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Abstract: Maintenance and repair of expressways are becoming increasingly important due to the
growing frequency of their use. Accurate pavement crack information extraction helps with routine
maintenance and reduces the risk of traffic accidents. The traditional 2D crack image detection method
has limitations and cannot effectively obtain depth information. Three-dimensional crack extraction
from 3D point cloud has become a new solution that can capture pavement crack information more
comprehensively and accurately. However, the existing algorithms are not effective in the feature
extraction of cracks due to the different and irregular shapes and sizes of pavement cracks and
interference from the external environment. To solve this, a new method for detecting pavement
cracks in point clouds, namely point attention net (PAN), is herein proposed. It uses a two-branch
attention fusion module to focus on space and feature information in the cloud and capture features
of crack points at different scales. It also uses the Poly Loss function to solve the imbalance of
foreground and background points in pavement point cloud data. Experiments on the LNTU-RDD-
LiDAR dataset were carried out to verify the effectiveness of the proposed method. Compared with
the traditional method and the latest point cloud segmentation technology, the performance indexes
of mIoU, Acc, F1, and Rec achieved significant improvement, reaching 75.4%, 91.5%, 75.4%, and
67.1%, respectively.

Keywords: pavement crack information extraction; 3D point cloud; deep learning; pavement crack
3D point cloud dataset; attention mechanism

1. Introduction

Highway pavement crack information extraction is very important in road quality
assurance and driving safety. The early-detection methods relying on manual and sensor
have high cost, high detection cost, low efficiency, and strong subjectivity, which makes
road crack detection complicated and difficult [1]. The modern machine vision detection
method improves the detection efficiency and accuracy to a certain extent. It provides a
new solution for the identification and maintenance of highway cracks, which helps to
reduce cost, improve efficiency, reduce the impact of road cracks on traffic, and improve
the safety and service life of highways.

Traditional methods have been extensively studied for automatic pavement crack de-
tection. Image processing-based techniques primarily include threshold segmentation [2,3],
edge detection [4,5], and region growth [6,7]. However, these approaches often rely on
prior knowledge or optimal thresholds, limiting their applicability on complex and variable
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urban roads, particularly in reliably detecting cracks with weak connections or uneven
geometric topologies. Some studies have proposed an information extraction method for
calculating crack length [8] and used a data acquisition system combining radar rangefinder
and camera [9]. Image segmentation was carried out using gray adaptive threshold al-
gorithm, crack contour was extracted by GaussLaplace algorithm [10], and video-based
software system was developed for calculating bridge crack widths. However, traditional
methods often have low accuracy and can only approximate crack locations in complex
backgrounds or when there is minimal contrast. These methods are also easily affected by
the background.

With the rise of deep learning, crack detection has ushered in a new stage of devel-
opment, and the quality of crack detection has been significantly improved by learning
advanced features [11]. The use of deep learning in pavement crack information extraction
allows for automated feature extraction and learning without human intervention. Addi-
tionally, Transformer models based on the seq2seq architecture have achieved significant
success in crack detection, offering not only feature extraction but also multimodal fusion,
addressing some of the limitations of CNNs [12]. While two-dimensional detection has
made some progress, these image-based methods still face challenges, as pavement images
are frequently obscured by lighting, shadows, dirt, and noise, which hinders the accurate
capture of terrain and texture details.

With the advancement of 3D data acquisition technology, mobile laser scanning (MLS)
systems have become widely used for generating precise 3D coordinate data, enabling
efficient and flexible point cloud acquisition on road surfaces [13]. Pavement point clouds
exhibit characteristics that include 3D spatial coordinates and intensity information for each
point, with crack points typically differing in elevation and intensity from the surrounding
pavement points. These features make the pavement point cloud an effective tool for
analyzing road conditions and detecting damage. The point cloud’s irregularity offers
rich information about the pavement surface. The normal vector, indicating the direction
at each point, is used for crack segmentation. However, road wear and noise complicate
distinguishing elevation and intensity changes between cracks and normal pavement,
posing challenges for crack detection.

While current methods have shown promising results, point cloud-based crack-
detection techniques face three significant challenges that hinder their practical application.
(1) Disorder: LiDAR systems generate 3D point cloud data that are inherently unstructured
and unordered, creating difficulties for deep learning algorithms. To address this, many
existing methods employ dimension reduction techniques to transform 3D point clouds
into 2D images, thereby simplifying the processing. However, this conversion often results
in information loss [14]. Moreover, these methods often treat point clouds as discrete,
uncorrelated sets, overlooking elevation differences between cracked and non-cracked
points. (2) Spatial correlation: Existing point cloud-based crack-detection methods tend
to ignore the spatial correlation and adjacency of points in complex pavement structures.
Since the pavement is relatively flat, neglecting these correlations can lead to insufficient
recognition of small crack details, resulting in incomplete detection. (3) Data dependency:
Deep learning models based on point clouds typically require large amounts of manually la-
beled data and involve training a significant number of parameters. This not only increases
the input of manpower, time, and cost but also significantly increases the computing cost
with the increase of network complexity [15]. These limitations limit the applicability of
current point cloud-based crack-detection methods in different scenarios.

Based on the above problems, the following improvements are proposed:

(1) This paper introduces a PAN network built on a U-Net architecture that processes
unordered point sets and directly extracts features, avoiding the information loss often
caused by dimensionality reduction in traditional methods. This approach effectively
preserves the spatial information and geometric characteristics of point cloud data,
enhancing the accuracy and efficiency of point cloud processing;
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(2) In this paper, we present a PC-Parallel module featuring a dual attention module
branch parallel structure, which flexibly adapts to pavement point cloud data of
varying densities and samples. This design enhances the model’s ability to under-
stand both overall and local features, especially in extracting crack information from
complex structures, and addresses segmentation result incompleteness. It not only
improves the model’s robustness across multi-scale and multi-density data but also
enhances its capability to capture crack edges and details, thereby increasing the
accuracy of point cloud pavement crack segmentation;

(3) The Poly Loss function is introduced. By adjusting the form of the loss function,
the imbalance between crack points and background points can be better balanced,
and the sensitivity to edge and detail information can be enhanced. The problem of
boundary refinement and class imbalance in point cloud pavement crack segmentation
is solved effectively, thus improving segmentation accuracy and model performance;

(4) A set of large-scale 3D point cloud dataset of pavement cracks suitable for semantic
segmentation is established.

2. Related Work
2.1. Methods Based on Traditional Image Processing

Image-based crack-detection algorithms have rapidly advanced. Some studies [2,16]
introduced an algorithm for extracting crack thresholds using global or local thresholds.
However, selecting suitable thresholds for most crack images is challenging, and the method
is highly sensitive to illumination and noise, reducing its stability. Other research [17,18]
proposed a block-based segmentation approach, but because detection occurs at the block
level, it fails to accurately identify cracks. Different researchers [19,20] developed a filter-
based algorithm to detect cracks based on the expected response, but it struggles with
complex and varied pavement cracks, and selecting appropriate parameters is often difficult
and time-consuming. Another study [6] introduced a seed-based region growth algorithm
that uses multidirectional non-minimum suppression and symmetry checking for road
crack detection. One study [7] proposed CrackTree, which detects cracks by selecting
them in a probability graph and uses a recursive tree edge pruning method to form a
minimum spanning tree. This method can detect pavement cracks effectively but does not
consider the actual crack width. In the freeway environment, the existing methods often
need appropriate parameter presets or prior knowledge to achieve the best performance
when dealing with the complex and changeable pavement. This dependence can lead to
poor model performance in the absence of human intervention. Pavement cracks often
have limited connectivity or irregular geometric topologies, and correctly identifying these
cracks remains a major challenge.

2.2. Deep Learning Image Processing Method

In recent years, due to its excellent feature learning ability, many researchers have
explored various deep neural networks and demonstrated excellent performance in the
efficiency and accuracy of road crack assessment. One study [21] for the first time tried,
CNN based on LeNet-5 [22], to detect cracks in local areas of images. This method involves
converting the model into a fully convolutional network to obtain image segmentation
results. Methods like [23,24] use sliding windows to divide pavement images into smaller
blocks, utilizing convolutional neural networks (CNNs) to predict cracks within each
block, accurately locating crack positions. However, this approach is limited to block-level
detection and does not achieve pixel-level precision. Studies [25,26] have demonstrated
that using CNNs for pixel-level crack detection in pavement images allows for precise crack
localization and improved accuracy. Despite its precision, the block-based process can
be time-consuming, and small blocks often lack sufficient context, which limits real-time
performance and efficiency. On the other hand, the application of fully convolutional
networks (FCNs) in crack detection has delivered impressive results in both accuracy and
speed [27,28]. Building on this success, [29] proposed combining a deep convolutional
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neural network (DCNN) with an edge detector to further enhance detection performance.
This integration allows for more efficient processing and better edge definition, improving
the overall detection capability of pavement cracks. By integrating the DCNN output with
the edge detector, this approach effectively reduces the noise rate in crack identification and
significantly enhances recognition accuracy. Compared to other deep learning methods,
this new approach excels in noise suppression and accuracy. However, the layer number of
convolutional networks is deep, resulting in a large increase in model parameters, which
makes the training time of the model quite time-consuming. One study [30] utilized the
Faster R-CNN two-stage network for high-precision pavement crack information extraction.
Compared to the one-stage network, the two-stage approach is more accurate for multi-scale
and small-target issues, offering a more reliable solution for accurately locating pavement
cracks. However, this increased accuracy comes at the cost of reduced efficiency, resulting
in slower detection speeds. Another study [31] proposed a feature pyramid and hierarchical
boost network that processes multiple scales simultaneously and retains more details by
transmitting information layer by layer. This allows the network to effectively capture
features at different scales, adapting better to pavement cracks of varying sizes and shapes,
thereby enhancing robustness and accuracy in pavement crack information extraction.
However, with the introduction of multi-scale information, it is also affected by some noise
and unnecessary information, which reduces the performance. Despite the impressive
results of image-based learning methods, their performance heavily depends on external
conditions. Two-dimensional pavement images and videos are frequently obscured by
light, shadows, stains, and rust, complicating road crack identification. Additionally, 2D
image detection techniques are limited in their ability to describe terrain and crack details,
reducing the effectiveness of road maintenance assessments.

2.3. Method Based on Traditional 3D Point Cloud Data Processing

Compared to traditional 2D optical images, 3D point clouds provide more precise
spatial coordinates and include intensity information. Unlike 2D images, 3D point clouds
are unaffected by ambient brightness, offering a more reliable basis for accurately extract-
ing road cracks. Recently, researchers have extensively studied using point clouds for
pavement crack detection. By thoroughly analyzing point cloud data, they can detect and
locate pavement cracks more accurately and improve detection robustness and accuracy.
Some studies [32,33] proposed a deep crack-detection method using 3D pavement data,
employing a straightforward threshold strategy to represent crack depth and length. The
ITVCrack algorithm proposed by [34] is an automatic crack extraction framework based
on iterative tensor voting (ITV). The algorithm first uses the inverse distance weighting
(IDW) algorithm to convert pavement points into geo-referenced feature images and then
detects candidate cracks using an ITV-based crack extraction framework. Finally, a mor-
phological refinement algorithm is used to distinguish the crack curves of MLS pavement.
However, due to the characteristics of the ITV algorithm, ITVCrack has high computational
complexity when processing large-scale data, and its generalization performance under
different road and environmental conditions is also limited. In another study [35], The
Otsu threshold method was used to extract intensity differences in MLS point clouds to
identify crack skeletons. Noise was then removed using a spatial density filter, and the
Euclidean distance clustering algorithm divided crack points into distinct crack lines. How-
ever, this process is affected by changes in point cloud density and local shape, reducing
crack line division accuracy. Another study [36] applied the plane triangulation modeling
method to detect crack points on a triangular irregular network dataset constructed with
the IDW rasterization method. However, the planar triangulation modeling method may
lack sufficient adaptability to crack shape changes and multi-scale problems, resulting in
missed or false detections in some cases. One study [37] introduced a Gaussian filter to
detect the signal-to-noise ratio distribution gradient, efficiently extracted pavement cracks
from terrestrial laser scanning (TLS) point cloud, and effectively optimized the accuracy of
pavement damage analysis. However, the anti-interference ability against factors such as
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noise and occlusion needs to be further improved. In Ref. [38], a random forest classification
(RFC) method was applied using LiDAR point clouds captured by drones. Multi-scale
and multi-dimensional features are extracted from the intensity and height data of the
point clouds and used as input for the RFC method to identify cracks. One study [39]
proposed a pavement crack extraction technique by converting MLS point clouds into
regular grid structures. This approach introduced a two-dimensional index based on the
acquisition time or incident angle of each 3D point. Crack candidate points are detected
by combining intensity and height differences. Finally, the MLS data are converted into a
“grid map”, demonstrating its feasibility and effectiveness for transverse, longitudinal, and
oblique cracks.

Compared to traditional 2D optical images, 3D point clouds offer more precise spatial
coordinates and include intensity information. Unlike 2D images, 3D point clouds are
unaffected by ambient brightness, providing a more reliable basis for accurately extracting
pavement cracks. In recent years, researchers have extensively explored using point clouds
for pavement crack detection. By thoroughly analyzing point cloud data, researchers can
detect and locate pavement cracks with greater precision, enhancing the robustness and ac-
curacy of the detection process [32,33]. A deep crack-detection method using 3D pavement
data was proposed, utilizing a straightforward threshold strategy to represent crack depth
and length. However, this approach has limitations in successfully extracting complex
and fine cracks. The ITVCrack algorithm [34] offers an automatic crack extraction solution
based on iterative tensor voting (ITV). It first uses the inverse distance weighting (IDW)
algorithm to convert pavement points into geographic reference feature images. Candidate
cracks are then identified using the ITV crack extraction framework, and a morphological
refinement algorithm is applied to distinguish crack curves in the point cloud pavement.
However, due to the characteristics of ITV algorithm, ITVCrack has high computational
complexity when processing large-scale data, and its generalization performance under
different road and environmental conditions is also limited. In [35], the Otsu threshold
method was employed to extract intensity differences in the point cloud for identifying
the fracture skeleton. Noise was then removed using a spatial density filter, and fracture
points were divided into distinct fracture lines using the Euclidean distance clustering
algorithm. However, changes in point cloud density and local shape during fracture line
division reduce accuracy. Researchers [36] used the planar triangulation modeling method
to detect crack points in the triangular irregular network dataset constructed by the IDW
rasterization method. However, the planar triangulation modeling method may not have
enough adaptability to the shape change and multi-scale problems of cracks, resulting
in missing or false detection in some cases. In [37], a Gaussian filter was introduced to
detect the signal-to-noise ratio distribution gradient, and pavement cracks were efficiently
extracted from the ground laser scanning (TLS) point cloud to effectively optimize the
pavement damage analysis accuracy. However, the anti-interference ability for noise and
shielding factors needs to be further improved. In [38], a random forest classification (RFC)
method was implemented using LiDAR point clouds captured by drones. Multi-scale and
multi-dimensional features are extracted based on the intensity and height information
of the point clouds, serving as input for crack extraction via the RFC method. In [39], by
converting the point cloud into a regular grid structure, a two-dimensional index was
introduced to account for the acquisition time or angle of incidence of each 3D point. Then,
the fracture candidate points were detected by the combination of strength difference and
height difference. At last, the MLS data were converted losslessly into a “grid graph”,
and their feasibility and effectiveness on transverse, longitudinal, and oblique cracks were
proven. Traditional 3D point cloud processing methods often rely on hand-designed fea-
tures or simple statistical features, which do not perform well in capturing the details of
crack points. Effectively identifying and segmenting these features is challenging, often
resulting in the loss or misjudgment of crack point features. In pavement point cloud crack
segmentation, capturing local features is essential for detail identification, while combining
global features helps understand the overall structure. Traditional methods struggle to
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process both local and global features simultaneously, thus impacting the accuracy of
pavement point cloud crack segmentation.

2.4. Point Cloud Data Processing Method Based on Deep Learning
2.4.1. Classic Deep Learning Point Cloud Segmentation Algorithm

The tremendous success of deep learning in image processing has led to its expansion
into 3D data processing. In point cloud data processing, classic deep learning segmentation
algorithms have achieved impressive results. Their core idea is to efficiently segment un-
structured and disordered 3D point cloud data using deep learning networks to accurately
identify the boundaries and features of various objects or scenes.

PointNet [40], a pioneering model for point cloud segmentation, uses shared MLPs to
directly process unordered point sets as input and extract features from them. Building
on PointNet, PointNet++ [41] builds on this by introducing a hierarchical feature learning
paradigm that recursively captures local geometric structures. By leveraging local point
representation and multi-scale information, PointNet++ achieves excellent performance
and serves as the foundation for modern point cloud methods [42–44]. An improved Point-
Net++ [45] was used to classify ejector head defect shapes in seamless steel pipe production,
adding a multi-level local feature extraction structure that reduces point count, enhances
information acquisition, and provides better stability than PointNet. Advances in natural
language processing have led to attention-based methods that excel in exploring point rela-
tionships. Models like PCT [46] and Point Transformer [47,48] establish global context in
point clouds through self-attention, effectively managing point positions and capturing spa-
tial structures. A Transformer-based point cloud classification network (TransPCNet) [49]
was developed to identify sewer defects, using a feature embedding module to map points
to a high-dimensional space for feature extraction and closure, learning multi-scale features
through a self-attention cascade. To enhance discrimination between similar defect classes,
a weighted, smooth cross-entropy loss function was designed to prevent overfitting during
classification training. Recently, MLP-type networks have achieved excellent results by
simplifying the network structure and strengthening features. PointMLP [50] proposes a
geometric affine module to normalize features. RepSurf [51] models the umbrella surface
by fitting surface information with triangular planes to provide geometric information.
PointNeXt [52] integrates training strategies and model scaling. These methods provide
useful exploration and innovation in the development of point cloud processing field.

Currently, research methods are mainly focused on validating the effectiveness of
these techniques on relatively more straightforward indoor tasks, while for pavement
crack information extraction, there is the challenge that only a few points contain critical
information. General point cloud segmentation networks often lack specialized designs for
handling sparse feature point clouds, leading to computational redundancy and undue
focus on irrelevant points. In extracting pavement crack information, cracks of varying
scales require different levels of attention, highlighting the need for further improvement
and optimization in current technology. Addressing these issues will enhance the accuracy
and robustness of pavement crack information extraction, making it more applicable to
real-world complex pavement scenarios.

2.4.2. Road Crack Segmentation Task Based on 3D Point Cloud

In road crack detection, deep learning networks based on point cloud data can gener-
ally be categorized into two types: those based on convolutional neural networks (CNN)
and those based on graph convolution. These approaches utilize deep learning’s powerful
representation learning capabilities to significantly enhance the accuracy and efficiency of
road crack detection.
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Convolutional Neural Network: In [13], a method utilizing an adaptive wavelet neural
network (WNN) was proposed for the automatic detection of concrete cracks and other
damage types. However, this approach may encounter errors when identifying cracks
with fine textures. In [53], CrackNet, an efficient model based on a convolutional neural
network (CNN), was proposed for automatic detection of sidewalk cracks on 3D asphalt
surfaces. Although it achieves high pixel accuracy, its efficiency is hindered by a static,
non-learnable feature generator, which restricts its ability to learn. One study [54] proposed
an enhanced architecture based on CrackNet, namely CrackNet II, which abandoned the
feature generator in favor of a more complex framework, which enabled the model to
detect smaller or finer features while removing more local noise. cracks and maintain
faster computing speeds. One study showed [55] CrackNet-V as an efficient deep network
that uses smaller filters and introduces a new shallow crack activation unit. Compared
to the original CrackNet, CrackNet-V features a deeper network architecture with fewer
parameters, enhancing both computational efficiency and accuracy. However, despite
these improvements, its performance gains are modest and highly reliant on the data.
In [56], CrackNet-R, based on recurrent neural networks, was shown to incorporate a gated
recursive multi-layer perceptron (GRMLP) to iteratively update its internal buffer. The
GRMLP performs multiple layers of nonlinear transformations using gated units, allowing
for deeper abstraction of input and hidden states. Compared to CrackNet, CrackNet-R
improves detection speed by four times and significantly enhances detection accuracy.

Graph Convolution: From [57], it can be seen that CrackGCN is an innovative semi-
supervised method for extracting 3D pavement crack information. It uses a novel spatial
enhancement strategy and graph-based features to identify crack points from MLS data,
boosting the effectiveness of GCN. By relying on a small amount of annotated data, Crack-
GCN constructs graphs to represent local features, thereby reducing data degradation and
minimizing dependence on extensive annotations. RangeSeg [58] is a range-aware instance
segmentation framework with a shared encoder backbone and two range-dependent de-
coders. The heavy decoder focuses on detecting distant and small objects by calculating
their distance from the image’s top area, enhancing accuracy for small target detection.
Meanwhile, the light decoder processes the entire image to reduce computational costs,
effectively balancing efficiency and accuracy. SD-GCN [38], a saliency-based extended GCN
network, employs two saliency feature spaces and cylinder-based extended graph convolu-
tion to detect cracks in moving laser scanning (MLS) point clouds. Both CrackGCN and
SD-GCN improve the geometric structure of road point clouds using spatial enhancement
strategies. However, they do not account for long-range neighborhoods and multi-scale
features, resulting in incomplete crack detection within complex structures. SCL-GCN [15],
a hierarchical contrastive learning graph convolution network, was designed for pavement
crack extraction from MLS point clouds. It features a novel dual-branch architecture that
utilizes multi-scale graphs to expand the effective receptive field for remote contexts while
maintaining low computational costs. A graph feature-contrastive learning module guides
the dual-branch GCNs, addressing learning biases from imbalanced data and enhancing
convergence and performance.

PAN: Our research focuses on innovating the segmentation of pavement point cloud
crack scenes. Unlike existing work, we extract 3D pavement crack information directly
from MLS data, avoiding the information loss associated with traditional data conversion
methods. To more fully leverage the rich information in point clouds, we herein introduce
an advanced extended self-attention mechanism module called PC-Parallel.

The PC-Parallel module combines two types of attention modules, operating in par-
allel to more effectively capture contextual relationships in point cloud data. The spatial
attention module targets the local relationships between different feature points, aiding
in accurately locating small cracks. In contrast, the channel attention module focuses on
long-range contextual information across the channel dimension to better understand over-
all road conditions. This organic combination significantly improves the model’s ability
to process pavement crack point cloud data. We constructed a large-scale pavement crack
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point cloud dataset, i.e., LNTU-RDD-LiDAR, by ourselves, providing sufficient training
and evaluation data for research. Through comprehensive empirical results, the effective-
ness of our proposed method on this dataset was verified. Compared with traditional
methods, our model directly detects cracks in MLS data, making the results more accurate
and practical.

This innovative research not only made significant progress in methods, but also
provided valuable resources for research in related fields by constructing a pavement
crack point cloud dataset. Our work injects new ideas into the field of pavement crack
information extraction and provides strong support for future research.

3. Materials and Methods
3.1. Point Attention Net Model Overview

As a general point cloud processing framework, PointNet++ excels in tasks like point
cloud classification, semantic segmentation, and object detection, demonstrating wide
applicability. However, in small target segmentation tasks, such as pavement crack extrac-
tion, PointNet++ uses a fixed receptive field. Although this field is gradually expanded
through multiple Set Abstraction layers, it relies solely on the feature extraction stage of the
PointNet layer to input several points into the fully connected layer, resulting in a relatively
simple encoding method with low robustness.

To address these issues, this paper proposes a PAN network based on PointNet++,
which directly processes unordered point sets as inputs and uses the Set Abstraction module
to extract local features at different levels, capturing local structures in the point cloud.
Through hierarchical subsampling and aggregation operations, point cloud information is
captured at various scales, allowing the network to consider both local structures and global
context. This improves the network’s understanding of the overall and local structure
of the point cloud, enhancing its ability to process point cloud data with multi-scale
characteristics. Using symmetric functions to handle the arrangement of input point clouds
makes the network insensitive to point arrangements, ensuring consistent outputs across
different input configurations. This approach enhances the model’s generalization and
makes it more adaptable to point clouds with various shapes and structures, boosting
its robustness in practical applications. Additionally, the proposed PC-Parallel module
enlarges the model’s receptive field and strengthens encoding robustness. This module
enhances PointNet++’s performance in small target segmentation tasks such as pavement
point cloud crack detection, allowing it to better adapt to varying scales and complexities
of point cloud data and improving its effectiveness in real-world applications.

The PC-Parallel module enhances the network’s capability to capture critical features
over long distances, increasing adaptability and robustness. As illustrated in Figure 1,
the PC-Parallel module is introduced after the SA block, where PointNet layer features
are input. This module combines spatial and channel attention in parallel, leveraging
the strengths of both mechanisms to improve point cloud segmentation performance. By
modeling the attention matrix, the spatial attention component effectively captures the
spatial relationship between any two points, enhancing the ability to identify local crack
features and expanding the model’s perception of the crack region, which enhances the
ability to process crack shapes, filter out irrelevant and noisy points, reduce redundant
information in the point cloud, and improve computational efficiency. Simultaneously,
the channel attention component focuses on capturing remote context information in the
channel dimension, emphasizing feature channels with significant differentiation of crack
features while suppressing those with minor contributions. This reduces noise interference
and redundant information, improving the model’s overall performance.
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Figure 1. PAN model structure, using PointNet++ as the baseline code and adding PC-Parallel
modules in the early and late stages of the network. Adding the PC-Parallel module in the early
stage can increase the correlation and encoding between local geometric features; adding PC in the
later-stage PC-Parallel module can enable better feature interaction in all aspects of the object and
expand the original receptive field.

Finally, aggregating the outputs of the two attention modules enhances the recognition
of crack points across spatial and feature dimensions, achieving more effective multi-scale
feature fusion. This process captures fracture point characteristics at different sampling
levels, allowing the model to better understand the global correlation among fracture points.
The combined use of spatial and channel attention enables the model to fully perceive and
interpret the information within crack points, thereby improving its understanding of the
overall structure and pattern. By obtaining better feature representations, these features
can be used more accurately to predict crack points and provide more powerful modeling
capabilities for crack point cloud segmentation tasks. Moreover, Poly Loss is introduced to
adjust the form of loss function to better balance the imbalance between crack points and
background points and significantly improve the identification accuracy of crack areas.

3.2. PC-Parallel Module

The PC-Parallel module consists of two types of attention branches, as illustrated
in Figure 2: the spatial attention branch learns the relationship between different feature
points, while the channel attention module captures remote context information along the
channel dimension. Finally, the outputs from these two attention modules are aggregated
to achieve a more effective point-level feature representation.

Spatial Attention Branch: Spatial attention allows the module to selectively focus on
local regions around crack points, enhancing local features and improving the perception
of crack areas. This is crucial for crack point segmentation, as crack features are typically
small and scattered. By incorporating spatial attention, the model becomes more adaptable
to point clouds of varying shapes and structures, enabling a deeper understanding and
exploitation of spatial relationships between points to better capture local crack details.
This enables the model to focus more on areas with important structure. By guiding the
model to focus on the key part of the crack point and filtering irrelevant points and noise
points, the computational cost of processing redundant information is effectively reduced,
and the overall work efficiency is improved. Furthermore, spatial attention helps the model
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grasp the global correlations within the point cloud, enhancing its ability to capture overall
structures by learning spatial relationships between points. This approach addresses the
non-uniformity of point clouds, allowing the model to more accurately process crack
points with varying densities and samples, thereby improving its effectiveness in handling
pavement crack point cloud data.
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We first input local features A ∈ RB×C×N , which are initially processed through two
convolutional layers to produce new feature maps T and P, respectively, represented as
T ∈ RB× C

2 ×N , P ∈ RB× C
2 ×N . Then, we reshape them into RB×N , where N = H × W. Next,

matrix multiplication is performed between the transpose of T and P, followed by a softmax
layer to compute the spatial attention map P_att ∈ RB×N×N :

so f tmaxbtp =
eP_attbtp

N
∑

l=1
eP_attbtl

(1)

Among them, P_attbtp is a measure of the positional relationship between t and p. b
represents the batch dimension, t represents the first spatial dimension, and p represents
the second spatial dimension. We first input the feature A ∈ RB×C×N into another convolu-
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tional layer to generate a new feature map G ∈ RB× C
2 ×N and then reshape it to RB×N . Then,

we perform matrix multiplication between P_att and G and reshape it to RB×N . Finally,
the results are input into a convolutional layer and are then element-wise summed with
feature A after normalization operation to obtain the final output E ∈ RB×C×N :

Eatt = GN
(

Conv1dout

(
softmax

(
TT · P√

c · n

)
· G

))
+ residual (2)

It can be seen from the formula that the final feature of each position spatial_attE is
the weighted sum of the features of all positions, taking into account the original features; c
is the number of channels, and n is the number of points. Therefore, it has a global context
view and selectively aggregates context according to the spatial attention map, helping
the model focus on local areas, enhance local features, and reduce the interference of
background point clouds. Similar semantic features improve each other, thereby improving
intra-class compactness and semantic consistency.

Channel Attention Branch: Channel attention is crucial for dynamically adjusting fea-
ture weights across different channels in the point cloud during learning. It emphasizes the
importance of various feature channels, enhancing crack point representation by adjusting
each channel’s weight. Important feature channels are highlighted by emphasizing those
with significant differentiation for crack points. Meanwhile, redundant feature channels
that contribute little to the crack point cloud segmentation task are suppressed, reduc-
ing noise interference and improving the model’s overall performance and segmentation
accuracy for cracks.

By introducing average pooling and max pooling operations, we integrated the spatial
information of the feature map, producing two independent spatial context descriptors
named AvgPool and MaxPool, representing average and max pooling features, respectively.
These descriptors are then fed into a shared network consisting of a multilayer perceptron
(MLP) with hidden layers. To balance parameter count and effectiveness, we set the hidden
activation size to R C

r ×1×1, where r is the decay ratio. After applying the shared network
to each descriptor and processing the merged features through the Sigmoid activation
function, we obtain the channel attention map Hatt. This map generation relies on learning
a shared network with relatively few parameters, reducing computational load. Channel
attention is calculated as follows:

Hatt = sigmoid(MLP(AvgPool(A)) + MLP(MaxPool(A))) (3)

This channel attention design enables the model to adaptively focus on each channel’s
information based on task requirements, thereby enhancing the network’s sensitivity to
point cloud features. This mechanism effectively captures inter-channel relationships in
point clouds, offering a more accurate feature representation for segmentation tasks and
improving the model’s performance and generalization capabilities.

Finally, by integrating the channel attention module and the spatial attention module
F ∈ RB×C×N through matrix concatenation, the model can learn the relationship between
the channel and the location more comprehensively so that the model can understand and
represent the details and global information of pavement cracks more comprehensively.
The synergistic effect of these two attention modules allows the model to more effectively
comprehend the combination of different channels at various positions within the point
cloud. This capability enables the model to adapt more efficiently to cracks of diverse
shapes, sizes, and positions, ensuring stable performance across different types of cracks.
Additionally, this synergy enhances the model’s ability to accurately locate and segment
cracks, significantly improving the precision and accuracy of segmentation tasks. By
understanding the spatial and channel relationships within the point cloud, the model can
deliver more reliable and consistent results in crack detection and analysis. In summary, this
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fusion strategy provides a more comprehensive and flexible feature learning mechanism
for point cloud segmentation tasks.

Fatt = Eatt + Hatt (4)

3.3. Poly Loss Function

In the original PointNet++ framework, NLL Loss (Negative Log Likelihood Loss) is
used as a standard loss function and is calculated based on probability distribution. By
computing the negative log-likelihood between the predicted class probability distribution
of pixels or points and the true label, the model is guided to optimize. However, for fracture
point cloud segmentation tasks, NLL Loss overlooks the local structure of fractures and
the order of points, leading to a lack of global and local structural information and poor
robustness against point cloud rotations or translations.

Given the characteristics of pavement crack point cloud data, there is an imbalance in
the distribution of crack sample points and background points. To effectively address this
issue in pavement crack segmentation, this study introduced Poly Loss [59]. The core idea
of Poly Loss is to enhance the deep learning model’s robustness and accuracy by designing
specific loss functions tailored to the segmentation task. In the point cloud pavement
crack segmentation task, cracks usually occupy a small part of the point cloud, while
most of the area is normal pavement, and the data imbalance will cause the original loss
function to be unable to effectively identify the crack area. By introducing weighting factors
or polynomial terms, Poly Loss effectively addresses the imbalance between crack and
background points, significantly enhancing crack region identification accuracy. It makes
the model more sensitive to edge and detail information, allowing better preservation
and recognition of cracks’ fine structure. By adjusting polynomial coefficients, Poly Loss
optimizes the model’s predictive performance for crack point cloud segmentation, in line
with the task requirements for pavement crack point cloud segmentation. We must balance
the prediction ability of crack point and background point of the model to improve the
overall model performance. Poly Loss is defined as follows:

LPoly−1 = − log(Pt) + ϵ1(1 − Pt) (5)

Among them, ϵ1 is an additional hyperparameter used to adjust the first polynomial
coefficient, and Pt is the predicted probability of the crack point category. By introducing an
additional term ϵ1(1 − Pt) into the original cross-entropy loss function −log(pt) to adjust
the first polynomial coefficient, the classification performance is improved. At the same
time, the softmax operation is introduced to effectively deal with the problem of category
imbalance and strengthen the learning of minority categories.

In this paper, we employed the Poly Loss function to train the entire network archi-
tecture. For the semantic segmentation of pavement cracks in point cloud data, Poly Loss
effectively addresses category imbalance by adjusting polynomial coefficients to weight
crack and background points. This approach enhances the model’s robustness against noise
and outliers, significantly boosting performance. It also improves the model’s stability and
reliability in complex scenarios.

4. Results
4.1. Implementation

This study used a Ubuntu 20.04 operating system, python v3.8.18, pytorch v1.12.1
deep learning framework, and CUDA v11.5.50. The CPU is Intel(R) Xeon(R) Gold 6133 CPU
@ 2.50 GHz, and the GPU is NVIDIA GeForce RTX 3090. All models were trained 300 times,
the initial learning rate was 0.001, each training epoch updated the learning rate, the
optimizer was Adam, and the batch size was 4. The hyperparameters involved in the Point
Attention Net model are shown in Table 1. The proposed Point Attention Net model was
trained using LNTU-RDD-LiDAR Road-1 and Road-4, verified using LNTU-RDD-LiDAR
Road-3, and tested using LNTU-RDD-LiDAR Road-2.
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Table 1. Point Attention Net model parameter settings.

Parameter Value

Learning rate 0.001
Batch size 4
Optimizer Adam

Momentum parameter 0.9
Training cycle 300

4.2. Quantitative Assessment Measures

To comprehensively evaluate the effectiveness of construction disaster detection, this
study used IoU, mIoU, Pre, Rec, and F1 as the main evaluation metrics. Here, Pre calculates
the percentage of correctly predicted pavement cracks to assess model effectiveness, as
shown in Equation (6). Rec calculates the ratio of correctly identified crack points among
all crack points to evaluate detection completeness, as shown in Equation (7). F1 is the
comprehensive evaluation index of Pre and Rec, as shown in Formula (8). TP represents the
number of point clouds in the fracture area correctly identified; FP represents the number
of point clouds incorrectly identified as fractures, and FN represents the number of fracture
point clouds not identified.

Pre =
TP

TP + FP
(6)

Rec =
TP

TP + FN
(7)

F1 =
2 × Pre × Rec

Pre + Rec
(8)

mIoU is an indicator used to evaluate the performance of deep learning point cloud
segmentation tasks. Its calculation method is shown in Equation (10), where N represents
the number of categories. Among them, IoU is only used as an evaluation index for each
crack category segmentation, such as Equation (9).

IoUi =
TPi

TPi + FPi + FNi
(9)

mIoU =
1
N

N

∑
i=1

TPi
TPi + FPi + FNi

(10)

4.3. LNTU-RDD-LiDAR Dataset

In similar studies, most pavement crack information extraction methods focus on a
single crack type, leading to incomplete crack type coverage. To address this, we developed
a pavement crack point cloud dataset named LNTU-RDD-LiDAR for the segmentation task
of pavement cracks on point cloud data. Provincial roads served as the collection source,
where varying weather conditions and terrain changes resulted in a wider variety of surface
cracks. This diversity makes regular, timely, and comprehensive road maintenance more
challenging.

Collect: In the data acquisition stage, a laser WPL7-808-10W was used as a point cloud
scanner, and combined with an airborne laser measurement system, the road point cloud
was recorded to construct the original point cloud dataset. The airborne laser measurement
system consists of two WPL7-808-10W lasers, two 3D AT-C2 cameras, and an inertial
navigation unit. The clear distance between the bottom of the laser sensor and the road
surface was 1900 mm. The point cloud measurement covers a range of 4 m to 2.1 m, the
ranging accuracy reaches 0.5 mm, the absolute accuracy is 10 mm, and the elevation error
between lanes is only 3 mm. The selection of these scanning parameters and settings was
designed to ensure that the obtained point cloud data reached an accuracy level of 0.01 mm
in resolution. The entire experimental dataset contains 188 pavement point cloud segments,
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each of which contains an average of 20 million points. Each segment has a width of 3.8 m
and a length of about 16 m. Table 2 shows the size and high resolution of the dataset that
provides detailed and comprehensive pavement information for this study, which lays a
solid foundation for subsequent crack detection and analysis.

Table 2. Parameters of 3D laser road acquisition equipment.

Hyperparameter Range

Point cloud resolution 0.01 mm
Clear distance between instruments and ground 1900 mm

Point cloud measurement coverage 4 m–2.1 m
Point cloud ranging accuracy 0.5 mm
Point cloud absolute accuracy 1 cm
Elevation error between lanes 3 mm

Use environment Free from ambient light all day long
Detection speed 40 km/h

Mark: After collecting and processing the pavement point cloud data through the
airborne laser measurement system, a pavement crack point cloud labeling task was
carried out. The point cloud labeling tool CloudCompare_v2.13 is used in this paper.
CloudCompare_v2.13 is a powerful open-source point cloud data processing software with
rich point cloud processing functions, including import, export, and editing. Its intuitive
3D visual interface makes visual analysis and interactive operation more convenient.
CloudCompare_v2.13 can efficiently process and annotate point cloud data, which provides
a good data foundation for subsequent tasks.

Table 3 shows the detailed requirements of the labeling task, including the accurate
location, shape, and size of the cracks. The whole labeling process covered 188 crack point
cloud pavement segments, among which the ratio of crack point to non-crack point was
about 0.6:9.4. Then, the LNTU-RDD-LiDAR experimental data were divided into four
subsets: Road-1, Road-2, Road-3, and Road-4, among which Road-1 contains 51 pavement
segments. Road-2 contains the latter 17 road segments, Road-3 contains 59 road segments,
and Road-4 contains 61 road segments. At the same time, the background points were
also marked to consider the overall road surface information. This provides a high-quality
labeled dataset for semantic segmentation of pavement crack point cloud-type data, as
illustrated in Figure 3. Through multi-person verification and quality control, the accuracy
and consistency of the annotation results were ensured, which provides a reliable basis for
the training and evaluation of the model.

Table 3. LNTU_RDD_PCD dataset description table.

Hyperparameter Range

Dataset size
Point cloud dimension 3D

Dataset size 713 GB
Number of datasets 188

Point cloud attribute

Position coordinate x, y, z
Color R, G, B

Intensity Intensity
Category Label

Normal vector Nx, Ny, Nz

Labeling information Class tag Pavement point, crack point
Annotation method Manual labeling

Dataset partitioning

Number of training sets 127
Number of verification sets 21

Number of test sets 20
Partition method Random sampling
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4.4. Comparative Experiment

To verify the effectiveness of the proposed Point Attention Net model for pavement
crack point cloud data segmentation, this study tested the LNTU-RDD-LiDAR point cloud
dataset and compared the model with existing methods, including PointNet [40], Point-
net++ [41], Point Transformer [47], and PointMLP [50]. PointNet, a pioneer of point-by-
point classification, uses a symmetric function invariant to permutations but struggles to
learn local features in complex road scenarios. Point Transformer introduces a self-attention
mechanism to capture the spatial structure of point clouds and establish a global context.
PointMLP incorporates a lightweight geometric affine module to enhance performance.

From Table 4, it is clear that the PAN model improves in mIoU, Rec, F1, and Acc
compared to the PointNet, PointNet++, Point Transformer, and PointMLP models. mIoU
improved by 0.9% relative to the Point Transformer model, Acc improved by 0.1% relative
to the PointMLP model, and F1 improved by 1.3% relative to the Point Transformer model.
As illustrated in Figure 4, experimental results show that, compared with most traditional
deep learning algorithms, the Point Attention Net model mainly benefits from two-branch
attention fusion, which enhances the ability of description feature coding.

Table 4. Comparison of semantic segmentation results between PAN and PointNet, PointNet++,
PointTransformer, and PointMLP on the LNTU-RDD-LiDAR dataset.

Model Rec ↑ F1 ↑ Acc ↑ mIoU ↑ Param.

PointNet 48.1 64.9 89.1 68.4 3.5 M
PointNet++ 59.4 70.4 90.4 69.2 1.41 M
PointMLP 61.3 73.6 91.4 74.3 12.6 M

Point Transformer 62.2 74.1 91.5 74.5 7.8 M
PAN 67.1 75.4 91.5 75.4 1.76 M
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Figure 4. Visual comparison results and corresponding detailed observations of pavement crack
information extraction between PAN and PointNet, PointNet++, PointTransformer, and PointMLP
methods on the LNTU-RDD-LiDAR dataset.

4.5. Ablation Experiments

PC-Parallel: Table 5 shows the results of the gradual improvement of pavement crack
information extraction performance with the increase of attention blocks. Compared with
the original Pointnet ++ baseline network, the introduction of location attention module and
channel attention module can significantly improve the segmentation effect of pavement
crack point cloud. In this case, mIoU reached 75.4%, Rec reached 67.1%, F1 reached 75.4%,
and Acc reached 91.5%.

Table 5. Ablation experiments of PC-Att-Parallel module test on LNTU-RDD-LiDAR dataset.

Model Rec ↑ F1 ↑ Acc ↑ mIoU ↑
BaseNet 48.1 64.9 89.1 68.4

+Position Attention 56.2 70.7 90.9 72.2
+Channel Attention 57.9 70.8 90.7 72.1

+PC-Parallel 67.1 75.4 91.5 75.4
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As shown in Figure 5, incorporating the PC-Parallel module effectively addresses is-
sues of incomplete segmentation and imprecise boundaries. The location attention module
learns spatial interdependencies between features, while the channel attention module cap-
tures dependencies between channels. Both attention blocks positively impact pavement
crack extraction performance. Introducing these modules and fusing their features signifi-
cantly enhances performance. Consequently, the two-branch attention block demonstrates
remarkable effectiveness in the crack segmentation task of pavement point cloud data.
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son and detailed observation of the ablation experimental method.

Poly Loss: Table 6 shows the results of the gradual improvement of pavement crack
information extraction performance with the increase of loss function. Compared to the
original PointNet++ baseline code, the introduction of Poly Loss to handle class imbalance
and focus on difficult-to-classify samples effectively improves the performance and robust-
ness of the model. In this case, mIoU reached 74.0%, Rec reached 63.3%, F1 reached 73.5%,
and Acc reached 91.1%. Therefore, Poly Loss shows remarkable effectiveness in the pave-
ment point cloud data crack segmentation task. As one can see from Figure 6, replacing the
Loss function in the original PointNet++ baseline code with Poly Loss effectively solves the
class imbalance problem. The loss function highlights the features of foreground points and
background points so that the model can better distinguish the slit points and other points.
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Table 6. Ablation experiments of Poly Loss test on LNTU-RDD-LiDAR dataset.

Method Rec ↑ F1 ↑ Acc ↑ mIoU ↑
BaseNet 48.1 64.9 89.1 68.4

+Poly Loss 63.3 73.5 91.1 74.0
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From Figure 6, replacing the Loss function in the original PointNet++ baseline code
with Poly Loss effectively solves the class imbalance problem. The loss function highlights
the features of foreground points and background points so that the model can better
distinguish the slit points and other points.

5. Discussion

In this paper, the 3D laser point cloud pavement crack data have better robustness
than a 2D image under varying illumination conditions and in a low-intensity contrast
environment. It can effectively deal with various kinds of rust and oil covering the road
surface. Experiments on the proposed model show that the indexes of mIoU, Acc, F1, and
Rec are significantly improved, which confirms the effectiveness of the proposed method
compared with traditional methods. The introduction of the Poly Loss function helps to
better capture the edges of cracks and details.

However, the dataset in this paper includes a large number of 3D point cloud data
of pavement cracks collected under clear-weather conditions. However, these data do not
fully cover all environmental conditions. On rainy and snowy days, water and snow can
mask pavement cracks, making it difficult for laser scans to capture precise crack features.
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In addition, point cloud data may introduce additional noise, reducing the detection effect
and recognition ability of the model.

To overcome these limitations and further explore the application of 3D point cloud
datasets in pavement crack segmentation tasks, future research will focus on the follow-
ing aspects:

1. Expanding datasets and multi-source data integration: We plan to collect more
samples under various environmental conditions to enhance the generalization ability of
the model. By combining other sensor data such as RGB images and thermal imaging,
the deficiency of point cloud data can be supplemented to provide richer environmental
information. In addition, we will develop automated data-labeling tools to automatically
generate annotated data using deep learning and machine learning algorithms. This will
help speed up labeling, reduce reliance on manual labeling, and improve the consistency
and accuracy of labeling;

2. Technology integration and practical application: We will study how to seamlessly
integrate the technology into the existing monitoring system and apply it to the actual
road maintenance scenario. This includes addressing compatibility issues and adding new
features without affecting existing system functionality. To ensure the effectiveness of the
technology in practical scenarios, we plan to promote the application in cooperation with
experts in relevant fields. This will help us identify and address potential implementation
issues and optimize the technology based on actual needs. At the same time, we will
evaluate implementation and maintenance costs to design solutions that are both efficient
and cost-effective to support a wide range of applications.

Through these efforts, we hope to significantly improve the usefulness of the dataset
and the applicability of the technology, providing a solid foundation for future road
monitoring and maintenance.

6. Conclusions

This paper introduces the Point Attention Net (PAN) network for extracting 3D pave-
ment crack information, aiming to overcome the limitations of previous point cloud-based
deep learning approaches. The PAN network incorporates a novel PC-Parallel module that
was specifically designed to learn spatial interdependencies and channel dependencies
of features separately. This design significantly enhanced the performance of point cloud
pavement crack segmentation by allowing the network to more effectively capture and
process the intricate details of crack features. Additionally, boundary refinement and
class imbalance issues in point cloud pavement crack segmentation were addressed by
introducing the Poly Loss function. The test results on the LNTU-RDD-LiDAR dataset
show that the proposed method has excellent performance on mIoU, Rec, F1, and Acc,
reaching 75.4%, 75.4%, 67.1%, and 86.8%, respectively. In comparison to existing point
cloud segmentation methods, the proposed approach demonstrates superior performance,
as the proposed method improved the mIoU and F1 indexes by 1.1% and 1.3%, respectively.
The experimental results demonstrate that the proposed method significantly enhances
point cloud pavement crack segmentation.

In future studies, we will explore more effective class-balancing strategies to enhance
the model’s performance and generalization on unbalanced datasets such as highway
pavement crack point cloud data. Additionally, we aim to increase the number of samples
and scene categories, expanding the model’s training set to encompass a broader range
of practical situations, thereby improving its generalization ability when encountering
unknown data.
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