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Abstract: Detecting phishing webpages is a critical task in the field of cybersecurity, with significant
implications for online safety and data protection. Traditional methods have primarily relied on
analyzing URL features, which can be limited in capturing the full context of phishing attacks. In
this study, we propose an innovative approach that integrates HTML DOM graph modeling with
URL feature analysis using advanced deep learning techniques. The proposed method leverages
Graph Convolutional Networks (GCNs) to model the structure of HTML DOM graphs, combined
with Convolutional Neural Networks (CNNs) and Transformer Networks to capture the character
and word sequence features of URLs, respectively. These multi-modal features are then integrated
using a Transformer network, which is adept at selectively capturing the interdependencies and
complementary relationships between different feature sets. We evaluated our approach on a real-
world dataset comprising URL and HTML DOM graph data collected from 2012 to 2024. This dataset
includes over 80 million nodes and edges, providing a robust foundation for testing. Our method
demonstrated a significant improvement in performance, achieving a 7.03 percentage point increase in
classification accuracy compared to state-of-the-art techniques. Additionally, we conducted ablation
tests to further validate the effectiveness of individual features in our model. The results validate the
efficacy of integrating HTML DOM structure and URL features using deep learning. Our framework
significantly enhances phishing detection capabilities, providing a more accurate and comprehensive
solution to identifying malicious webpages.

Keywords: phishing webpage detection; graph convolutional network; transformer network; multi-
modal integration; cyberspace security

1. Introduction

The rapid expansion of internet services has revolutionized how individuals and orga-
nizations communicate, conduct transactions, and access information [1-3]. However, this
growth has also led to an increase in cybersecurity threats, with phishing attacks becoming
one of the most widespread and serious forms of online fraud. Phishing attacks involve
creating fake websites that appear to be benign, in order to steal sensitive information such
as passwords, credit card numbers, and personal identification details from users [1,4]. As
phishing techniques become increasingly sophisticated, detecting these fraudulent activities
has become more challenging [5-7].

Phishing websites often attempt to resemble the URLs of benign websites. For exam-
ple, phishing websites may use domains or paths similar to those of benign websites to
deceive users. In such cases, it is difficult to detect phishing solely by analyzing the URL.
However, while phishing websites may imitate the URLs of benign websites, they rarely
replicate the HTML structure completely [8-10]. By modeling the dependencies within
the HTML DOM structure using Graph Convolutional Networks (GCNs) and capturing

Electronics 2024, 13, 3344. https://doi.org/10.3390/ electronics13163344

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics13163344
https://doi.org/10.3390/electronics13163344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3940-3611
https://doi.org/10.3390/electronics13163344
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13163344?type=check_update&version=1

Electronics 2024, 13, 3344

20f21

both character and word-level features of URLs with Convolutional Neural Networks
(CNNs) and Transformer Networks, our method aims to provide a more comprehensive
and accurate detection mechanism. This approach not only improves detection accuracy
but also enhances robustness against sophisticated phishing techniques, making it a more
reliable solution for cybersecurity [2,11,12].

In this study, we propose a novel multi-modal approach that combines URL analysis
and HTML DOM structure analysis to significantly enhance phishing detection accuracy.
Our approach leverages Graph Convolutional Networks (GCNs) to model the complex
dependencies within the DOM structure, and Convolutional Neural Networks (CNNs)
and Transformer Networks to analyze URL features at both the character and word lev-
els. This multi-modal integration allows our method to capture both the structural and
sequential characteristics of phishing websites, making it more robust against sophisticated
phishing techniques.

To illustrate the effectiveness of our approach, Figure 1 visualizes how key features,
extracted using different models, distinguish between benign and phishing websites. Specif-
ically, Figure 1la—c shows the URL character-level analysis, Figure 1d—f shows URL word-
level analysis, and Figure 1g—i depicts HTML tag name analysis. These features are critical
inputs to our deep learning model and play a pivotal role in accurately detecting phish-
ing websites. The visualization underscores the importance of these selected features in
distinguishing between benign and phishing websites, highlighting the superior detection
capability of our model.
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Figure 1. Visualization of key features for phishing and benign classification using three models:
Select K Best, Random Forest, and LassoCV (a—c) show URL character-level analysis, (d—f) show URL
word-level analysis, and (g—i) show HTML tag name analysis.

Moreover, our approach demonstrates that phishing websites, while often mimicking
the URL patterns of benign websites, do not replicate the HTML structure as effectively.
For instance, as shown in Table 1 and Figure 2, both URLs follow a similar pattern of
“script.google.com”, but the HTML DOM structures differ significantly. Case (a) repre-
sents a benign site with a well-organized HTML structure, whereas Case (b), a phishing
site, has a more simplified and irregular structure. This difference in HTML complexity
provides crucial information for our model to identify phishing sites, even when the URL
appears legitimate.

Table 1. Ground truth labels and corresponding URLs for the HTML DOM structures illustrated in
Figure 2. Case (a) represents a benign site with a standard URL, while Case (b) shows a phishing site
that mimics the benign URL but has a different, more simplified HTML structure.

Case Ground Truth URL
(a) Benign https:/ /script.google.com (accessed on 19 August 2024)
(b) Phishing https:/ /script.google.com/macros/s/ AKfycbyjt18r7uGwlzNe6SekQEOyCNgfYHES

mHe1ib-9SIKfuTOKKTu8oaCrd XoXhbg3ixjl/exec (accessed on 19 August 2024)
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Figure 2. Comparison of HTML DOM structures between (a) a benign website and (b) a phishing
website with similar URLs.

Our method has been validated using a large-scale real-world dataset and has achieved
a 7.03% improvement in classification accuracy compared to existing state-of-the-art tech-
niques. These results demonstrate that a deep learning-based approach, which combines
HTML DOM structure and URL features, plays a crucial role in enhancing phishing detec-
tion capabilities.

2. Related Works

Phishing detection has long been a critical area of cybersecurity research. As summa-
rized in Table 2, various approaches have been developed over the years to tackle this issue.
Early approaches mainly focused on analyzing URL features, considering factors like URL
length, suspicious substrings, and domain reputation. For instance, the Texception model
uses convolutional layers to analyze both character-level and word-level information of
URLSs, achieving notable performance on large datasets [8]. Advancements in phishing de-
tection have seen the integration of multiple machine learning techniques, such as MOE/REF,
which combines multi-objective evolution optimization with Random Forest, yielding high
accuracy and recall [13]. Similarly, GramBeddings employs a four-channel architecture
with CNN, LSTM, and attention layers, demonstrating significant accuracy on various
datasets [14]. The use of adversarial examples, as seen in URLBUG, highlights the chal-
lenges posed by adversarial attacks, which degrade the performance of machine learning
models. Notably, URLBUG’s performance was lower compared to other models because
it tested on adversarial URLs generated to deliberately evade detection, showcasing the
difficulties in maintaining robustness when dealing with generated data [15]. For example,
a method combines multiple machine learning techniques to analyze the lexical features
of URLs and web-scraped content, integrating URL structure and web content for a more
comprehensive detection approach by capturing diverse phishing indicators [16]. Another
method explores embedding URL components and testing against adversarial attacks,
enhancing model robustness and making it more effective in responding to sophisticated
evasion techniques [10].

While URL-based methods offer valuable insights, they often fail to capture the full
context of phishing attacks. HTML-based approaches, such as PhishSim, address this
limitation by analyzing the content and structure of the webpage, achieving high detection
rates [17]. Recent research has increasingly focused on integrating URL and HTML features
for a more comprehensive detection strategy. For example, a method integrates MLP
for structured data with NLP models for HTML content, fusing embeddings to improve
detection accuracy [18].
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Table 2. Overview of recent studies on phishing detection, categorized by URL-based, HTML-

based, and multimodal approaches, including methodologies, data representations, datasets, and
performance metrics.

Approach Representation Description Dataset Performance
Uses parallel convolutional Collected 1.7M
Character-level, lavers tE analvze character and samples from Microsoft TPR: 47.95%
Word-level [8] y yzec . browsing telemetry Error Rate: 0.28%
word-level URL information data
Combmes m.UIFl_Ol?JeCth.e Five different URL o
evolution optimization with Accuracy: 99.04%
URL features [13] o datasets (Kaggle, o
Random Forest for phishing Recall: 99.48%
. Mendeley Data)
detection
Utilizes n-gram embeddings Alexa, Majestic
N-gram with a four-channel architecture, (benign): 400 K Accuracy: 98.27%
embeddings [14] includes CNN, LSTM, attention Phishtank, Openphish F1 Score: 98.26%
URL layers (phishing): 400 K
Classification A method to generate . . (Performance reduction
. . Dataset consists of five .
adversarial URL by obfuscating . . occurred due to testing
. . different sources with a
Adversarial URL domain, path, and TLD parts of on generated
. total of 193,386 .
Generation [15] URL to test the robustness of benien: 96,693 adversarial data)
ML-based phishing URL hishtci;n.' 9é 693 Accuracy: —41.62%
detectors p L F1 Score: —59.17%
. Com.b ines multiple ML Dataset consists of 12
Lexical, techniques to extract and - . Accuracy: 99.63%
. different sources with a ..
Web-scrapped [16] analyze lexical and Precision: 99.60%
total of 3,980,870
web-scrapped features
Analyzes robustness of ML Alexa (benign): 10,000 Precision: 91%
URL embedding [10] models against adversarial Phishtank (phishing): Recall: About 93%
attacks Not specified F1 Score: About 92.5%
Ugslormilized Comprson ConmonCol e nes
HTML content [17] (o compare LY DB TPR: About 90%
content with known phishing Phishtank (phishing): FPR: 0.58%
HTML pages 9034 :0.58%
Classification Integrates MLP for structured .
. Alexa (benign): 2000 o
HTML content [18] data with NLP models for Openphish (phishing): Accuracy: 97.18%
conte HTML content, fuses penphish (pfushing): F1 Score: 96.80%
. 2000
embeddings
Combines raw URL. anq HTML Alexa (benign): 22,687 Accgrécy: 98.1%
Raw URL, HTML content analysis using Phishtank (phishing): Precision: 98.2%
content [19] embeddings and convolutional p &) Recall: 98.1%
22,687 o
layers F1 Score: 98.1%
Combines raw URL and HTML C().lle.cted from Accuracy: 95.35%
. S PhishiTank and L o
. Image, Raw URL, tags and image analysis using OpenPhish Precision: 94.39%
Multimodal HTML Tags [9] word embeddings and P Recall: 94.26%
Classification

convolutional layers

benign: 8316
phishing: 7848

F1 Score: 94.34%

URL, HTML [20]

Proposes PhiUSIIL, a phishing
URL detection framework
combining URL similarity
indexing and incremental

learning for real-time threat
adaptation

Open PageRank
Initiative Anon
(benign): 134,850
Phishtank, OpenPhish,
MalwareWorld
(phishing): 100,945

Accuracy: 99.97%
Precision: 99.97%
Recall: 99.98%
F1 Score: 99.98%

Additionally, the WebPhish framework combines raw URL and HTML content anal-
ysis, achieving high accuracy and demonstrating the effectiveness of multimodal ap-
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proaches [19]. The PhiUSIIL framework leverages URL similarity indexing and incremental
learning to adapt to real-time threats, achieving near-perfect accuracy, precision, and recall,
which underscores the potential of real-time adaptive models in phishing detection [20].
Another notable approach integrates raw URL, HTML tags, and image analysis using word
embeddings and convolutional layers, achieving high accuracy and demonstrating the
benefits of incorporating multiple data types for phishing detection [9].

Our approach distinguishes itself from prior research by leveraging Graph Convolu-
tional Networks to effectively model the complex dependencies among HTML tags within
the DOM structure, thereby optimizing feature representation for phishing detection. Fur-
thermore, we employ a Transformer network to integrate URL features with HTML DOM
Graph features, enabling the model to selectively attend to and extract complementary
relationships among these multi-modal features. This precise feature integration enhances
the overall detection accuracy and robustness.

3. Proposed Method

In this section, we present a phishing detection framework that integrates multi-modal
features from HTML DOM Graphs and URL features using Graph Convolutional and
Transformer Networks. As shown in Figure 3, our approach combines different deep
learning models to achieve a more accurate classification of phishing webpages.
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Figure 3. Overview of the proposed phishing detection framework integrating HTML DOM graphs
and URL features.

3.1. URL and HTML Data Representation for Phishing Detection

To effectively detect phishing webpages, it is essential to analyze and represent the
data from multiple perspectives. This section outlines our approach for representing both
URL and HTML data, which is crucial for identifying patterns and characteristics unique
to phishing attempts. Our method uses deep learning techniques to process and extract fea-
tures from URLs and HTML content, providing a robust framework for phishing detection.
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3.1.1. Char-Based URL Feature Extraction

The character-based URL feature extraction involved converting each URL into a
matrix representation using one-hot encoding. Each character in a URL was mapped to
its corresponding ASCII value, resulting in a numerical representation. As outlined in
Algorithm 1, the ASCII values were then converted into a 128 x 128 one-hot encoded
matrix, where each row represented a character, and each column corresponded to a
possible ASCII value. This process ensured that the URL was represented as a fixed-
size input suitable for CNN processing. The CNN architecture employed consisted of
three convolutional layers with ReLU activation functions and max-pooling layers to
capture local dependencies and spatial hierarchies in character sequences. To summa-
rize, the URL string is first converted into a list of ASCII values. These values are then
padded or truncated to a fixed length of 128 characters to maintain uniformity across
all URLs. The padded ASCII values are finally one-hot encoded into a 128 x 128 matrix.

Algorithm 1: Char-based URL Representation for Phishing Detection

1: Input: A URL string

2: Output: A 128 x128 matrix representing the URL

3: function ConvertToASCII(url)

4 return [ord(char) for char in url]

5: end function

6: function ApplyPadding(ascii_values)

7 max_length < 128

8 return (ascii_values[:max_length] + [0] x (max_length — len(ascii_values)))[:max_length]
9: end function

10: function OneHotEncode(ascii_values)

11: matrix <— zero matrix of size 128 x 128
12: for i, value in enumerate(ascii_values) do
13: matrix[i][value] + 1

14: end for

15: return matrix

16: end function

17: ascii_values < ConvertToASCII(URL)

18: padded_values <— ApplyPadding(ascii_values)
19: matrix <— OneHotEncode(padded_values)

Given this representation, we proceed with feature extraction using CNNs. Convolu-
tional Neural Networks (CNNSs) are a class of deep neural networks specifically designed
to process data with a grid-like topology, such as images or sequences of characters. They
are particularly effective for tasks involving spatial hierarchies and pattern recognition. In
the context of char-based URLSs feature extraction, CNNs are used to capture local patterns
and dependencies among characters in the one-hot encoded URL matrix. By applying
convolutional filters across the matrix, CNNs can identify and learn important charac-
ter combinations and sequences that may indicate phishing attempts. The convolutional
operation is given by Equation (1).

H; = f(¢(W;,X) +by) (1)

where Hj is the output feature map of layer /, W, represents the convolutional filter weights,
¢ denotes the convolution operation, b; is the bias term, and f(+) is the activation function.

The key advantage of CNNs in this application is their ability to automatically learn
and detect patterns that are spatially invariant, making them well-suited for identify-
ing phishing URLs where certain character sequences or patterns might recur across
different URLs.
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To train the CNN model, we define the loss function as the categorical cross-entropy
loss, which measures the discrepancy between the predicted probabilities and the true
labels. The loss function Lcyy is given by Equation (2).

1
Lonn = =5 Lty Loy Viclog(e(WoHL (X)) + bo),) @

where N is the number of URL samples. C is the number of classes. y;. is the true
label of the i-th sample for class ¢, X; is the i-th input sample. Hp(X;) is the feature
map obtained from the last layer Ly of the CNN for the i-th input char-based URL.
Wy and b are the weights and biases of the output layer, respectively. ¢ is the softmax
function. p; . is the predicted probability of the i-th input belonging to class ¢, computed as
o(WoHL(X) +bo)..

3.1.2. Word-Based URL Feature Extraction

Word-based URL feature extraction commenced with the segmentation of URLs into
tokens using special characters such as slashes (/), dots (.), and hyphens (-) as delimiters.
These tokens were further refined by filtering out common stopwords and retaining only
those with semantic significance. Subsequently, a frequency analysis was performed on
the tokens to construct a vocabulary dictionary containing the top 5000 most frequently
occurring words, each mapped to a unique integer identifier. The tokenized URLs were
transformed into sequences of integers and padded to a uniform length of 20 tokens to
facilitate batch processing. These integer sequences served as inputs to the Transformer
network, which consisted of an embedding layer, a multi-head attention mechanism with
two attention heads, and a position-wise feed-forward network. The attention mechanism
computed contextual relevance by evaluating the importance of each token within the
sequence, allowing the model to capture long-range dependencies effectively.

To represent URLs as sequences of words effectively, we first split each URL string
using a set of predefined special characters. This splitting process converts the URL into a
list of words. Next, we build a dictionary of the most frequently occurring words across
the dataset, mapping each word to a unique integer. The URLs are then transformed into
sequences of these integers, which can be processed by Transformer Networks to capture
contextual dependencies among the words.

Algorithm 2 describes the detailed steps for converting URLs into word-based se-
quences of integers. Following this preprocessing, the transformed URL sequences are
fed into a Transformer Network to capture the contextual relationships and dependencies
among the words. Transformer Networks are particularly well-suited for this task as
they excel in modeling long-range dependencies and capturing intricate patterns within
sequential data. In the context of word-based URLs feature extraction, we utilize the
Transformer’s ability to understand the contextual meaning of words within a URL by
employing self-attention mechanisms. The attention mechanism, as shown in Equation (3),
computes the relevance of different parts of the sequence, allowing the model to weigh the
importance of each token dynamically.

KT
Attention(Q, K, V) = softmax( Q

Vi

where Q, K, V are the query, key, and value matrices, and dy, is the dimension of the key
vectors.

4 )
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Algorithm 2: Word-based URL Representation for Phishing Detection

: Input: A list of URL

: Output: Transformed URL into sequences of integers

: Initialize an empty dictionary D

: Define special characters S < “1@#%A&*() +-=[1{}\—"“,./<>?"
: function SplitURL(url)

return split(url, S)

: end function

: function BuildDictionary(words)

© N U WN R

9: Count and sort words by frequency
10: return top 5000 words with indices 1 to 5,000
11: end function

[y
N

: function TransformURL(url, D)

words < SplitURL(url)

sequence < [D[word] if word € D else 0 for word in words]
return (sequence[:20] + [0] x 20)[:20]

: end function

: all_words < flatten(SplitURL(url) for url in list_of URL)

: D < BuildDictionary(all_words)

: all_sequences < [TransformURL(url, D) for url in list_of URL]

[ e e T e T o S SR
O N U AW

For a given input sequence X, the multi-head attention is defined as Equation (4).

MultiHead (Q, K, V) = Concat(heady, . . ., head),, ) WO
head; = Attention(QWZ, KWK, vwY) @)
where WiQ, WX, WY are learned projection matrices. The output of the multi-head attention
is then passed through a feed-forward neural network. Let x be the output of the multi-head
attention mechanism.
The feed-forward neural network is defined as Equation (5).

FFN(x) = max(0, xWy 4 b1)Wp + by (5)

where Wy, Wy, by, by are learned parameters. The final output from the Transformer model
is given by Z = Transformer(X), which represents the high-level features extracted from
the input sequence. The Transformer function is defined as Equation (6).

Transformer(X) = FFN(MultiHead(Q, K, V)) (6)

These high-level features extracted by the Transformer are then fed into a final clas-
sification layer to detect phishing webpages. To train the Transformer model, we define
the loss function as the categorical cross-entropy loss, which measures the discrepancy
between the predicted probabilities and the true labels. The loss function Lryansformer iS
given by Equation (7).

1 N C
Lransformer = _Nzizl Zczl yi,clog(‘7<wozi + bO)c) @)

where X; represents the i-th input sequence, Z; is the output of the Transformer for the i-th
input sequence. Wp and b are the weights and biases of the output layer, respectively, o
is the softmax function, and p; . is the predicted probability of the i-th sample belonging to
class ¢, computed as ¢(WpZ; + bo)..

3.1.3. DOM Graph Feature Extraction

The HTML documents were parsed to extract the DOM tree structure using Beautiful-
Soup 4.12.3, a Python 3.9 library for web scraping. Each HTML element was represented as
anode, and edges were established based on parent—child relationships in the DOM hierar-
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chy. The graph representation captured both the element types and their relational context,
crucial for understanding the structural nuances of phishing pages. The HTML content of
each webpage was first parsed into a DOM tree using BeautifulSoup. Each HTML element
(e.g., <div>, <a>, <p>) was treated as a node in this tree. The hierarchical relationships
between these elements were preserved, with parent—child relationships represented as
edges in the graph. Each node in the graph represented an HTML tag, and attributes
of these tags (such as id, class, and href attributes) were initially considered as potential
features. However, to maintain computational efficiency and focus on structural aspects,
the node features were limited to the tag names and a simplified attribute representation,
such as the presence or absence of key attributes (e.g., href, src).

The process begins with parsing the HTML document to construct the DOM tree.
This tree structure is then converted into a graph, where nodes represent HTML elements,
and edges represent parent—child relationships between these elements. The detailed
steps for this transformation are provided in Algorithm 3. Once the DOM tree is repre-
sented as a graph, we proceed to feature extraction using Graph Convolutional Networks
(GCNs). GCNs are well-suited for this task as they excel in capturing the relational and
structural information inherent in graph data. The following equations outline the opera-
tions involved in applying GCNs to the graph representation of the HTML DOM graph.

Algorithm 3: Graph-based HTML DOM Graph Representation for Phishing Detection

1: Input: An HTML document

2: Output: A graph representation of the HTML DOM Tree
3: function ParseHTML(html document)

4: dom tree <— parse html document into DOM Tree
5: return dom tree

6: end function

7: function BuildGraph(dom tree)

8: if dom tree is empty then

9: return 0 # Return 0 if no nodes or edges exist
10: end if

11: Initialize graph as an empty graph

12: Use a queue to perform level-order traversal of dom tree
13: while queue is not empty do

14: node < dequeue()

15: Add node to graph as a vertex

16: for each child of node do

17: Add child to graph as a vertex

18: Add an edge from node to child in graph
19: end for

20: end while

21: return graph

22: end function
23: dom tree < ParseHTML(HTML document)
24: graph < BuildGraph(dom tree)

In the context of DOM tree feature extraction, Graph Convolutional Networks (GCNs)
extend the concept of convolutional networks to graph-structured data. GCNs effectively
learn node representations by aggregating features from neighboring nodes. This capability
allows GCNs to capture complex relationships within the HTML DOM tree by leveraging
both the structure of the graph and the attributes of its nodes. The graph convolutional
operation is given by Equation (8).

H(l+1) = ReLu(D—%AD—%HU)w(l)) ®)
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where A = A + I is the adjacency matrix with added self-connections, D is the diagonal
node degree matrix of A, H{ is the matrix of activations in the I-th layer, WO is the weight
matrix of the [-th GCN layer, and ReLU is the activation function applied element-wise.

The initial input to the GCN, H(O), is the feature matrix X derived from node attributes.
The output of the final GCN layer H") serves as the high-level feature representation of
the graph.

To train the GCN model, we use the categorical cross-entropy loss function, which
measures the discrepancy between the predicted class probabilities and the true labels. The
loss function Ly is defined as Equation (9).

Coon = —%Zi L X viclog (7(WoH® (X;) + bo) ) )

where N is the number of URL samples, C is the number of classes, y; . is the true label of
the i-th sample for class ¢, ¢ is the softmax function, X; is the i-th input graph sample, and
H()(X;) is the output from the last GCN layer for the i-th input graph. The use of GCNs
significantly enhances phishing detection accuracy by effectively leveraging the structural
information inherent in HTML DOM graphs.

3.2. Ensemble Classifier Utilizing Char-Based URL, Word-Based URL, and HTML DOM
Graph Features

In this section, we propose a multimodal ensemble model for phishing detection.
Various features can be utilized to detect phishing attacks, such as URL, SSL certificate,
HTML DOM, webpage content, HTML header, and protocol, among others [1,4,7,21].
However, many of these features can be manipulated to appear benign, potentially de-
ceiving both users and phishing detection systems [4]. The key point, as argued by Wang
et al. [22], is that the most influential feature in determining whether a case is phishing
varies for each instance [23-29]. Therefore, it is crucial to leverage as many features as
possible simultaneously while excluding those susceptible to manipulation that might
hinder learning [22,28-34]. This approach maximizes the phishing detection capability.

We introduce an ensemble classification model that integrates the strengths of CNNs
for char-based URL features, Transformers for word-based URL features, and GCNs for
graph-based HTML DOM features. This multi-modal approach aims to leverage the
complementary nature of these different feature representations to enhance the overall
accuracy and robustness of phishing detection. The architecture of the ensemble model is
illustrated in Figure 4.

The architecture of our proposed model was designed to effectively integrate multiple
data modalities for phishing detection, combining URL and HTML DOM features. The
selection of model components and hyperparameters was guided by empirical experimen-
tation and best practices in the field of deep learning. We employed Convolutional Neural
Networks (CNNs) to process character-based URL features, leveraging their strength in
capturing local spatial hierarchies. The architecture includes two convolutional layers with
kernel sizes of 3 x 3, chosen for their ability to detect small patterns and variations in
character sequences. The ReLU activation function was applied to introduce non-linearity,
and max-pooling layers were used to reduce dimensionality and computational cost. We
utilized Transformer networks for word-based URL analysis due to their superior ability to
model long-range dependencies and context within sequences. The model included two
attention heads, providing a balance between computational efficiency and the ability to
capture complex relationships within word sequences. Positional encoding was crucial
for maintaining sequence order, enhancing the model’s understanding of contextual word
relationships. We applied Graph Convolutional Networks (GCNs) to capture the relational
information inherent in the HTML DOM structure. The architecture consisted of two GCN
layers to aggregate information from neighboring nodes effectively, with the number of
features per node optimized to ensure a good trade-off between model complexity and
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accuracy. The ReLU activation function, consistent with that used in CNNs, was utilized to
ensure efficient learning across layers.
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Figure 4. The ensemble classification model combining CNN, Transformer, and GCN components for
phishing detection.

The ensemble classifier consists of three primary components. First, the CNN compo-
nent processes the one-hot encoded URL character matrix and extracts local patterns and
dependencies among characters. The output is defined as Hgpyy = CNN(Xhar). Second,
the Transformer component transforms URLs into sequences of integers based on word
tokens and captures long-range dependencies and contextual relationships among words.
The output is defined as Hy,o;q = Transformer(Xyorq). Third, the GCN component models
the structural and relational information of the HTML DOM tree using graph convolutional

operations. The output is defined as Hgraph = GCN (A, Xgmph).

The extracted feature representations from the three components are concatenated to
form a comprehensive feature vector:

Hconcat = Concat (Hcharr Huyord, ngaph)

Z = Wy Trans former(Hy,,.,;) + bic (10)
P = softmax(Z)

where W fe and b fc are the weights and biases of the fully connected layer, Heoncat is the
concatenated feature vector, and P represents the predicted probabilities for each class.

The ensemble model is trained based on the categorical cross-entropy loss function,
defined as Equation (11).

1N cC
Lenn = _NZZ‘:1 Zczl yi,clog(Pi,c) (11)
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where N is the number of URL samples, C is the number of classes, y; . is the true label of
the i-th sample for class c, and P; . is the predicted probability of the i-th sample belonging
to class c.

By integrating the char-based URL, word-based URL, and HTML DOM graph features
and passing them through a Transformer layer, our ensemble model leverages the unique
strengths of each feature representation, resulting in a more accurate and robust phishing
detection system.

4. Experimental Results
4.1. Dataset and Preprocessing

In this section, we detail the datasets used and the preprocessing steps undertaken to
prepare the data for our experiments. Table 3 summarizes the datasets used for validating
the proposed method. Our analysis is based on two primary datasets: benign data sourced
from Common Crawl and phishing data obtained from Phishtank. These datasets form the
foundation of our study.

Table 3. Summary of Datasets Used for Phishing Detection Analysis.

Source Class Quantity Examples
Common Crawl Benign 60,000 https:/ /www.policyspark. . .
Phishtank Phishing 14,912 http:/ /yuijjf.duckdns. ...
Mendeley Data Phishing 14,573 http:/ /masf krhes.boston. . .

To address the significant class imbalance in the benign dataset, which could negatively
impact the evaluation of our experimental results, we performed a careful down-sampling.
Specifically, the benign dataset was reduced to 60,000 instances to achieve a more balanced
dataset, ensuring a fair comparison with the phishing data. This step was essential to
maintain the validity of our evaluation and to avoid skewed results that could misrepresent
model performance.

We collected a total of 38,060 phishing instances, carefully selected to encompass
a wide range of phishing techniques. From this collection, we used BeautifulSoup to
parse the HTML content. Through this process, we successfully retrieved the HTML
content for 14,912 instances. This subset of successfully parsed phishing data provided a
robust foundation for further analysis and modeling, ensuring that our experiments were
grounded in high-quality data.

To contribute to the research community and further support advancements in phish-
ing detection, we plan to release this dataset as an open-source benchmark. This dataset,
which includes a diverse and comprehensive collection of phishing and benign data, will
serve as a valuable resource for effectively benchmarking future phishing detection models.
Our goal is to promote innovation and drive progress in this critical field of cybersecurity.

4.2. Implementation Details and Hyperparameter Settings

For the implementation of our experiments, we used the Python deep learning library
PyTorch (version 2.0.1) in conjunction with the graph deep learning library Spektral (version
1.3.0), TensorFlow-gpu (version 2.9.0), and Scikit-learn (version 1.3.0) for preprocessing and
evaluation purposes. We conducted our experiments on NVIDIA A6000 GPUs.

The CNN component utilizes two 2D convolutional layers with dropout in between to
prevent overfitting. The Transformer component includes embedding, positional encoding,
dropout, and a transformer encoder layer to capture complex patterns within the data. The
GCN component employs GCNConv layers and global mean pooling to effectively model
graph-structured HTML DOM data.

The ensemble model integrates these components, using an embedding layer followed
by a transformer encoder and a linear layer to combine the strengths of each individual
model. This setup allows for capturing diverse features and dependencies, improving the



Electronics 2024, 13, 3344

overall phishing detection performance. The specific hyperparameter settings, such as the
number of units, activation functions, and parameter counts, are optimized for effective
model training and evaluation. Table 4 summarizes the layers and configurations used
in the ensemble model, providing a clear overview of the implementation details and

parameter settings.

Table 4. Summary of the Proposed Multi-modal Ensemble Model Layers.

Convolutional Neural Network Transformer Graph Convolutional Network
Operation No. of Parameters Operation No. of Parameters Operation No. of Parameters
Convolution 2D 160 Embedding 320,000 GCNConv 6464
Dropout - lgiscl;;);agl - Dropout -
Convolution 2D 4640 Dropout - GCNConv 2080
Dropout - Trgﬁi?;ger 33,472 Gl;zillﬁga“ -
Ensemble for Selectively Weighting and Combining Features Based on Transformer
Operation No. of Units/Heads Activation Function No. of Parameters
Embedding 8 relu 40,000
Positional Encoding - - -
Dropout - - -
Transformer Encoder 2 heads relu 672
Linear 2 - 66

4.3. Performance Comparison

We evaluate the performance of our proposed ensemble model in comparison to
various baseline models and state-of-the-art techniques using 10-fold cross-validation. The

evaluation metrics considered are accuracy, precision, recall, and F1 score.

The performance of the base networks reveals several key insights. The Convolutional
Neural Network (CNN) demonstrated strong performance with high accuracy and recall,
indicating its effectiveness in capturing character-level features from URLs. Similarly, the
Transformer model performed well, showcasing its ability to handle sequential dependen-
cies in URLs. However, the Graph Convolutional Network (GCN) showed slightly lower
performance compared to the CNN and Transformer, which may be due to the inherent

complexity of modeling HTML DOM trees.

Among the comparative studies, the URLNet model outperformed several others, with
a notable accuracy and precision, demonstrating the effectiveness of combining multiple
URL features. The Texception model, while having a high recall, showed significant
variability in its precision, indicating potential challenges in handling diverse phishing
tactics. PhishDet, on the other hand, achieved the highest scores across most metrics,

affirming its robustness and reliability in phishing detection tasks.

Our proposed ensemble model demonstrated exceptional performance, achieving
up to a 22% improvement in precision and up to a 23% improvement in recall compared
to baseline models. These results highlight the superiority of our approach, combining
the strengths of CNNs, Transformers, and GCNs to create a more comprehensive and
effective phishing detection system. The ensemble model’s ability to leverage multiple
modalities of data significantly enhances its detection accuracy and robustness against
various phishing techniques. Table 5 provides a detailed comparison of the performance
metrics for all evaluated models, illustrating the effectiveness of our ensemble approach
in improving phishing detection accuracy and reliability. The best performance for each

metric is highlighted in bold.
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Table 5. Performance Comparison of Different Models (10-fold cross-validation).
Method Accuracy Precision Recall F1 Score
Base networks
CNN 0.8952 + 0.0190 0.8626 + 0.0205 0.8952 + 0.0190 0.8736 + 0.0204
Transformer 0.8868 + 0.0366 0.8859 + 0.0678 0.8868 + 0.0366 0.8856 + 0.0560
GCN 0.8739 £ 0.0091 0.8684 + 0.0086 0.8740 £ 0.0090 0.8605 + 0.0144
URLDet [35] 0.8014 + 0.0214 0.4007 4+ 0.1042 0.5089 + 0.1189 0.4959 + 0.0510
HTMLDet [35] 0.9154 + 0.0292 0.8784 + 0.0221 0.8416 + 0.0301 0.8596 + 0.0255
Comparative studies
URLNet [36] 0.9425 + 0.0208 0.9033 4+ 0.0785 0.8051 + 0.1195 0.8453 + 0.0637
Texception [8] 0.8534 4+ 0.1308 0.8457 + 0.1536 0.9714 4+ 0.0286 0.8889 + 0.0954
WebPhish [19] 0.9290 + 0.0719 0.9336 + 0.0353 0.8689 £+ 0.1311 0.8937 + 0.1386
PhishDet [35] 0.9853 + 0.0058 0.9522 4+ 0.0204 0.9721 + 0.0070 0.9620 + 0.0091
Ours
Ours 0.9812 4+ 0.0033 0.9658 + 0.0125 0.9765 + 0.0042 0.9709 + 0.0050

4.4. Hyperparmeter Impact Analysis

In this section, we explore the influence of different hyperparameters on the perfor-
mance of our proposed phishing detection model. One of the critical hyperparameters in
our model is the number of heads used in the Multi-Head Attention mechanism. Multi-
Head Attention allows the model to focus on different parts of the input data simultane-
ously, providing a richer and more diverse representation. We conducted experiments
using four different numbers of attention heads: 4, 8, 16, and 32, to determine the optimal
configuration for our model. Table 6 presents the results of these experiments, showing
the accuracy, precision, recall, and F1 score for each configuration. The best performance
for each metric is highlighted in bold. The results indicate that using eight attention heads
achieved the highest overall performance across all metrics, with an accuracy of 0.9884,
precision of 0.9916, recall of 0.9938, and an F1 score of 0.9927. This suggests that using eight
heads offers a good balance between model complexity and the ability to capture diverse
aspects of the input data, leading to more accurate and reliable phishing detection.

Table 6. Performance metrics for different batch sizes during model training.

No. of Heads Accuracy Precision Recall F1 Score
4 0.9851 0.9600 1.0000 0.9796
8 0.9884 0.9916 0.9938 0.9927
16 0.9371 1.0000 0.9239 0.9610
32 0.9732 1.0000 0.8250 0.9041

4.5. Ablation Study

In this section, we present the results of our ablation study to evaluate the importance
of incorporating character-based URL, word-based URL, and HTML DOM graph features
in our phishing detection model. Table 7 summarizes the performance metrics (accuracy,
precision, recall, and F1 score) for various configurations of our model, where different
combinations of the three feature types are used. The observation of the highest perfor-
mance when using all three features together suggests that incorporating each feature is
crucial for effective phishing detection.
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Table 7. Performance Metrics for Different Feature Combinations in the Ablation Study.
Data
Accuracy Precision Recall F1 Score
Char-Based URL Word-Based URL HTML DOM Graph
v 0.8952 0.8626 0.8952 0.8736
v 0.8868 0.8859 0.8868 0.8856
v 0.8739 0.8684 0.8740 0.8605
v v 0.9540 0.9167 0.8544 0.8844
v v 0.9817 0.9436 0.9647 0.9541
v v 0.9789 0.9245 0.9730 0.9481
v v v 0.9884 0.9677 0.9759 0.9718

4.6. t-SNE Visualization of Feature Integration

In this section, we present t-Distributed Stochastic Neighbor Embedding (t-SNE)
visualizations to illustrate the effectiveness of integrating different features for phishing
detection. The t-SNE algorithm reduces the dimensionality of our feature space, enabling a
clearer visual comparison of the feature distributions. Figure 5 depicts the t-SNE plots for
different feature combinations. Figure 5a represents the data distribution using the URLNet
method, which relies solely on character-based and word-based URL features. The data
points are scattered with some clustering, indicating that while URLNet captures certain
phishing characteristics, it lacks robustness due to its exclusive reliance on URL-based
features. In Figure 5b, the distribution is illustrated using the Texception method, which
also depends on word-based URL features. The method shows some clustering but falls
short of achieving optimal phishing detection accuracy, likely due to its limited feature set.
Figure 5c presents the data distribution using the proposed method, which utilizes only
character-based and word-based URL features, deliberately excluding the HTML DOM
graph structure. However, the absence of HTML structure limits the model’s ability to fully
separate benign and phishing instances.
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Figure 5. t-SNE Visualization of Feature Integration for Graph-Based and Non-Graph-Based Models.

Figure 5d combines character-based URL features with the HTML DOM graph struc-
ture as part of the proposed method. The clustering is distinct, demonstrating the effec-
tiveness of integrating these URL features with the HTML structure. However, the clusters
are not completely separated, indicating that while the integration improves detection,
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it is not yet optimal. Similarly, Figure 5e combines word-based URL features with the
HTML DOM graph structure using the proposed method. The clustering is more defined
compared to previous cases, showing improved separation between benign and phishing
instances. This result underscores the value of combining word-based URL features with
the HTML DOM graph. Finally, Figure 5f employs the proposed method with all three
features: character-based URL, word-based URL, and HTML DOM graph. The clear and
well-defined separation between clusters highlights the importance of integrating all three
feature types for achieving the most accurate phishing detection.

The comparison between these plots underscores the critical importance of using all
three feature types together. The clear separation seen in Figure 5d—f suggests that the
combined feature set provides a more comprehensive representation of the data.

4.7. Confusion Matrix Analysis

In this section, we analyze the performance of our proposed ensemble model through
the confusion matrix, as shown in Table 8. The best performance for each metric is high-
lighted in bold. The confusion matrix provides a detailed breakdown of the model’s
predictions, highlighting the number of true positives, true negatives, false positives, and
false negatives.

Table 8. Confusion Matrix of the Proposed Ensemble Model.

Predicted
Confusion Matrix
Benign Phishing Recall
Benign 5907 50 0.9916
Actual Phishing 37 1497 0.9759
Precision 0.9938 0.9677 F1 Score: 0.9718

The confusion matrix reveals several key insights into the performance of our model:

e  True Positives (TP): The model correctly identified 1497 phishing instances. This high
number of true positives indicates the model’s effectiveness in detecting phishing attacks.

e  True Negatives (TN): The model correctly classified 5907 benign instances. The high true
negative count demonstrates the model’s accuracy in identifying legitimate webpages.

e  False Positives (FP): There were 50 benign instances incorrectly classified as phish-
ing. Although this number is relatively low, it highlights the importance of further
improving the model to minimize false alarms.

o  False Negatives (FN): The model incorrectly identified 37 phishing instances as benign.
This number, while also low, underscores the need for continuous improvement to
ensure that phishing attacks are not missed.

In conclusion, the confusion matrix analysis shows that our ensemble model excels at
distinguishing between benign and phishing webpages, with high precision, recall, and F1
scores. These results underscore the model’s robustness in enhancing phishing detection
capabilities.

4.8. Generalizability Evaluation on Unseen Phishing Data

The primary focus of this study is on accurately identifying phishing websites, with a
particular emphasis on minimizing false negatives. To evaluate the generalizability of our
ensemble model, we conducted an additional experiment using a completely new phishing
dataset that was not part of the original training set. For this experiment, we collected
14,573 phishing URLs and corresponding HTML documents from Mendeley Data. The
model, which had been previously trained on our original dataset, was tested on this new
phishing data without any further fine-tuning or adjustment of the model’s weights.

The model correctly identified 13,919 out of 14,573 phishing instances, resulting in an
accuracy of approximately 95.5%. This high accuracy indicates that the model is capable
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of effectively generalizing to unseen phishing data, maintaining its strong performance
even when exposed to phishing tactics that were not included in the training phase. By
testing exclusively on phishing data, we focused on assessing the model’s robustness in
real-world scenarios where detecting phishing attempts is critical. These results suggest
that the model is well-suited to generalize across different phishing examples, reinforcing
its potential application in diverse phishing detection environments.

Future work could extend this evaluation by incorporating legitimate websites into
the test dataset to further validate the model’s generalizability across different types of
content. To further validate the robustness of our model, future work could involve
testing on additional unseen phishing datasets from diverse sources to ensure the model’s
generalizability across different phishing strategies and tactics.

4.9. Robustness against Adversarial Attacks

In addition to evaluating the model’s performance under normal conditions, we
conducted experiments to assess its robustness against adversarial attacks. Specifically,
we applied the Fast Gradient Sign Method (FGSM) to generate adversarial examples by
introducing small perturbations to the input data. These perturbations were designed to
test the model’s ability to maintain accuracy when faced with adversarially altered inputs.

We tested the model with various levels of perturbation, represented by different
epsilon values (¢), ranging from 0 (no perturbation) to 0.1 (significant perturbation). The
results of these tests are summarized in Table 9.

Table 9. Adversarial Attack Performance Results (Macro Average).

Epsilon (¢) Accuracy Precision Recall F1 Score
0 0.9873 0.9875 0.9894 0.9884
0.02 0.9732 0.9466 0.9754 0.9608
0.04 0.9389 0.8841 0.9451 0.9136
0.06 0.8767 0.7994 0.9004 0.8435
0.08 0.7468 0.6981 0.8101 0.7494

As seen from the results, the model’s performance begins to degrade as the epsilon
value increases. With no perturbation (¢ = 0), the model achieves an accuracy of 98.73%,
with high macro-averaged precision, recall, and Fl-score values. However, even a small
perturbation (e = 0.02) reduces the accuracy to approximately 97.32%, with a noticeable
decline in performance, particularly in its ability to correctly classify the benign class.

As the perturbation becomes more significant (¢ = 0.04 and above), the model’s
accuracy drops further. At e = 0.08, the model’s accuracy falls to 74.68%, with the confusion
matrix indicating that the model is heavily biased towards misclassifying benign samples
as phishing.

These findings highlight the model’s vulnerability to adversarial attacks, particularly
when small but targeted perturbations are applied. This underscores the need for incorpo-
rating more robust defense mechanisms in the model, such as adversarial training or other
forms of regularization, to enhance its resilience against such attacks.

4.10. Discussion: Case Analysis

In this section, we analyze specific cases to understand the performance of our pro-
posed model, particularly focusing on instances where the model correctly and incorrectly
classified URLs, as detailed in Table 10. This analysis provides insights into the strengths
and limitations of our approach.
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Table 10. Detailed Case Analysis of Correct and Incorrect URL Classifications by the Proposed Model.

Classification Result

Case Ground Truth URL

https:/ /ninecloud.ae/our-services/interior-exterior-paint-

Correctly @ Benign contractors-in-dubai/ (accessed on 19 August 2024)
classified ) Phishin https:/ / pub-88f64e013ca94e82aa5d15393134722¢.r2.dev /logs.html
& (accessed on 19 August 2024)
© Benien https:/ /rilm.am/wp-content/uploads /2022 /07 /12e47ac82164e89a8
Misclassified ¢ g C15399384e6572.pdf (accessed on 19 August 2024)
(d) Phishing https:/ /amangroup.co/gy/linkedin_/ (accessed on 19 August 2024)

In Figure 6a, the URL “https://ninecloud.ae/our-services/interior-exterior-paint-
contractors-in-dubai/” (accessed on 19 August 2024) was correctly classified as benign.
The DOM Graph visualization (Figure 6a) shows a clear and simple structure, which likely
contributed to the model’s accurate classification. The straightforward and legitimate
appearance of the URL, along with the coherent HTML structure, aligns well with benign
patterns the model has learned. In Figure 6b, the URL “https://pub-88f64e013ca94e82aa5
d15393134722c.r2.dev /logs.html” (accessed on 19 August 2024) was correctly classified
as phishing. As depicted in the DOM Graph visualization (Figure 6b), the URL exhibits a
complex and suspicious structure. The presence of random characters and a deceptive path
indicates phishing characteristics, which the model successfully identified.
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Figure 6. Comparative HTML DOM Graph Visualizations for Benign and Phishing Case Analysis.
(a) DOM structure of the benign URL “https:/ /ninecloud.ae/our-services/interior-exterior-paint-
contractors-in-dubai/ (accessed on 19 August 2024),” showing a clear and simple structure, correctly
classified as benign. (b) DOM structure of the phishing URL “https:/ /pub-88f64e013ca94e82aa5d1
5393134722c.r2.dev /logs.html (accessed on 19 August 2024),” showing a complex and suspicious
structure, correctly classified as phishing. (¢) DOM structure of the benign URL “https:/ /rilm.
am/wp-content/uploads /2022 /07 /12e47ac82164e89a8c15{399384-e6572.pdf (accessed on 19 August
2024),” showing a complex structure, incorrectly classified as phishing. (d) DOM structure of the
phishing URL “https://amangroup.co/gy/linkedin_/ (accessed on 19 August 2024),” showing a
relatively simple structure, incorrectly classified as benign.

In Figure 6c, the URL “https:/ /rilm.am/wp-content/uploads/2022/07/12e47ac8
2164e89a8c15f399384e6572.pdf” (accessed on 19 August 2024) was incorrectly classified
as phishing. The DOM Graph visualization (Figure 6¢) shows a complex structure that
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might have misled the model. Despite being a benign URL, its intricate and lengthy
format may resemble phishing patterns, leading to a false positive. This highlights the
challenge of distinguishing between complex legitimate URLs and phishing URLs. In
Figure 6d, the URL “https://amangroup.co/gy/linkedin_/” (accessed on 19 August 2024)
was incorrectly classified as benign. The DOM Graph visualization (Figure 6d) shows a
relatively simple structure. However, this simplicity might have contributed to the model’s
failure to recognize it as phishing. The deceptive use of familiar keywords like “linkedin”
might have made the URL appear legitimate, resulting in a false negative. This analysis
underscores the importance of further refining our model to better distinguish between
subtle phishing indicators and legitimate but complex URL structures.

One major issue is that the model only used the DOM structure, which, while improv-
ing the model’s performance overall, presents a challenge when the DOM structure is too
simple or resembles that of a legitimate webpage. Therefore, it is necessary to incorporate
additional HTML features, such as HTML DOM tag names and hyperlinks, to improve
phishing detection. Additionally, the reliance on static features extracted from URLs and
HTML DOM structures may be susceptible to obfuscation by evolving phishing tactics,
potentially reducing the model’s effectiveness over time. Moreover, some benign URLs
with complex structures were misclassified as phishing due to their resemblance to phish-
ing patterns in the HTML DOM. This highlights the need for incorporating contextual
information, such as user behavior or dynamic content analysis, to enhance detection
accuracy. Moreover, the integration of multi-modal features improved detection rates but
also increased the computational complexity of the model, which could be a limitation in
real-time applications where processing speed is crucial.

Our findings contribute to the broader field of phishing detection by demonstrating
the effectiveness of integrating multi-modal features, such as HTML DOM structures and
URL characteristics, to improve detection accuracy. These results suggest that combining
different data sources can capture more comprehensive patterns associated with phishing
attempts. For future research, exploring the integration of user interaction data and behav-
ioral analytics could provide deeper insights into phishing tactics, offering opportunities
to develop more adaptive and robust detection systems. Additionally, investigating the
application of real-time analysis techniques and leveraging advances in adversarial learning
could further enhance model resilience against sophisticated phishing attacks.

5. Conclusions

In this study, we proposed a phishing detection approach that integrates HTML DOM
graph modeling with URL feature analysis using deep learning techniques. By leveraging
Graph Convolutional Networks to model HTML DOM graphs and using Convolutional
Neural Networks and Transformer Networks to capture character and word sequence
features from URLs, our method effectively combines these multi-modal features. This
approach addresses the limitations of traditional URL-based phishing detection methods,
which often struggle to capture the full context of phishing attacks. Our ensemble model
demonstrated significant performance improvements, achieving a 7.03 percentage point
increase in classification accuracy compared to state-of-the-art techniques.

The detailed evaluation, including confusion matrix analysis and ablation studies,
highlighted the importance of integrating character-based URL features, word-based URL
features, and HTML DOM graphs for effective phishing detection. The results validated
the superiority of our approach in accurately identifying phishing webpages, due to the
complementary strengths of the multi-modal features from URLs and the diverse deep
learning models used. Our research makes a significant technical contribution by being
the first to combine URL features and HTML DOM graph features and designing a neural
network that effectively merges these complementary characteristics.

Despite these improvements, several limitations were identified during the study. Our
model relies on static features extracted from URLs and HTML DOM structures, which
may be susceptible to obfuscation by evolving phishing tactics, potentially reducing the
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model’s effectiveness over time. Additionally, some benign URLs with complex structures
were misclassified as phishing, indicating the need for additional contextual information,
such as user behavior or dynamic content analysis, to enhance detection accuracy. While
the integration of multi-modal features improved detection rates, it also increased compu-
tational complexity, which could be a limitation in real-time applications where processing
speed is crucial.

Future research should focus on incorporating additional HTML features, such as
DOM tag names and hyperlinks, to provide a more detailed representation of the web-
page. Integrating user behavior analysis and browser interaction patterns could offer
deeper insights into phishing detection by considering both static properties and dynamic
interactions. Additionally, leveraging advancements in adversarial learning to improve
robustness against sophisticated phishing tactics is another promising direction. These
enhancements can further improve the efficacy of phishing detection systems, making them
more comprehensive and reliable.
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