackling computational
cost and execution time [82,83], using simple random subsampling (SRS) prior to OD,
reducing the dimensionality and estimating a probability density function over the
data [84]. The triangle OD (TOD) [83] uses geometric reasoning based on a dissimilarity
matrix on the distance to a collection of neighbors to select the decision thresholds.
Context-aware distance (CaD) [85] is used for trajectory description in video analysis.

• Density-based OD (DSBOD) is an unsupervised ML method that considers the local
neighborhood density of observations and calculates the degree of a tuple p in the
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d-dimensional dataset of being an outlier relative to its neighbors, also known as the
LOF [86,87]. The LOF was first introduced during the International Conference on
Management of Data and it detects local outliers based on LDE and the LDF mentioned
above. The LOF is a continuous value representing the degree to which a point p is
an outlier to the object with c data points, so that the larger the LOF, the greater the
risk of being an outlier. The LOF, rather than being a binary classifier of outlier or
not, is a continuous value that provides a degree of “outlierness” of each observation,
allowing it to adapt to various scenarios, especially for non-linear systems [88]. It is
however computationally intensive given that the LOF should be chosen iteratively for
all points. Furthermore, because this method assumes access to the full data space and
requires multiple passes over the data, it is difficult to use in streaming data. Several
LOF adaptations are proposed to address its shortcomings. The incremental local
outlier factors (iLOFs) [89], for instance, are calculated for each new data point and in-
cremental multi-class outlier detection (iMCOD) [90] proposes a multi-class OD, while
the cube-based incremental local outlier factor (CB-ILOF) [91] utilizes a 3D slice of the
data before performing the detection. The distributed local OD in big data (DLOF) [92]
leverages distributed computing and storage for improving memory and time effi-
ciency. The method in [93] constructs a weighted index using information entropy
to improve accuracy and memory management in real-time high-dimensional data.
DSBOD methods are more accurate in the detection of outliers in high-dimensional
and contiguously distributed data compared to DBOD, the performance of which
degrades as dimensionality increases. The computational complexity function O in a k
dimensional dataset of size n is represented as O(n ∗ log(n) ∗ k) for k ≤ 5, or O

(
n2 ∗ k

)
otherwise [94].

• Clustering-based OD (CBOD) finds its roots in the LOF defining the possibility of local
outliers as opposed to global ones. This unsupervised ML method was developed un-
der the assumption that in a dataset, observations that relate to each other are spatially
clustered [95]. Its execution follows a two-step process consisting of identifying clus-
ters in data and flagging observations or groups of observations according to whether
they are outliers or not. The method also assumes that an observation might be an
outlier relative to a local cluster even though, globally, it might seem to be normal.
One of the most popular clustering algorithms is density-based spatial clustering of
applications in noise (DBSCAN) by Ester et al. [96], which uses the dense property of
clusters. Its predecessor, CLARANS (Clustering Large Applications based on RAN-
domized Search), uses K-medoid clustering that is memory-intensive and impractical
for large datasets as all data and objects are manipulated in memory during its entire
execution. DBSCAN instead employs the concepts of density reachability and density
connectivity, which define the connectedness of points through their neighbors, while
a single user parameter k defines the minimum number of points required in each
cluster. CBOD is advantageous for OD in dense datasets compared to DBOD. It is sim-
ilar to DSBOD but has the advantage of identifying global, collective, and contextual
outliers (a point outlier in the context of a cluster). In higher dimensions, the data
become sparse and affect clustering performance. Its computational complexity is a
quadratic function of the dataset size n, and of the number of dimensions or features k
involved O

(
n2 ∗ k

)
[97].

• Angle-based OD (ABOD) was first introduced during the International Conference
on Knowledge Discovery and Data Mining [98] and addresses the performance dis-
advantage of OD in high-dimensional data. Instead of assuming an association of
observations based on spatial distance, this type of method assesses the variance of
the angle between vectors of a point to others to calculate their proximity. ABOD is
a non-parametric method, which is more efficient at OD in higher dimensions than
DBOD and DSBOD, which rely on distance metrics. However, it is slower than its
alternatives on larger datasets given that its complexity is cubically related to n [98,99].
It does not account for temporal/sequential correlation in streaming data and is time-
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consuming to execute. Applying a sample size reduction method might help improve
its performance. There are improvements to ABOD in the literature, such as FastA-
BOD, which is faster in low dimensions with large datasets, data stream angle-based
OD (DSABOD) [100], and angle-based intrinsic dimensionality (ABID) [101], which
improves the speed of detection by applying dimensionality reduction.

• Support Vector Machines (SVMs) were introduced by [102] and is a supervised ML
technique that aims to find hyperplanes that divide any dataset represented in an
n-dimensional hyperspace into spatially separated classes with the maximum margin
between them. It relies on linear functions for linearly separable data, and on kernel
functions otherwise [103]. The method is originally supervised, designed for pairwise
comparison, and is nonprobabilistic. It is suitable for classification tasks, and therefore,
popular for OD problems; however, this makes it impractical for unlabeled streaming
data. One-class SVM (OC-SVM) is an adaptation of SVM allowing unsupervised OD
by training the model to learn normality in data [104] and detect deviation or novelties
in new data. This method is used for OD in WSN [105], 5G IoT [106], or in combination
with deep learning methods for unsupervised feature extraction and learning [107].
Online SVMs have also been developed to incrementally update the SVM models
on unseen data [108] but may be computationally expensive, especially when using
kernel functions. SVM does not account for temporality or sequencing [109] in data,
and therefore requires a combination with other time-agnostic models for anomaly
detection in temporal or sequential data. This method operates optimally on high-
dimensional datasets with a small number of samples.

In summary, most articles focus on either the computational complexity of the OD
methods or on their performance on benchmark datasets in terms of accuracy or effective-
ness at detecting outliers. Table 3 provides an overview of how well-suited each method
covered in this section is for the detection of specific types of outliers, with optimal dataset
size n and dimensionality k, to yield the best OD performance. This table contains the
following seven columns:

• Method: indicating the OD being described.
• Concept: containing the general concept the method is based on.
• Parametric: indicative of whether the method is parametric or not.
• Type of outliers: outlier type suitability detected by the method.
• Size: the optimal data size to implement the method.
• Dimensionality: the optimal dimensionality supported by the method.
• Computational Complexity: A function indicating the training complexity.

Table 3. Characteristics and computational complexity of ML-Based OD methods.

Method Concept Parametric Type of
Outliers Data Size Dimensionality Computational

Complexity

DBOD Distance Yes Global n ≥ 5000 or
10,000 Low O(nlog(n) ∗ k) or

O
(
n2 ∗ k

)
[84]

DSBOD Density Yes Global
Contextual n ≥ k + 1 Low O(nlog(n) ∗ k) or

O
(
n2 ∗ k

)
[97]

CBOD Cluster Yes
Global

Contextual
Collective

n ≥ 10,000 Low O
(
n2 ∗ k

)
[100]

ABOD Angle No Global Small to
medium High O

(
n3 ∗ k

)
[101,102]

SVM No Global Small High
O(n ∗ k) Linear

O
(
n2 ∗ k

)
or O

(
n3) Kernel

function



Electronics 2024, 13, 3339 14 of 33

In brief, considering the ML algorithms, the ABOD and SVM are the only methods that
offer the ability of OD in high-dimensional data, but both come with a greater computational
complexity as the dataset size increases (cubical) and in the case of non-linearly separable
data for SVM. DBOD, DSBOD, and CBOD exhibit the opposite behavior as they are more
suitable for OD in low-dimensional data, are less complex, and perform optimally at a
reasonably large data size. It is generally recommended to have an n that is five to 10 times
larger than k for DBOD, and an n greater than the number of points p per cluster C for
CBOD. Additionally, ABOD is the only parameter-free method in this category, and it offers
more flexibility for OD on data with no empirical parameters often needed to initialize other
methods. Table 3 also shows that OD methods relying on local factors are the best option
when it comes to contextual OD, albeit at a higher computational cost in lower-dimensional
data. Most of the ML methods can be tuned to support online learning but at a much higher
computational cost. Online SVM and incremental SVM are variants of SVM used for OD
tasks in the literature.

3.3. DL-Based Methods

DL was originally introduced in 1957 [110] and was initially called a perceptron. It
has recently regained substantial interest from the scientific community, fueled by the
lower price of computing infrastructure such as processors, memory, and storage, increased
internet availability and throughput, and the fast-growing cloud services market, which
democratizes access to seemingly unlimited computing resources from anywhere in the
world. DL is based on the Artificial Neural network (ANN), which is the basic NN model,
representing a multi-layer meshed network of neurons, which itself is a computational unit
representation of a perceptron [111]. One major difference between DL and other methods
previously discussed for OD that it is a model-based approach, whereby a model needs to
be trained and then used for OD. Training NN models is a non-trivial exercise as they are
data-greedy, computationally intensive, and time-consuming, which leads to inefficiency
when it comes to OD in streaming data. However, after the training, the model can be used
offline on unobserved data and in a parallel or distributed way to speed up the detection.
It could also be retrained if the dynamic of the data evolves, making it a good candidate for
handling concept drift and evolution. There are two major types of DL models, generative
models that learn from input data to generate a joint probability distribution dataset with
fewer dimensions and discriminative models using the conditional distribution of all
hidden variables in the data [112]. The main types of NN models are described below:

• Multi-layer Feed Forward (MLF) is one of the most prominent NNs. It comprises
sequentially cascaded layers, each neuron of which receives the output of previous
layers as input [113]. These networks may be fully connected, where predecessors’
outputs are fed as input to all successors, or partially connected. This method uses
back-propagation as an error correction algorithm based on the partial derivative
of the output error function E[·] to update the weights and the thresholds of each
of the previous layers in the cascade. MLF is used for OD in the field of network
intrusion detection [114], anomaly detection in IoT networks [115], and in multi-sensor
systems [116]. A drawback of MLF in performing OD on streaming data is the fact
that it requires labeled data for the model’s initial training before OD. This implies
that there is empirical labeled data for model pre-training, and this is not always the
case in real-world applications, unless online training is used, which would come
at a computational cost of O(n ∗ k ∗ l), where l is the depth of the NN. This notation
will be used throughout this section for other DL methods. A compromise is to use
the pre-trained model, relying only on online transfer learning (OTL) [117] to retrain
the model in case of changes in the data stream structure (concept evolution), but
this comes at a computational cost of O(b ∗ k), where b represents the subset of new
points considered for training. This method is supervised as it requires labels in the
training data.
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• Recurrent Neural Networks (RNNs) were introduced by Elman, J.L. in 1990 [118] to
address the limitations of MLF NN in dealing with temporally dependent data, such
as time series and sequential data [119], by introducing a feedback mechanism that
allows a neuron output to be fed as input back to itself in hidden layers [120] or to
preceding neurons [121]. This allows them to process sequences of data with variable
length, therefore representing an excellent solution for dealing with streaming data.
This method is typically used on temporal data such as time series and streaming data
but is limited by the number of lags it can feedback to, making it a short-term memory
network. Long short-term memory (LSTM) and gated recurrent unit (GRU) are the
two most used variations of RNNs [122], which are extensively used in the literature
for solving many problems involving real-world data. RNNs are better adapted for
contextual outliers given that detection is achieved within the context of short-term
lags at a cost of a cubical computational complexity, similar to the MLF NN. OTL is
also very frequently used with RNNs for OD in streaming data. RNNs are used in
environmental science [123], information security (biometric authentication) [124], and
sensor networks [125].

• Long Short-term Memory (LSTM), developed by Hochreiter, S. and Schmidhuber, J.
in 1997 [126], is a tweak to the RNN that allows keeping the long-term memory of
past lags in the data, thus addressing the RNN’s weakness in processing long-term
sequential and temporal data. LSTM introduces a three-gate system with an input
gate, an output gate, and a forget gate, allowing newly acquired information into the
memory cell to be memorized or forgotten. One important pattern in the literature
is that LSTM appears in most research related to anomaly detection in time series
using NNs. Even when not employed as a direct method for detecting outliers in the
spatial domain, it is combined with other OD models that have higher efficiency in
the same, while LSTM covers the temporal aspect of detection by taking advantage
of its long-term memory ability. One of the advantages of LSTM is that it maintains
information longer using branching, which helps to reduce the vanishing gradient
problem. A notable drawback of this method is that, similarly to the RNN, it processes
the information sequentially [127]; therefore, it cannot utilize the computationally
efficient parallel processing offered by the graphical processing units (GPUs). Some
authors combine LSTM with RNN for anomaly detection [128,129] or leverage online
learning transfer [130–132] for faster retraining to improve detection performance.
Model pretraining requires labeled data.

• Autoencoders (AE) are special types of symmetrical [133] and unsupervised [134] NNs
that use the input data as the target output, using its encoder layers to reduce the
dimension of the input data while the decoder layers reconstruct it. It is an alternative
to the dimensionality reduction algorithms that use both linear and non-linear trans-
formations to reduce the data dimension as opposed to principal component analysis
(PCA), which relies solely on linear models for feature extraction. This comes very
handy when dealing with real-world data streams with a large number of features as
it would help with escaping the curse of dimensionality faced by other ML algorithms
in high-dimensional data. Additionally, this method does not require labeled data
because the input data are used as output. This makes AEs an interesting candidate for
dealing with the unpredictable nature of real-world data streams with often frequently
changing structures and content over time.

• Convolutional Neural Networks (CNNs) are prominently applied in image classifica-
tion tasks [135] and are designed to accept tensor data at the input layer and use their
hidden layers to extract features from the tensor. At the end, it returns a result that
corresponds to the specific goal at the output layer. CNNs are, in general, composed
of three common building blocks [136], the first of which is the convolutional layer
that employs the convolution of filters to compute a feature map of the input by using
either the sliding sum of 2D filters/3D filters or by matrix multiplication [137]. Then, it
is the pooling layer [138], which applies summarization functions, such as maximum
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or average, on the output of previous layers to produce a lower-dimensional matrix as
the output. Finally, there is the fully connected layer that performs the classification,
defined as a function f of the sum of product of a j × i dimensional weight matrix
W j×i (of j rows by i columns), by xi input features and the m dimensional bias matrix
bj, represented as f

(
W j×ixi + bj). An advantage of the CNN is that it can be trained

on a small sample of high-dimensional data. However, the training complexity is very
high and may affect its performance in the streaming data context. Transfer learning is
generally used in this case as the capabilities of a model trained on a very large dataset
are transferred to a smaller dataset for OD.

• The Deep Belief Network (DBN) is a probabilistic generative model [139], formed by
stacking Restricted Bolzmann Machines (RBMs) and designed to face the challenge
of NNs overfitting at the learning stage due to poor parameter selection, which leads
to increased data greediness. RBM was introduced in 2006 by Geoffrey Hinton and
is composed of two layers: a layer of visible i units and a layer of j binary hidden
units h, where the total energy E(·) of the machine is calculated as follows [140]:
E(vh) = −∑I,j vihjWij − ∑i viaj − ∑j hjbj. The DBN uses a layer-by-layer training
approach also known as RBM unsupervised training, as well as error back-propagation
for fine-tuning [141]. DBN’s advantage for OD in streaming data is its ability to
handle high-dimensional data and perform feature extraction [142], which significantly
improves prediction performance. It also allows assigning a probability of outlierness
to each outlier, which is very useful for setting the appropriate decision threshold.

• Generative Adversarial Networks (GANs) represent a dual network composed of
a generative unit and a discriminative unit, which was initially introduced by Ian
Goodfellow et al. [143] in 2014. These architectures are based on the concept of
learning normality from an input dataset, using the normal probability distribution of
the data input in its generative network to produce similar data, and then using its
discriminative network to identify original data from the output [144,145].

• Transformer NNs, introduced by Vaswani et al. in 2017 [146] in the article “Attention
is all you need”, are among the most prominent topics in the DL field at present,
as they provide more possibilities in various fields, especially in natural language
processing and computer vision. Transformers rely on a state-of-the-art method called
the attention mechanism. One of the key advantages of transformers over other NN
models such as RNN and LSTM is their ability to parallelize processing by taking
multiple inputs versus the prominent sequential approach, hence improving model
training and computational performance. Additionally, the multi-headed attention
layer allows the NN to focus only on important features of the hidden layer output
by applying scoring, according to which features of high importance are emphasized
while the influence of others is diminished. This addresses the vanishing gradient
problem that impacts the performance of RNN and LSTM in the case of, for instance,
neural machine translator systems.

4. Applications of OD Methods

This section summarizes applications of the methods grouped by the three main broad
categories, Statistical, ML-based, and DL-based, in Table 4. This table is straightforward
and has only three columns. The broad categories listed above contain abbreviations of the
methods as defined in the relevant sections, and the applications by industries. In addition,
the Table leads to conclusions according to the important results and challenges presented
in the reviewed literature.
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Table 4. Classification of the OD methods by their applications and broad category.

Broad Category Method Applications

St
at

is
ti

ca
l-

ba
se

d

GBOD Transportation [53], medicine [56,58], energy monitoring [147], resource management and
orchestration in wireless networks [148], and Cloud Systems [54,57] for log analysis.

BPOD Energy monitoring and power consumption [149]

RBOD Information technology, fault detection in the energy industry [150], and environmental
science [151].

MAD Environmental science for atmospheric data analysis [152], water level monitoring [153],
and sensor calibration [154].

CBOD Child nutrition monitoring in healthcare [66], wind turbine power monitoring [68], and
process monitoring in computer science [70].

GMM Sensors in civil engineering [73], streams clustering for customization of IoT [155], and
more general networks [156].

HBOD WSN data analysis [157].

KBOD Denial of service detection and analysis in computer networks [158], intrusion
detection [159], and nuclear security [160].

M
L-

ba
se

d DBOD Knowledge discovery and pattern recognition [82,83] and anomaly detection in video
streams [85].

DSBOD Intrusion detection in computer networks [87] and physical layer security in spectrum
sensing for customization in CR networks [161,162].

CBOD Computer networking [163] and orchestration of WSNs [164,165].

M
L-

ba
se

d ABOD Oil and gas [166] and cyber security [167].

SVM Threat detection and prevention in 5G IoT [106] and WSNs [109] and Vehicle Ad Hoc
Networks (VANET) [104].

D
L-

ba
se

d

MLF Network intrusion detection [114], intelligent transport systems [168], medicine, and
customization of IoT and WSNs [115,116,169].

RNN
Environmental science (water quality monitoring) [123], biometric authentication [124],
video surveillance, sensor data reconstruction [125], malicious insider threat, network
traffic, and electricity theft detection.

LSTM Self-organization and customization of cellular [128] and computer [129] networks,
renewable energy, and intelligent transportation systems [132].

AE Customization of IoT networks [170], smart farming in agriculture [171], aerospace
industry, medical field, environmental science, and WSNs in maritime [172].

CNN Cyber security [173], in-vehicle networks [174], and anomaly detection in medical
imagery [175,176].

DBN Data analysis from WSNs [177], industrial systems, and intrusion detection systems in
cyber security [178].

GAN
Anomaly detection in medical imaging [179], data mining and knowledge discovery,
customization of IoT networks [9], telemetric data, and radio spectrum
reconstruction [180].

Transformer NNs

Aerial video streaming [181], multivariate OD in IoT [182], power grids and water
distribution industries, processing time series data, events sequence content-aware
anomaly detection [183], medical imagery on electrocardiogram (ECG) images, and
vibrating signals and remote sensing [2,184].

The statistical methods have been used in many problems relevant to telecommu-
nication networks and systems [155–158], analysis of physical phenomena, or human
medical conditions [56,58,62,66,68,70]. This is due to the existence of sufficiently developed
assumptions on data distributions (in the case of parametric models), which have been
tested and verified on empirical data collected for the various related applications. This
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allows the development of OD models using historical data for the known distributions
and implies lower computational complexity and faster OD. This category also includes
examples of applications [66,157–160], for which non-parametric methods were used to
increase detection accuracy when a priori knowledge is unavailable. Thus, they identify
and predict the anomalies caused by outages or other undesirable events, even at the cost
of reduced energy efficiency. The statistical methods are generally difficult to compare due
to the variety of their performance parameters, which are largely dependent on the data as
they are derived from statistical properties (such as mean, kurtosis, etc.). Thus, the choice of
a particular method is to be data-driven and based on preliminary analysis of the available
samples, while keeping in mind the application scenario. For example, if the algorithm
is to process unobserved data in real-time, then less computationally intensive methods
(such as KBOD, HBOD, COPOD, and CBOD) may be used, whereas when the goal is a
more precise offline analysis of data for OD model development and the application of new
data, MAD and GBOD methods should be applied. For large multivariate datasets, CBOD
and GMM are options to consider for dimensionality reduction.

The ML-based methods for OD often have increased computational complexity due
to their non-reliance on input data distribution assumptions, hence the need to compute
specific features (such as distance, density, and the angle between the observations) from
the data before starting the actual detection. This creates additional challenges for their
application in streaming data and their complexity increases with data dimensionality. If the
input is of low dimensions, then DBOD methods may be applied with adequate efficiency,
for instance in slow-motion video streams [85], or DBSOD methods in the case of resource
management and orchestration in a CR network with a small number of nodes [87,161,162].
When substantial computing resources are available for offline training, CBOD or ABOD
are good candidates for distinguishing between multiple classes of users (also between
incumbent and malicious) in large-scale datasets with many connections among themselves
(such as computer or wireless networks) [66,68,70,166,167]. In these cases, the method’s
efficiency is often determined by the number of samples (usually in the order of tens of
thousands or more) available for training. The ML-based methods may be more adequately
compared to one another as they are often applied in classification problems, thus sharing
common KPIs such as probability of detection, true positive rate, etc.

Due to the substantial growth of DL in recent years, the methods in this category are
naturally the most numerous and diverse. They include applications in wireless network
customization and self-organization (cellular/IoT/WSN/vehicular communications), med-
ical imaging and diagnostics, remote sensing of physical phenomena, video surveillance,
and others. Depending on whether the NN needs to predict/reconstruct the input sequence
or classify its type, the choice is usually made between transformers, AEs, GANs, CNNs,
MLF, RNNs, and LSTMs. These methods, similarly to ML, require pretraining but on much
larger datasets (hundreds of thousands of samples) than for ML (thousands). Therefore,
they need very substantial computing resources (such as multiple GPUs). However, if the
model has (1) adequate depth to its architecture (which is also data-dependent), (2) appro-
priately chosen parameters (usually determined empirically or estimated using additional
data), or (3) a large enough dataset (for features learning), then it may achieve high accuracy
on new observations very quickly using little computational power. As observed from
Table 4, the CNN, LSTM, RNN, and DBN models are most often used for telecommuni-
cation systems, although not solely for such. Very few studies using Transformer NNs in
general and particularly in the field of telecommunications are available, due to it being the
current state-of-the-art in the field of NNs. The ability of DL models to accept a large variety
of input data types makes them an easier and popular choice for multiple applications.
Comparing their performance is rather straightforward as they can model the output KPIs,
such that they are relevant to the input, i.e., either reconstruction or classification accuracy.
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5. Review of Datasets for OD in Streaming Data

Identifying datasets for training and testing OD models is a challenging endeavor.
Table 5 summarizes prominent datasets found in the literature and categorizes them into
the OD methods reviewed in this paper. The Table includes the following columns—
Dataset Name (the datasets’ online titles), the Year of publication or creation, the Number
of Features in the dataset, its Size, Application, the Method it is used for, the References that
use it, and its Source (institution or organization). Fields in which there are no applicable
data are denoted as N/A.

Researchers often use empirical data to build models, which are then applied to new
data for outlier detection. Some studies use live data collected by users for real-time
analysis or due to the lack of existing data [160]. For instance, in telecommunications
studies, data might be collected in real-time by users [162,164] or through existing sensor
networks [152,179]. Public datasets such as IoTID20, Corel Histogram, and BOT-IOT for
IoT-related studies and KDD99, ISCX NSL-KD, and CICIDS2017 for network intrusion
detection are also commonly used.

These datasets are often available in databases such as the OD datasets (ODDS)
database [185], IEEE Dataport [186], and the websites of university research laborato-
ries [187]. These sources offer extensive historical data, which need to be organized and
sequenced to simulate streaming data during analysis or streamed using relevant tools. For
real-time streaming data, researchers may need to collect their own data using sensors or
tap into online data sources such as social media via application programmable interfaces
(APIs), which are often rate-limited or not free. In the field of telecommunications, real-time
data is hard to find, leading researchers to rely on historical data or collect data in rea-time
using sensors.

Table 5. Review of prominent datasets for OD.

Dataset Name Year Number of
Features Size Application Method Reference Source

KDD99 1999 41 58.3 k
Intrusion
detection
dataset

DSBOD
GAN

[87,162,
179]

University of
California Irvine [188]

ISCX NSL-KD 2009 41 125 k Intrusion
detection GAN [179] University of New

Brunswick [189]

IoTID20 2020 85 625.7 k IoT Intrusion
Dataset Ensemble [156] IEEE Data Port [190]

Corel Histogram 2024 31 68 k IoT in smart
cities DBOD [82] ML Pack [191]

DS2OS Traffic
Traces 2018 14 322 k IoT in smart

cities MLF [169] Aubet, FX [192]
available on Kaggle

Wireless Sensor
Network 2004 8 2.5 M WSN CBOD [69] Intel Berkeley

Research Lab [193]

A Poisson–
Gaussian
Denoising

Dataset

2018 N/A N/A Image
denoising CBOD [71] Zhan Y. et al. [194]

HAR 2013 562 10.3 k
Human
activity

recognition
DBN [164] University of

California Irvine [195]

DSA 2012 315 9.1 k Daily sport
activities DBN [164] University of

California Irvine [196]

GAS, GT, IR,
WM 2004 N/A N/A Comparative

study RBOD [44] Kaggle
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Table 5. Cont.

Dataset Name Year Number of
Features Size Application Method Reference Source

SCADA data 2011 8 N/A
Wind turbine

fault
detection

RBOD [137] Collected by user

Ultrasonic sensor 2019 N/A N/A

Monitoring
water level

and
discharge

MAD [140] Collected by user

Tropospheric
Data Acquisition

Network
N/A 9 N/A

Sensor data
on

atmospheric
temperature

MAD [139]
Center for

Atmospheric Research
[197]

Synthetic and
testbed 2018 N/A N/A Synthetic and

testbed GMM [142] Collected by user

Network traffic 2017 N/A N/A Real-time
data GMM [143] Collected by user

CICIDS2017 2017 83 25 users
in 5 days

Intrusion
detection

evaluation
KBOD [145] Canadian Institute for

Cybersecurity [198]

Portable
radiation

spectrometer
2021 N/A N/A Real-time

data KBOD [147] Collected by user

Cognitive Radio
Network 2021 N/A N/A Real-time

data CBOD [149] Collected by user

Wireless Sensor
Network 2023 200 400 s Real-time

data CBOD [151] Collected by user

Network
Forensic
Analysis

2019 35 72 M BOT-IOT GAN [166] Cyber Range
Lab—UNSW [199]

UC-Merced
256 × 256 images 2022 21 100

Remote
sensing scene
classification

CNN and
Transformer [172]

University of
California, Merced

[200]

AID (600 × 600) 2019 17 3 k

Remote
sensing scene
classification

CNN and
Transformer

[172]

AID scene from
Wuhan University

[201]

NWPU-
RESISC45

(256 × 256)
2021 12 31.5 k

Northwestern
Polytechnical

University dataset
[202]

OPTIMAL-31
(256 × 256) 2018 31 186 k Hyperspectral Image

Dataset [203]

6. Summary of Assumptions and Outlier Types

In this section, Table 6 clarifies the basic assumptions of various outlier detection
methods to better understand possible challenges related to their application to streaming
data. The Method column lists the major OD methods, the Distribution Assumptions
column indicates whether the model assumes that the data have a particular distribution,
the Data Types they are more suitable for, and the Outlier Types they are more efficient at
detecting. The description of the actual detection approach is in the Outlierness column,
and finally the Method-specific Assumptions are listed in the column with the same name.
The following abbreviations are used in the Data Type and Outlier Type columns—N is
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for Numerical, N(C)—Numerical Continuous, N(D) is for Numerical Discrete, C is for
Categorical, T is for Temporal (Sequential), Ts denotes a tensor, Tx—Textual, G is for Global,
C is for Contextual, CL is for Collective, and “All” denotes G, C, and CL. Additionally, the
online learning column presents the ability of a method to learn offline (Off) or online (On).
Whenever the asterisk (*) is used with the label Off, it indicates that the method can be
adapted to online learning. The supervision column indicates whether a method requires
labeled data during its training phase, which makes it unsupervised (U) or supervised (S).

Table 6. OD methods categorized by assumptions and related outlier types.

Broad
Category Method

Distribution
Assump-

tions
Data Type Online

Learning Supervision Outlier
Type Outlierness

Method-
Specific

Assumptions

St
at

is
ti

ca
l-

ba
se

d

GBOD Normal N(C) Off * U G Distribution-
based

Univariate and
mean centered

BPOD N/A N(C) Off * U G Distribution-
based

Univariate
symmetrical

RBOD Normal N|T Off S Normal,
Stationary

MAD None N Off U G Distribution-
based

Univariate
Symmetrical

Copula-
based OD None N(C) Off * U C Distribution-

based (learned)

A joint
distribution can

be built from
marginals.

GMM Normal N(C) Off * U C|G Distribution-
based

Same family of
univariates

HBOD None N(C|D) Off U G Distribution-
based (learned)

Data
distribution can

be learned

KBOD None N(C) Off * U C Density -

M
L-

ba
se

d

DBOD None N(C) Off * U G Spatial closeness
The spatial

distance can be
calculated.

DSBOD None N(C) Off * U G|C Spatial closeness
and density

Observations
are spatially

contiguous and
densely

distributed.

CBOD None N(C)|C Off * U C|CL Spatial closeness
Outlierness

relates to local
clusters.

ABOD None N(C) Off U G Angular closeness
(Trigonometric)

Does not
assume spatial

projection.

SVM None N|C|Tx|Ts Off * S G
Class boundary or

Distribution-
based

Data can be
separated by

class

D
L-

ba
se

d

MLF None N/C/Tx Off S G|C N/A -

RNN None T On S C N/A Short-term
autocorrelation.

LSTM None T On S C N/A Long-term
autocorrelation.

AE None N/C/Tx On U G|C Encoding/decoding
ability

No linear
assumption

CNN None Ts On S C N/A -

DBN None N/C/Tx On S G|C N/A Data are
hierarchical.

GAN None N/C/Tx On U G|C Distribution-
based (learned)

Data
distribution can

be learned

Transformer None Ts/C/T On S All N/A -
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After reviewing applications of OD methods in various industries, the basic assump-
tions of each of the methods are summarized to provide guidelines for the preference of
one method over the other for the OD task in streaming data. Table 6 below summarizes
the assumptions by method together with the data types they are restricted to and the
type of outlier they are generally used to detect. Additionally, the overall mechanism of
outlierness determination used by the respective method is mentioned in this Table. The
spatial coverages of the detection method, as well as some non-distribution assumptions
specific to the methods, are also listed. In Table 6, OD methods are grouped into broad
categories (Statistical, ML, and DL), and then further classified depending on whether they
are based on their underlying distribution or a specific assumption.

Some of the statistical methods (BPOD, MAD-OD, COPOD, HBOD, and KBOD) and
all ML and DL methods can be considered distribution-free because they generally make
no prior assumption on the input data’s underlying distribution and use learning on
empirical data to estimate the distribution parameters, before modeling new data and
detecting outliers. This makes them very potent for OD in real-world data with unknown
distributions, subject to concept drift or evolution. Statistical methods support mostly
numeric continuous data except for HBOD, which is suitable for discrete data while RBOD
supports temporal data (time series). All ML methods use numerical continuous data
except for the CBOD methods, which are also applied to categorical data. DL methods are
applied to a variety of data types including numerical, categorical, and textual. However,
RNN and LSTM are the most often used in the literature when it comes to temporal
data. Transformers, which represent the most recent of the methods, are applied to OD in
sequential data, especially in the areas of text analysis and Large Language Modeling (LLM).

In relation to the types of outliers optimally detectable by the various methods, for
collective outliers, CBOD and Transformers are the most prominent ones. Contextual
outliers are better detected by methods relying on a joint distribution (RBOD, COPOD, and
GMM-OD), on the density (KBOD, DSBOD, and CBOD), and by all DL methods. When it
comes to high-dimensional data, COPOD and GMM-OD from the statistical methods, and
AE from the DL methods, are generally preferred, while CNN is generally used for feature
extraction. The GAN, AE, copulas, and GMM methods are used for data augmentation in
the case of a small sample size.

7. Classification of OD Methods by Predefined Criteria
7.1. Criteria Definition

Several papers compare OD methods based on their performance on benchmark
datasets or on data from specific domains of application and use model performance metrics
to classify them in terms of their detection capabilities. This Section outlines the criteria
for assessing OD in the context of streaming data, considering its major characteristics,
processing mechanisms, and challenges mentioned earlier in this paper. Table 7 summarizes
the following six relevant criteria:

• The sample size n requirement for the method performance in OD in relation to the
selected window mechanism is referred to as data greediness; a model considered
data greedy will be marked with “Yes”, otherwise with “No”.

• The optimal data dimensionality to perform OD—this will take values of Low if the
model performs better in low dimensions k ≤ 5, in medium dimensions of 5 < k < 10,
or high dimensions of k ≥ 10.

• The computational complexity of the method, which is defined as a function of the
sample size n, dimensionality k, and depth l of the model used in the method; given
that O(·) is the complexity function, a model will be classified as:

# Low complexity if O is a linear function of n and the data dimensionality d.
# Medium complexity if O is quadratic for n and linear for k.
# High complexity if O is a quadratic function of both n and k and uses the model

depth l or the number of hidden layers h as parameters.
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• The ability to detect outliers in temporal data is called temporal ability; a model will
be marked as “Yes” for its temporal ability, and “No” otherwise.

• The flexibility and adaptability of the method are defined based on the number of
parameters used by the method or whether it is supervised, semi-supervised, or
unsupervised and will be classified, respectively, as low, medium, highly flexible, or
adaptable; a model considered flexible will be denoted with “Yes”, otherwise “No”.

• The model’s robustness is indicative of whether the model is sensitive to outliers or
not. A model considered robust is denoted in Table 7 as “Yes”, and as “No” if it is not.

Table 7. Definition of criteria for OD methods.

Criteria Definition

Data Greediness Referring to the amount of data required for the method to perform OD task.

Data Dimensionality Indicative of the dimensionality on which models would optimally perform OD.

Computational Complexity

This relates to training complexity O as a function of the dimensionality d, n, and l:
• Low: O is only function of n¯O(n).
• Medium: O is function of at least 2 parameters—O(n, d, or l).
• High: O if function of more than 3 parameters—O(n, d, and l).

Temporal ability

Defined as:

• Yes: Can handle OD in temporal data.
• No Cannot directly handle OD in temporal data or requires combination with another method

to handle temporality in data (ensemble methods).

Flexibility and Adaptability

Defined as:

• Low: Method is supervised (requires user input), requires more than 1 parameter, can handle
multiple data types, can adapt to data changes (concept drift or evolution), does not support
online learning.

• Medium: Method is semi-supervised, requires only 1 parameter, relies on model that requires
retraining upon data change, does not support online learning.

• High: Method is unsupervised, parameter-free, distribution-free, or adapted for OD on
multiple data types, supports online learning.

Robustness
Accounts for whether the model is sensitive to outliers:

• Yes: The model is sensitive to outliers.
• No: The model is not sensitive to outliers.

7.2. Classification of OD Methods by Predefined Criteria

Selecting the appropriate OD method is non-trivial, especially in a streaming data
context, due to the complexity and possible variability that such data naturally carry. To fa-
cilitate the selection of an appropriate method, Table 8 classifies the OD methods reviewed
in this paper based on the set of criteria defined in Section 7.1. This Table is intended to
provide guidelines for OD method selection based on a comprehensive set of criteria. Be-
cause the studies surveyed in this article used different datasets, performance metrics such
as accuracy, precision, recall, and F1 score are not included in the Table. Instead, it groups
OD methods into broader categories (statistical, ML, and DL), which are broken down into
parametric and non-parametric sub-groups for statistical-based methods, proximity- and
deviation-based methods for the ML category, and generative, discriminative, or both for
the DL methods. Then, all of them are classified based on their data greediness, where most
statistical methods are considered non-greedy except for KBOD, COPOD, and GMM-OD,
which require enough to understand the marginal properties and build a joint probabil-
ity distribution based on them. DL methods are the most data-greedy, except for CNNs
which may rely on much fewer inputs for learning, or generative models which are more
frequently used to augment data size and diversity in the case of small datasets. Among
the ML methods, DSBOD and CBOD are the most computationally intensive. When a
method is classified as a high-dimensionality method, this denotes that it is capable of
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handling raw high-dimensional data. The data themselves are classified as low-, medium-,
or high-dimensional based on the dataset’s number of features k. Among the methods,
COPOD, GMM-OD, ABOD, CNN, AE, and Transformers are those marked as most suitable
for high-dimensional data. Then, the computational complexity column provides a scale of
complexity as a function of the sample size, dimensions, and model depth as applicable,
while the complexity class column provides a ranking of the complexity, which is based
on the data within the computational complexity column. In the temporal ability column,
the ability of the model to process temporal changes in the data is denoted as “Yes” for
methods that have such an ability, and “No” for those that do not. The concepts of flexibility
and adaptability explained in Section 7.1 are covered in the column with the same name.
Finally, the robustness of the model indicates its sensibility to outliers.

Table 8. Classification of OD methods by predefined criteria.

Broad
Category

Type of
Methods Method

Data
Greedi-

ness

Data
Dimension-

ality
Computational

Complexity
Complexity

Class
Temporal
Ability

Flexibility
and

Adapt-
ability

Robust-
ness

St
at

is
ti

ca
l-

ba
se

d

Parametric

GBOD No Low O(n ∗ log(n)) Low No Yes No

BPOD No Low O(n ∗ log(n)) Low No Yes Yes

RBOD No Low O(n ∗ di + dj) Medium No No No

MAD No Low O(n ∗ log(n)) Low No Yes Yes

COPOD Yes High O(d ∗ nlog(n)+
d2 ∗ n + d3)

Medium Yes Yes Yes

GMM Yes High O(t ∗ n ∗ d2 ∗ k) High No Yes No

St
at

is
ti

ca
l-

ba
se

d

Non-
parametric

HBOD No Low O(n) Low No Yes Yes

KBOD Yes Low/Medium O(n ∗ log(n) ∗ 2) Low No Yes Yes

M
L-

ba
se

d

Proximity

DBOD No Low O(n2 ∗ d) or
O(n ∗ d ∗ log(n)) Medium No Yes No

DSBOD Yes Low O(n2) or
O(n ∗ log(n))

Low No Yes Yes

CBOD Yes Low O(n2) Low No Yes Yes

Deviation ABOD No High O(n3 ∗ d) Medium No Yes Yes

D
L-

ba
se

d

Discriminative

MLF Yes Low/Medium O(n ∗ (d ∗ h+
l ∗ h2))

High No Yes Yes

RNN Yes Low/Medium O(n ∗ d ∗ t) High Yes Yes Yes

LSTM Yes Low/Medium O(n ∗ T ∗ (d ∗ h
+h2))

High Yes Yes Yes

CNN No High O(n ∗ d ∗ k2 ∗ f ) High No Yes Yes

Generative

AE No High O(d ∗ h + h2) High No Yes Yes

DBN No Low/Medium O(n ∗ k ∗ l ∗ h2) High No Yes Yes

GAN No Low/Medium O(z · h + lg · h2) High No Medium Yes

Generative
and

Discrimina-
tive

Transformer Yes High O(n ∗ d2 ∗ l+
n2 ∗ d ∗ l) High Yes Yes Yes

8. Discussion

OD in streaming data is a relevant problem for applications in multiple fields, particu-
larly in the telecommunications industry. Depending on the type of outliers, the nature
of the problem, the structure of the data, the timeliness of the detection, and the resource
availability, various OD methods can be used separately or in combination, with consid-
eration of the computational cost. Popular applications of OD in Telecommunications
are in the fields of WSNs, remote sensing, CR networks, and fault detection in the IoT or
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special events (such as security incidents and intrusion detection) identification, with the
overall aim of building cognitive self-healing systems, especially with the growing need of
connectivity fueling the expansion of 5G and beyond wireless networks.

Even though it is often difficult to strictly categorize an OD method for specific re-
quirements, Tables 6 and 8 provide useful information when it comes to key considerations
in terms of data availability, type of outliers to detect, and computational efficiency for the
selection of an appropriate OD method. DL approaches, prominent in the recent literature,
generally require substantive amounts of labeled data and processing power to be trained
for detection. They are capable of online learning, except for GAN and AE which can oper-
ate in a completely unsupervised manner. ML and statistical-based methods can mostly
operate in an unsupervised manner; however, in most cases, they are parametric and
require user-defined parameters and tuning. SVM and RBOD methods require labeled data
for their training. Considering the computational requirements, statistical-based methods
are faster and lighter to operate than ML and DL models and might be recommended
for OD in telecommunication applications such as trend analysis, as well as data streams
created by one or several sensors in IoT or CR networks. When it comes to advanced appli-
cations in telecommunication networks such as pattern recognition, intrusion detection and
prevention, sensing, and others, DL methods may be recommended to improve detection
accuracy while accounting for changes in data such as concept drift and evolution. A
trade-off will have to be made between the computational capability available in the core
network or at the edge and the detection speed requirement. For faster detection with low
computational requirements, statistical-based methods or pretrained ML and DL might be
preferred given that the processing will be faster. Nevertheless, accuracy will be degraded
should the data change drastically in real-time if online learning is not implemented.

Several promising research areas have been identified based on this survey. In telecom-
munications networks with distributed nodes, such as the IoT and WSN, a distributed
outlier detection approach combining edge detection with node consensus, similar to
blockchain networks, could enhance detection speed and accuracy while being compu-
tationally efficient. Another area of interest is exploring the relationship between the
computational complexity of various outlier detection methods and different streaming
data window mechanisms across diverse benchmark datasets. Additionally, investigating
the use of transformer networks for interference management in cognitive radio systems,
particularly leveraging online learning to determine the noise floor and distinguish inter-
fering signals from noise, presents another valuable research direction.

9. Conclusions

This article conducts a review of the challenges of OD in streaming data with consid-
eration of the various types of outliers, the data processing challenges with regards to their
variety, velocity, and dimensionality, whether they are dynamic, and the computational
complexity associated with them. The most prominent OD methods from the broader
statistical, ML, and DL categories are categorized according to their major assumptions,
types, limitations, and relevant challenges in streaming data. Major applications of these
methods in Telecommunications and other industries are reviewed, and the prominence
of statistical methods is outlined for methods with available empirical data and a strong
theoretical background. Finally, a set of criteria for classifying the OD methods is defined
and classification tables are provided and developed, together with guidelines for the
selection of the most appropriate methods depending on the specific OD requirements and
resource constraints.
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