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Abstract: This work introduces a novel fault-tolerance technique for data fusion in Unmanned Aerial
Vehicles (UAVs), designed to address sensor faults through a deep learning-based framework. Unlike
traditional methods that rely on hardware redundancy, our approach leverages Long Short-Term
Memory (LSTM) networks for state estimation and a moving average (MA) algorithm for fault
detection. The novelty of our technique lies in its dual strategy: utilizing LSTMs to analyze residuals
and detect errors, while the MA algorithm identifies faulty sensors by monitoring variations in
sensor data. This method allows for effective error correction and system recovery by replacing
faulty measurements with reliable ones, eliminating the need for a fault-free prediction model. The
approach has been validated through offline testing on real sensor data from a hexarotor UAV with
simulated faults, demonstrating its efficacy in maintaining robust UAV operations without resorting
to redundant hardware solutions.

Keywords: sensor fusion; unmanned aerial vehicles; fault tolerance

1. Introduction

Multisensor data fusion is extensively applied across various robotic mobile applica-
tions including environment mapping and sensor networks [1]. It involves the integration
of data from various sensors and sources of information resulting in a more accurate de-
scription of the process of concern and to more accurate analysis than would be achieved
by relying on a single sensor [2]. Data fusion is a field that encompasses numerous dis-
ciplines such as information theory, artificial intelligence and signal processing [3]. Its
implementation can lead to increased data reliability, accuracy, and consistency.

Despite the clear advantages of data fusion, there exist several challenges and lim-
itations that make their implementation difficult. One major challenge is the need for
redundant sensors, which increases the risk of their failures. Additionally, there are issues
associated to the used data, including the sensors’ imperfection, and the specific appli-
cation requirements. These factors can make it difficult to achieve accurate and reliable
results [2,4,5].

The validation of data fusion techniques also presents two significant difficulties [6].
These are the following:

- The absence of a definitive reference or ground truth data for measuring the data
fusion results.

- The difficulty of isolating the effect of the data fusion algorithm from other factors
that can impact performance, such as sensor errors and noise.

An alternate solution to the validation challenges is to introduce fault-tolerance tech-
niques in data fusion, which work to reduce or remove the impact of defects on the process’s

Electronics 2024, 13, 3342. https://doi.org/10.3390/electronics13163342 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13163342
https://doi.org/10.3390/electronics13163342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3746-3119
https://doi.org/10.3390/electronics13163342
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13163342?type=check_update&version=1


Electronics 2024, 13, 3342 2 of 20

performance [7]. Fault tolerance enables the system to continue operating accurately even
in the presence of faults [8,9]. It is typically achieved through the implementation of fault
detection and system recovery mechanisms. Fault detection identifies faults in the system,
while system recovery works to correct or mitigate the effects of those faults. Together,
these strategies allow the system to continue functioning correctly even when errors occur.

The use of fault-tolerant data fusion, specifically in aircraft navigation systems, has
a history of over 50 years [10]. The current literature mainly focuses on duplication–
comparison techniques for fault tolerance, which involve evaluating outputs from a min-
imum of two independent and duplicate modules that provide the same service. The
duplication approach encompasses two, or more, redundancy techniques:

- One variation of the duplication method is the use of analytical models, which act
as an alternative to physical sensors. A common data fusion technique used in this
approach is the Kalman Filter, which employs a system model for the estimation of an
observation that is redundant to the one provided by the actual sensor. The difference
between the measurement estimated by the model and the one provided by the sensor
is then adopted as a sign of faults. Examples of this type of duplication method can
be found in the literature, such as [11–13].

- Another variation of the duplication method is the use of hardware redundancy,
which involves combining multiple data sources. Unlike the analytical model-based
approach, this technique is based on the evaluation of internal parameters. The work
in [14] uses the temporal analysis of conflicts arising from data source fusion usage to
detect malfunction. Other works like [15,16] suggest the use of dynamic and static
reliability analyses of data sources. Other works discussing these techniques can be
found in [17,18].

As autonomous unmanned aerial vehicles (UAVs) become more prevalent, fault-
tolerant data fusion is emerging as an increasingly important requisite for a secure and
trustworthy operation. UAVs are able to complete a variety of tasks in unknown conditions
where human intervention is either impossible or unsafe [19]. However, these operations
rely on sensors being susceptible to various faults [20,21]. As a result, it is crucial for UAVs
to detect and diagnose sensor faults in order to ensure accurate state estimates. Research
on multisensory fusion strategies for UAVs has been conducted for various applications
such as position, velocity, and attitude estimation [22]. The real-world evaluation of these
strategies on actual UAV systems was also considered in [23].

Various studies have investigated the implementation of fault tolerance in sensor
fusion for UAV systems. In [24], a navigation system of UAVs was designed using a
combination of height sensor measurements and a main Kalman Filter with sub-filters.
A Chi-Square test was employed for fault isolation. Another study [25] developed a
scheme for reliable UAV attitude estimation through the use of an Unscented Information
Filter. Similar approaches were also explored in [26], comparing various Kalman Filters
implemented for sensor fusion. A data fusion technique to tolerate both software and
sensor failures in a quadrotor UAV was proposed in [27] using the duplication–comparison
technique. A similar architecture was applied in [28] on a framework that makes use of
extended Informational Kalman Filters for performing the state estimation of a quadrotor
UAV and Bhattacharyya Distance for residual evaluation.

In the majority of studies examining these methods, state estimation is achieved
through traditional Kalman and complementary filters. Despite their effectiveness, these
traditional techniques present certain limitations [29]. Typically, attitude estimation for
UAV systems is obtained through integrating the sensor measurements of an Inertial
Measurement Unit (IMU). However, the correlation between attitude error and IMU error
can be complex, making it challenging to establish a precise mathematical model. An
alternative solution is to consider this relationship as a time series dataset, which can be
effectively modeled using artificial neural networks [30].

Traditional feedforward neural networks, while powerful for many applications, are
inherently limited when it comes to handling time series data due to their lack of temporal
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memory. These networks process input data in isolation, treating each time point as
independent and not leveraging any historical information from previous inputs. As a
result, they are less effective in tasks that require understanding and predicting based
on sequential data or patterns over time. To address this limitation, Recurrent Neural
Networks (RNNs) were introduced, which are specifically designed to capture temporal
dependencies through their recurrent structure. RNNs maintain a form of memory by
looping connections that allow information to persist across multiple time steps [31,32].
This architecture enables RNNs to use information from previous time points to influence
the prediction of future values, making them more suitable for sequential data tasks.
However, despite their advantages, RNNs face challenges related to the gradient vanishing
problem during training. This issue arises because gradients, which are used to update
the network’s weights, can become exceedingly small, effectively halting the learning
process and preventing the network from capturing long-term dependencies in the data.
To overcome this challenge, Long Short-Term Memory (LSTM) networks were developed
as a specialized type of RNN. LSTMs introduce a unique architecture designed to address
the gradient vanishing problem through the incorporation of special gate units. These gate
units—namely the input gate, forget gate, and output gate—regulate the flow of information
through the network. The input gate controls the extent to which new information is added
to the memory cell, the forget gate determines which information should be discarded,
and the output gate manages how the information in the memory cell is used to influence
the network’s predictions. The memory cell in an LSTM network functions similarly to a
delay operator, providing a mechanism to retain information over extended periods. This
allows the network to maintain and utilize relevant information from previous time steps
effectively. By leveraging these gates, LSTMs can maintain a long-term context, which is
particularly beneficial for tasks that involve complex time series data, such as predicting
future values based on historical sensor readings.

This work developed a new strategy for fault-tolerant data fusion in UAV position
and attitude estimation. The method is an adaptation of the duplication/comparison
approach. A deep learning framework was designed using an LSTM NN for estimating the
state using training data obtained from available sensor measurements. For the diagnostic
layer, faults are identified and assessed through the generation and evaluation of fault
indicators using the moving average (MA) metric. The moving average is a technique
used to identify abnormal behavior in a system by analyzing the historical data of a certain
signal or measurement. This method involves computing the mean value of a certain
amount of data points over a pre-determined time frame and comparing it to the current
value of the signal. Any significant deviation from the average value can signify the
occurrence of a malfunction in the system. This approach is widely used in industrial
settings, such as machinery or process control systems, to detect and diagnose faults in a
timely manner [33]. Compared to similar works in the literature, the proposed architecture
does not rely on estimating the dynamic model of the UAV, thus eliminating the potential
for errors introduced by imperfect model estimates, system uncertainties, or challenging
environmental conditions.

The remaining sections of this paper are organized as follows: Section 2 provides an
overview of the UAV states estimation and fusion, while Section 3 outlines the design
of the fault-tolerant data fusion framework. Section 4 showcases the results of an offline
experiment using real data. Lastly, the paper ends with a summary in Section 5.

2. Preliminaries

We start by identifying two frames: the body frame (B) and the North-East-Down
(NED) navigation cartesian stationary frame (N ) with the orientation between them being
described by the roll (ϕ), pitch (θ), and yaw (ψ), the three Euler angles, and the rotating
Direction Cosine Matrix is represented as:
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RB
N =

 cos ψ cos θ − sin ψ cos ϕ + cos ψ sin θ sin ϕ sin ψ sin ϕ + cos ψ sin θ cos ϕ
sin ψ cos θ cos ψ cos θ + sin ψ sin θ sin ϕ − cos ψ sin ϕ + sin ψ sin θ cos ϕ
− sin θ cos θ sin ϕ cos θ cos ϕ

 (1)

2.1. UAV Attitude Equations

The UAV orientation in a three-dimensional space is predicted through the combina-
tion of gyroscope, accelerometer, and magnetometer sensors. It is represented by the three
Euler angles.

The relation between the angular velocities p, q, and r as measured by the gyroscope
and the time derivatives of the Euler angles can be found using the rotation matrix derived
previously, as shown below:

ϕ̇ = p + q sin ϕ tan θ + r cos ϕ tan θ
θ̇ = q cos ϕ − r sin ϕ
ψ̇ = q sin ϕ sec θ + r cos ϕ sec θ

(2)

To achieve an accurate estimate of the attitude, it is important to fuse the measure-
ments from another sensor with those of the gyroscope. The latter, when integrated, may
accumulate errors and lead to a drift over time, hindering its accuracy as a single unit
attitude estimator. Integrating the Euler rates allows for the derivation of attitude estimates
from the gyroscope readings. However, the integration process, which involves cumulative
addition, results in the buildup of undesirable components in the readings.

On the other hand, the linear accelerations measured along the three orthogonal axes,
denoted as ax, ay, and az, can be employed to calculate the pitch and roll angles with the
help of the accelerometer. This calculation can be performed using Equations (3) and (4),
provided that external disturbances are ignored.

ϕa = tan−1 ay/az (3)

θa = tan−1(−ax/(ay sin ϕ + az cos ϕ)) (4)

The magnetometer provides measurements of magnetic field strengths mx, my, and
mz, which can be used to calculate the heading or yaw angle using the following equation:

ψm = tan−1(−ax/mx cos ϕ + my sin ϕ sin θ + mz cos ϕ sin θ) (5)

The frequency characteristics of the accelerometer, gyroscope, and magnetometer are
complementary, and relying solely on the gyroscope for orientation estimation is not
effective. To achieve precise orientation estimates, it is necessary to combine these sensors.

2.2. UAV Altitude and Position Equations

The accelerometer measures the accelerations relative to the stationary gravity vector,
and are given by  ax

ay
az

 =
d
dt

 ẋ
ẏ
ż

+RB
N

 0
0
−g

 (6)

d
dt [ẋ ẏ ż]T is the velocity vector’s rate of variation as seen from the stationary reference

frame, and is defined as follows:

d
dt

 ẋ
ẏ
ż

 =
d
dt

 ẋb
ẏb
żb

+

 p
q
r

×

 ẋb
ẏb
żb

 (7)

where ẋb, ẏb and żb are the velocity components along the body axes.
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Combining the two equations above results in the following velocity states dynamics:

d
dt

 ẋb
ẏb
żb

 =

 rẏb − qżb + ax − g sin θ
pżb − rẋb + ay + g sin ϕ cos θ
qẋb − pẏb + az + g cos ϕ cos θ

 (8)

The position of a UAV can be estimated by combining data from both a Global Position-
ing System (GPS) receiver and an accelerometer. The GPS offers global location information,
while the accelerometer measures linear acceleration in the UAV’s body frame. Through
combining these two measurements, the accuracy of position estimation is increased. The
accelerometer provides additional velocity and orientation information, and this combined
approach is also useful in situations where the GPS signal is weak or unavailable.

3. Fault-Tolerance Architecture

A fault-tolerant data fusion scheme that incorporates a duplication-comparison method
for detection and recovery purposes is proposed in this section. The design includes two
parallel and separate branches, each implementing a data fusion block (DF1 and DF2)
utilizing redundant or diversified sensors blocks ((S1, S2) and (S3, S4)) for state estimation.
S1 and S3 should perform similarly, whether they are redundant or diversified sensors.
The same applies to S2 and S4. An implementation of this architecture is illustrated in
Figure 1. S1 (and S3) consists of an Inertial Measurement Unit (IMU) that combines a
three-axis accelerometer and three-axis gyroscope. S2 (and S4) consists of a GPS module
for determining the UAV’s absolute position and a barometer for measuring its altitude.

This architecture offers the capability to tolerate or detect hardware faults under the
assumption that only one fault is present at a time in the system. To accommodate for
multiple faults, the level of hardware redundancy should be increased. The principle of
this architecture involves evaluating the outputs from two separate data fusion blocks and
determining if there is any significant discrepancy between them. This difference serves as
an indication of the presence of an error in the system. To diagnose the source of the error,
the outputs of the sensor and the residual from the fusion are analyzed using the moving
average technique. The detailed architecture applied on the UAV is shown in Figure 2.

Figure 1. Fault-tolerant data fusion scheme using duplication–comparison.
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Figure 2. Implementation of fault-tolerance architecture on UAV system.

3.1. Data Fusion Component

An LSTM-based fusion technique is applied on data from magnetometer, accelerome-
ter, and gyroscope sensors for the attitude prediction of a hexarotor UAV, and on accelerom-
eter, barometer, and GPS sensors for its position and altitude prediction.

Starting with the attitude prediction, the output from three tri-axial inertial sensors
are fed into a Long Short-Term Memory (LSTM) network. The nine outputs from these
sensors are integrated into an input array, as depicted in Figure 3. The input to the LSTM
layer includes both current and previous step measurements, resulting in a time step of
2. The model comprises two LSTM hidden layers, and a linear activation function is used
for the prediction. Using a supervised learning approach, the LSTM extracts features from
the inputs, consisting of Euler angles, angular speeds, and accelerations, and generates the
required output. The network outputs are the estimated angles based on the trained model
and sensor measurements during the prediction phase.

Yet, the position network shown in Figure 4 differs from the previous network only in
the input and output layers, where seven measurements (tri-axial accelerometer, barometer
altitude, GPS longitude, latitude, and and altitude) constitute the input, and the UAV esti-
mated position (longitude, latitude, and altitude) constitutes the output (prediction) layer.

A linear activation function is employed since this is a regression problem. In regres-
sion, the goal is to obtain the real output of the network, whereas in classification, the
output is categorized into a specified range using an activation function.
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Figure 3. LSTM neural network-based data fusion for attitude estimation.

Between the two hidden layers of the LSTM architecture, a dropout layer is added.
The purpose of dropout is to prevent overfitting by randomly disconnecting some of the
inputs to the next layer during training, with a probability p. This makes the network
architecture more diverse and eliminates the dependence of any single node on a given
pattern, which leads to more robust and generalized models. The dropout technique aims
to improve the testing accuracy while potentially compromising the training accuracy, and
serves as a form of regularization.

Figure 4. LSTM neural network-based data fusion for position and altitude estimation.

3.2. Fault-Tolerant Component

In this section, we discuss the process of detecting faults in the sensors and how the
system recovers from the faults.

3.2.1. Error Detection Module

As shown in Figure 1, the fault-tolerance architecture component starts with the error
detection module. A comparison between the states (attitude and position) estimated
by the two data fusion blocks is performed in this module using residual generation. A
residual r is the difference between the estimated modeled output ŷ and the actual sensor
output y:

r = y − ŷ (9)

Two sets of residuals are to be computed, rATT = [rRoll rPitch rYaw]
T and rPOS =

[rLat rLong rAlt]
T . When at least one set of the residuals exceeds its specified threshold,

ThDet(ATT) = [ThDet(Roll) ThDet(Pitch) ThDet(Yaw)]
T and ThDet(POS) = [ThDet(Lat)

ThDet(Long) ThDet(Alt)]
T , an error is detected in the system. Then, the error identification
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and recovery module is checked to diagnose the fault and the faulty sensor. Thresholds
are fixed empirically using the trial-and-error technique.

3.2.2. Error Identification and Recovery Module

When a fault is detected through residual generation at time step n, the moving
average algorithm is checked on all fusion block outputs to identify the faulty block. The
moving average algorithm has been widely used in the literature for fault detection. For
example, in [34], it was used for DC series arc detection in photovoltaic (PV) systems. It
consists of the continuous calculation of the averages of a specified number m of data
samples:

MAV =
1
m

m

∑
i=1

d(i) (10)

where MAV represents the moving average to be calculated, m represents the window size
over which the average is to be computed, and d(i) represents the data at the i-th time step.
Two sets of moving averages are to be computed, MAVATT(i) = [MAVRoll(i) MAVPitch(i)]

T

and MAVPOS(i) = [MAVLat(i) MAVLong(i) MAVAlt(i)]
T , with i = 1, 2 corresponding to the

first and second fusion blocks. They correspond to the attitude and position outputs of the
fusion blocks.

At time step n, where an error is detected, the thresholds of the moving averages
corresponding to the non-zero residual components are determined by the moving averages
of the two blocks at that time step, i.e.,:

ThMAVATT(i)
= MAVATT(i)[n]

ThMAVPOS(i)
= MAVPOS(i)[n]

(11)

with i = 1, 2 corresponding to the first and second fusion blocks. From this threshold, we
can fix a region [ThMAVATT(i)

− ϵ, ThMAVATT(i)
+ ϵ] where ϵ is considered a tolerance on this

threshold and is set empirically by trial and error. The same is applied for ThMAVPOS(i)
.

After a fault is detected, if the moving average of the output of a sensor block lies outside
this region, we can isolate the fault in this block. However, if neither of the two blocks
shows out-range values, we consider it a false alarm.

After identifying the faulty sensor block, residuals are generated between each of the
two similar sensors. When a residual is non-zero, the sensor belonging to the faulty block is
identified to be the faulty one. We first examine the measurements from block S1 with those
of the block S3 by evaluating the distances D(S1,S3)a, D(S1,S3)b, and D(S1,S3)c with respect to
thresholds Th13a , Th13b , and Th13c . These distances are defined as

D(S1,S3)a =
√
(ax1 − ax2)2 + (ay1 − ay2)2 + (az1 − az2)2

D(S1,S3)b =
√
(p1 − p2)2 + (q1 − q2)2 + (r1 − r2)2

D(S1,S3)c =
√
(mx1 − mx2)2 + (my1 − my2)2 + (mz1 − mz2)2

(12)

with axi, ayi, azi pi, qi, ri, mxi, myi, and mzi being the outputs of the Inertial Measurement
Unit IMUi. Next, we evaluate the output from sensor block S2 against that from sensor
block S4 by comparing the distances D(S2,S4)a and D(S2,S4)b with the thresholds Th24a and
Th24b . D(S2,S4)a and D(S2,S4)b are as follows:

D(S2,S4)a =
√
(x1 − x2)2 + (y1 − y2)2

D(S2,S4)b
= |z1 − z2|

(13)

The xi and yi positions are obtained from the GPSi, while the altitude zi is measured
by the Barometeri. The steps of the diagnosis and fault-tolerant algorithm are outlined in
Algorithm 1.
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Algorithm 1: Fault-Tolerant Algorithm
Data: ThDet(ATT), ThDet(POS), Th13a, Th13b, Th13c, Th24a, Th24b

begin
if (r(ATT) > ThDet(ATT))||(r(POS) > ThDet(POS)) then

/* A fault is detected at sample n*/;
/* Compute ThMAVATT(1)

, ThMAVATT(2)
, ThMAVPOS(1)

, ThMAVPOS(2)
*/ if

(MAVATT(1) > ThMAVATT(1)
)||(MAVPOS(1)) > ThMAVPOS(1)

then
/* The fault is in the first branch */;
if (D(S1,S3)a > Th13a)||(D(S1,S3)b > Th13b)||(D(S1,S3)c > Th13c) then

S1 is faulty: isolate DF1;
else

if (D(S2,S4)a > Th24a)||(D(S2,S4)b > Th24b) then
S2 is faulty: isolate DF1;

else
/* cannot identify the faulty sensor, keep running without

modifications */

else
if (MAVATT(2) > ThMAVATT )||(MAVPOS(2)) > ThMAVPOS then

/* The fault is in the second branch */;
else

/* cannot identify the faulty branch: keep running without
modifications */;

if (D(S1,S3)a > Th13a)||(D(S1,S3)b > Th13b)||(D(S1,S3)c > Th13c) then
S3 is faulty: isolate DF2;

else
if (D(S2,S4)a > Th24a)||(D(S2,S4)b > Th24b) then

S4 is faulty, Isolate DF2;
else

/* cannot identify the faulty sensor: keep running without
modifications */

else
/* No fault is detected */

end

4. Experimental Results and Analysis

To validate the performance of the outlined approach, experiments with fault injection
were conducted on a hexarotor UAV, and the results are analyzed in depth.

4.1. System Architecture and Setup

The effectiveness of the fault-tolerant architecture is demonstrated through offline
experimental validation using real data and fault injection. An outdoor test environment
was created for data acquisition (Figure 5). The experimental UAV is a Tarot hexarotor
equipped with a pixhawk flight controller and various sensors such as an InvenSense
ICM-20689 tri-axial Inertial Measurement Unit (IMU1) (InvenSense TDK Group, Shanghai,
China), a Bosch BMI055 Inertial Measurement Unit (IMU2) (Bosch, Shanghai, China), two
Ublox NEO-M8N GPS (u-blox, Shanghai, China) modules, and two MS5611-01BA03 (TE
Connectivity, Shanghai, China) barometers.

The hexarotor maintains communication with both the ground station and the RC
(Remote Control) transmitter. This dual communication setup serves different purposes
to enhance the control and monitoring of the hexarotor during its flight operations. The
ground station allows for more extensive and sophisticated control, enabling the execution
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of complex flight paths, autonomous missions, and data transmission for analysis. On the
other hand, the RC transmitter provides a direct and immediate control link, allowing for
quick responses and manual intervention in case of emergencies or unforeseen situations.
This redundant communication ensures a reliable and flexible connection with the hexarotor,
enhancing its safety and versatility in various flight scenarios.

Figure 5. Overview of the test environment.

4.2. Dataset Description

To evaluate the practicality and effectiveness of the proposed framework, two distinct
fault conditions were developed. As a first fault scenario, an additive fault was simulated
on the output of the magnetometer of the first fusion block (Mag1). This type of fault
occurs when the magnetometer is not calibrated for hard iron and soft iron biases. Hard
iron biases are a permanent offset in the magnetic field at the current location, while soft
iron biases are non-permanent biases caused by nearby electronic and magnetic fields. To
minimize this issue, it is important to calibrate the magnetometer beforehand.

The second fault was a freeze fault simulated on the Gyroscope of the second fusion
block. This fault refers to a malfunction or failure in the gyroscope sensor that causes it to
become frozen or unresponsive.

When designing experimental data collection environments, faults representative of
those that could be encountered in a real UAV setting were simulated.

Different datasets were collected using the experimental configurations described ear-
lier. They were composed of accelerometer, gyroscope, magnetometer, GPS, and barometer
sensor measurements. Data were split for training and testing by the following, known
splitting rule: (0.7 − 0.8)× data for training and (0.2 − 0.3)× data for testing. Table 1 below
shows a description of the attitude and position real-data characteristics.
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Table 1. Attitude and position real-data description.

Attitude Position

Data

- Size: 13,166
- Standard Deviation:

■ Roll: 0.041880 rad = 2.4◦

■ Pitch: 0.02582 rad = 1.5◦

■ Yaw: 0.108069 rad = 6.2◦

- Size: 13,166
- Standard Deviation:

■ Lat: 0.000058 m
■ Long: 0.000086 m
■ Alt: 1.101917 m

4.3. Data Fusion Performance

Before feeding the data into the LSTM model, several preprocessing steps were un-
dertaken to ensure their suitability for training. The raw sensor data collected from the
UAV were first cleaned to address any missing values and reduce noise through filtering
techniques. The data were then normalized using Min-Max scaling to bring all features into
a [0, 1] range, which is essential for the effective training of the LSTM model. Subsequently,
the data were reshaped into sequences with a number of time steps of 2. The LSTM network
used for attitude data fusion was configured with the following parameters:

- Input layer of shape (2,9) with 2 being the number of time steps and 9 the number of
input features.

- LSTM layer of shape (2,128) with 128 being the number of units.
- Batch normalization layer of shape (2,128). Batch normalization is applied to each

feature, which helps in stabilizing and accelerating training.
- Dropout Layer of shape (2,128). It applies dropout with a rate of 0.25 to the LSTM

outputs. This helps in regularization by randomly dropping 25% of the units dur-
ing training.

- LSTM layer of 128 units. This layer processes the output from the previous layer
and reduces the sequence dimension, outputting a single vector of 128 features for
each sample.

- Dense layer that produces three outputs. The activation function here is linear, suitable
for regression or multi-class classification depending on the loss function used.

- Batch normalization layer that normalizes the outputs of the dense layer. Batch
normalization is applied to the final layer outputs.

The LSTM network used for position and altitude estimation exhibits the same charac-
teristics but with seven input features.

The root mean squared error (RMSE) was considered a metric for evaluating the deep
learning-based data fusion. For the attitude estimation, the following errors were computed:

RMSERoll =
√

1
n ∑n

i=1(ϕi − ϕ̂i)2

RMSEPitch =
√

1
n ∑n

i=1(θi − θ̂i)2

RMSEYaw =
√

1
n ∑n

i=1(ψi − ψ̂i)2

(14)

For the position estimation, the following errors on latitude, longitude, and altitude
were computed:

RMSELat =
√

1
n ∑n

i=1(Lati − ˆLati)2

RMSELong =
√

1
n ∑n

i=1(Longi − ˆLongi)
2

RMSEAlt =
√

1
n ∑n

i=1(Alti − Âlti)2

(15)

The results of attitude data fusion in the fault-free case are shown in Figure 6.
To evaluate the performance of the Long Short-Term Memory (LSTM) network for

data fusion in comparison to the Extended Kalman Filter (EKF), we analyzed two distinct
attitude datasets characterized by low and high dynamic motion considered in [35]. The
results are illustrated in Figures 7 and 8 and Table 2. The analysis reveals that the LSTM
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outperforms the EKF, particularly in scenarios involving high dynamic motion. This
is evident from the superior accuracy of the LSTM in tracking and predicting attitude
changes under high-dynamic motion scenarios. During high dynamic motion, LSTMs
can leverage their ability to adapt and learn from varying conditions to provide more
robust performance. They can handle abrupt changes and complex patterns in the data
more effectively than traditional models. However, in high dynamic scenarios, the EKF’s
performance can degrade if the system dynamics are highly nonlinear or if the process
and measurement noise assumptions are not accurate. The linearization steps in EKF can
lead to significant errors under such conditions. In addition, LSTMs have the ability to
remember long-term dependencies thanks to their gating mechanisms. This is crucial in
data fusion where past states influence future states over long periods, allowing LSTMs to
better capture and utilize historical information. The performance of the LSTM network
was also compared to that of the Gated Recurrent Units (GRU) network when applied
to data fusion. The results show that the LSTM outperforms also the GRU. In fact, the
LSTMs’ architecture including separate memory cells and additional gates can make the
LSTM network more effective for the data fusion task as it involves complex long-term
dependencies.

Figure 6. Cont.



Electronics 2024, 13, 3342 13 of 20

Figure 6. Data fusion results on fault-free case: attitude states.

Figure 7. Data fusion results on fault-free case during low dynamic motion: attitude states.
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Table 2. Data fusion performance comparison of different techniques using root mean squared error
(RMSE) metric.

Roll RMSE Pitch RMSE Yaw RMSE

EKF 0.0210 0.0153 0.2435
Low dynamic motion LSTM 0.037 0.044 0.075

GRU 0.055 0.043 0.079

EKF 3.14 2.70 2.34
High dynamic motion LSTM 1.39 0.13 0.37

GRU 1.86 0.14 0.42

4.4. Fault-Tolerance Performance

We then examined the effects of two fault injections: an additive fault on the first
magnetometer sensor and a freeze fault on the second gyroscope.

At sample 5000, which corresponds to time t = 3.34 s, an additive fault of value +20 is
added on the magnetometer’s three-axis measurements. The attitude and position residuals
between the two fusion blocks are visualized on Figure 9, noting that the fault injection time
is represented by the red arrow and the thresholds are represented by the horizontal red
lines. This figure shows that only the attitude residuals exceed the predefined thresholds,
which indicates that a fault is detected in the attitude network.

Figure 8. Data fusion results on fault-free case during high dynamic motion: attitude states.
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Figure 9. Residuals after an additive fault on Mag1 (upper figures for Block 1, lower figures for
Block 2). The vertical red arrows indicate the fault injection time. The horizontal red lines represent
the thresholds.

Figure 10 shows the moving averages of the two data fusion blocks implemented with
a window size m = 1000. The thresholds are calculated using Equation (11) with ϵ = 0.1 to
check which of the two blocks shows out-region samples. It is clear that the first branch is
the faulty one.

Figure 10. Attitude moving averages after an additive fault on Mag1.The horizontal red lines
represent the thresholds.

A similar reasoning for the residuals shown in Figure 11 enabled us to determine that
the magnetometer in the first branch is the faulty sensor.

A second fault was simulated on the gyroscope measurements of the S4 sensor block.
The freeze starts at sample 5000, corresponding to time t = 3.34 s. The difference between
the outputs of the data fusion blocks after the occurrence of this fault is shown in Figure 12.
A procedure similar to that above is then followed for the identification of the faulty sensor.
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Figure 11. The residual tests after Mag1 fault. The horizontal red lines represent the thresholds.

Figure 12. The outputs of the fusion blocks after Gyro2 fault.The vertical red arrows indicate the fault
injection time.

Table 3 shows the RMSEs of the different states obtained for the LSTM fusion.
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Table 3. Attitude and position estimation results using LSTM fusion.

Attitude Position

Validation

- Loss: 0.000416
- RMSE:

■ Roll: 0.00751 rad = 0.4◦

■ Pitch = 0.0287 rad = 1.6◦

■ Yaw = 0.0326 rad = 1.86◦

- Loss: 0.00606
- RMSE:

■ Lat: 0.0077 m
■ Long = 0.005 m
■ Alt = 0.94 m

Sensor faults can be categorized into various types, including offset, drift, and freeze.
Each type represents a different way that a sensor’s performance can be impaired, leading
to different effects on residuals, as shown in Figure 13. Offset, drift, and freeze faults
were simulated on the accelerometer measurement. Offset faults are easy to detect in a
shorter detection time because they produce a consistent error pattern. However, drift
and freeze faults require longer detection times due to their gradual nature. The LSTM
network proves highly effective in detecting these various types of sensor faults due to
its ability to model complex temporal dependencies and capture intricate patterns within
time-series data. The LSTM’s architecture is particularly well suited for identifying offset
faults, as it can learn to recognize consistent deviations from expected patterns and flag
persistent shifts in sensor readings. For drift faults, the LSTM is well suited in detecting
gradual, progressive changes over time, leveraging its memory capabilities to identify
trends and subtle variations that deviate from historical norms. By maintaining long-
term dependencies, the LSTM can discern slowly evolving patterns indicative of drift. In
the case of freeze faults, the LSTM’s capacity to track temporal changes allows it to spot
discrepancies when the sensor output fails to vary despite changes in the true values. This
enables the network to identify periods where the residuals diverge significantly from
expected behavior due to the sensor’s inability to adapt to new data.

Thresholds in this study were fixed empirically; they were determined based on
observed data to balance the trade-offs between detecting faults and avoiding false alarms.

Figure 13. Effects of sensor fault types on residuals. The horizontal red lines represent the thresholds.

4.5. Discussion

This architecture can easily be modified to isolate software faults, as previously dis-
cussed in [6]. These faults are typically caused by human error during the development
stage. However, the detection of software faults is beyond the scope of this study.

The architecture proposed in this paper offers several benefits when compared to other
similar approaches for unmanned aerial vehicles. One of the key advantages is that it does
not rely on a dynamic model for sensor fault isolation like [27], which requires tuning the
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model parameters following each failure to prevent drift in model accuracy. In addition,
compared to the architecture in [24], the proposed architecture requires fewer redundant
sensors and data fusion blocks. Traditional fault-tolerant methods, such as weighted-mean
or majority-voting, which use a minimum of three redundant or diversified sensors as
in [24], remain widely implemented in aviation systems. Yet, these methods are costly
and could lead to a substantial weight increase in the system. Finally, unlike the other
architectures based on Kalman Filters [28], this architecture uses a deep learning framework
for data fusion. It was proven in [36] that the LSTM fusion method’s estimated states do not
show cumulative divergence error, unlike those obtained from a standard Kalman Filter.
This comparison is summarized in Table 4.

Table 4. Comparison of the proposed architecture with similar works in the literature.

Technique Characteristic

• Architecture based on Extended Kalman • Need of an identified analytical model
Filter and voting system [27] • Need to tune the parameters of the model

following each failure to prevent model drift
• Architecture based on hardware redund- • Need of at least three diversified or

-ancy [24] redundant sensors for each state
• Architecture based on an informational • Existence of a cumulative divergence error

approach [28] due to the use of a Kalman Filter

This fault-tolerance technique for data fusion in UAVs not only contributes to enhanc-
ing the reliability and efficiency of UAV operations but also holds considerable promise for
broader impacts in the industry. The reduced dependency on redundant hardware would
make UAVs more cost-effective and efficient, which leads to substantial cost savings in
both the manufacturing and maintenance processes.

5. Conclusions

In this paper, a fault-tolerant multi-sensor fusion strategy based on a deep learning
framework was proposed for a UAV system. The data fusion was performed using an
LSTM network, which presents many advantages compared to the traditional Kalman Filter.
However, its performance was tested when the UAV undergoes small displacements. This
paper does not address dynamic motions, which should be examined in future research.
On the other hand, the fault diagnosis steps were formulated using residual generation
between the outputs of the fusion blocks and the evaluation of the moving averages of
these outputs. The moving average used in the residual tests offers numerous benefits
in comparison to other methods due to its simplicity since it does not require complex
mathematical models or algorithms to implement, as well as adaptability, as it can adapt to
changes in the system over time, as the average is recalculated over a sliding window of
recent measurements. In addition, moving average can detect small changes in the data,
which allows for the early detection of faults. However, this study does not account for the
optimization of the thresholds used for fault detection or their effects on detection delay,
which should be explored in future research.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle;
MA Moving Average;
LSTM Long Short-Term Memory;
IMU Inertial Measurement Unit;
RNN Recurrent Neural Network;
NN Neural Network;
NED North-East-Down;
GPS Global Positioning System;
DC Direct Current;
PV Photovoltaic;
RC Remote Control;
RMSE Root Mean Squared Error.
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