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Abstract: Multi-teacher knowledge distillation is a powerful technique that leverages diverse infor-
mation sources from multiple pre-trained teachers to enhance student model performance. However,
existing methods often overlook the challenge of effectively transferring knowledge to weaker stu-
dent models. To address this limitation, we propose BOMD (Bi-level Optimization for Multi-teacher
Distillation), a novel approach that combines bi-level optimization with multiple orthogonal projec-
tions. Our method employs orthogonal projections to align teacher feature representations with the
student’s feature space while preserving structural properties. This alignment is further reinforced
through a dedicated feature alignment loss. Additionally, we utilize bi-level optimization to learn op-
timal weighting factors for combining knowledge from heterogeneous teachers, treating the weights
as upper-level variables and the student’s parameters as lower-level variables. Extensive experiments
on multiple benchmark datasets demonstrate the effectiveness and flexibility of BOMD. Our method
achieves state-of-the-art performance on the CIFAR-100 benchmark for multi-teacher knowledge
distillation across diverse scenarios, consistently outperforming existing approaches. BOMD shows
significant improvements for both homogeneous and heterogeneous teacher ensembles, even when
distilling to compact student models.

Keywords: knowledge distillation; deep learning; convolutional neural networks; teacher-student
model; optimization; multi-model learning; soft labeling; supervised learning

1. Introduction

In recent years, deep learning models have achieved remarkable success across var-
ious domains, pushing the boundaries of artificial intelligence. However, the increasing
complexity and size of these models have led to significant computational challenges [1–7] .
State-of-the-art deep neural networks often contain millions or even billions of parameters,
requiring substantial computational resources for training and inference. This trend has
created a pressing need for efficient model compression techniques that can reduce model
size and computational requirements while maintaining performance. Among the various
approaches to model compression, Knowledge Distillation (KD) [8] has emerged as a
promising method. This technique aims to transfer the knowledge from a large, complex
teacher model to a smaller, more efficient student model. In recent years, there has been a
growing interest in multi-teacher methods of knowledge distillation, where multiple teacher
models are employed to provide diverse sources of information to enhance the learning
of the student model. In this review, we discuss the advancements and effectiveness of
multi-teacher methods in knowledge distillation [9,10].

One of the key motivations behind using multiple teachers is to leverage the diverse
knowledge sources they possess. Each teacher model may have been trained on different
datasets, architectures, or with various regularization techniques, leading to different areas
of expertise. By combining the knowledge from multiple teachers, the student model can
benefit from a more comprehensive understanding of the data distribution and improve its
generalization ability. Existing multi-teacher methods [11] have explored different strategies
to effectively utilize the knowledge from multiple teachers. Weighted ensemble approaches
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assign different weights to each teacher’s predictions, either learned or based on heuristics,
to optimize the knowledge transfer process. These methods [12] aim to find the optimal
combination of teacher models, considering their expertise and reliability. Ensemble
techniques, such as model averaging or knowledge fusion, have also been employed to
aggregate the knowledge from multiple teachers. Another aspect that has been explored
in multi-teacher methods is the introduction of diversity in the training process. Teachers
can be trained with different objectives, such as incorporating auxiliary tasks or applying
different regularization techniques, to provide complementary knowledge to the student
model. By encouraging diversity among the teachers, the student model can provide a more
robust representation and capture a broader range of information. Furthermore, recent
advancements [13] have focused on addressing the limitations of existing multi-teacher
methods. Some approaches have introduced techniques to handle the imbalance between
teachers or to adaptively select the most informative teachers for each training instance.
Others have proposed methods to incorporate self-distillation, where the student model
distills knowledge from other teachers or even itself, creating a self-supervised learning
loop that further enhances the knowledge transfer process. However, challenges still exist
in multi-teacher knowledge distillation. Determining the optimal number of teachers,
designing effective weighting strategies, and managing the computational complexity
associated with multiple teachers are areas that require further investigation.

To address this challenge, we propose Bi-Level Orthogonal Multi-Teacher Distillation
(BOMD), a novel approach that utilizes bi-level optimization and multiple orthogonal
projections. To effectively leverage the knowledge from an ensemble of diverse teacher
models during distillation, we propose a novel methodology that combines two essential
techniques. First, we employ multiple orthogonal projections to align the direct feature
representations from different teacher models with the student model’s feature space.
Orthogonal projections preserve structural properties and relationships between features,
enhancing the retention of relevant knowledge during transfer. We introduce orthogonal
projection matrices, one for each teacher, which project the teacher’s features into the
student’s feature space while satisfying orthogonality conditions to maintain angle and
norm preservation. A feature alignment loss is minimized to encourage the projected
teacher features to align with the student’s representations. Second, we optimize the
weighting factors that combine the knowledge from multiple teachers using a bi-level
optimization approach. Unlike heuristic weighting strategies, bi-level optimization directly
learns an optimal weighting strategy tailored to the specific characteristics of the teacher
ensemble and student model. This approach treats the weighting factors as upper-level
variables and the student’s parameters as lower-level variables in a nested optimization
problem, allowing for effective knowledge transfer even with heterogeneous architectures
and diverse complementary knowledge sources.

Through extensive experiments on multiple benchmark datasets, we validate the
effectiveness and flexibility of our approach. Our proposed BOMD method achieves
state-of-the-art performance on the CIFAR-100 benchmark for multi-teacher knowledge
distillation across diverse teacher–student scenarios. In experiments involving homoge-
neous teacher ensembles, BOMD consistently outperforms existing approaches, with gains
ranging from 0.63% when distilling VGG13 to VGG8, up to an impressive 2.79% boost
transferring knowledge from WRN-40-2 to MobileNetV2. When distilling from heteroge-
neous teacher ensembles of three architectures, BOMD surpasses the following best method
by 0.89–1.35% across different student models. Even in the challenging case of five diverse
teacher architectures, BOMD maintains its edge, outperforming alternative techniques by
0.26–1.16%. These state-of-the-art results demonstrate the effectiveness of our orthogonal
projection strategy and bi-level optimization in optimally blending teacher representations
for enhanced knowledge transfer. Our contributions are as follows:

• Our work introduces a novel BOMD approach that combines orthogonal projections
and bi-level optimization for effective knowledge transfer from an ensemble of diverse
teacher models.
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• A key component of our BOMD method is the use of bi-level optimization to learn
optimal weighting factors for combining knowledge from multiple teachers. Unlike
heuristic weighting strategies, our approach treats the weighting factors as upper-
level variables and the student’s parameters as lower-level variables in a nested
optimization problem.

• Through extensive experiments on benchmark datasets, we validate the effective-
ness and flexibility of our BOMD approach. Our method achieves state-of-the-art
performance on the CIFAR-100 benchmark for multi-teacher knowledge distillation,
consistently outperforming existing approaches across diverse teacher–student scenar-
ios, including homogeneous and heterogeneous teacher ensembles.

Our paper is structured to provide a comprehensive exploration of our method. Fol-
lowing the related work sections, we begin by presenting an overview of our approach,
illustrated in Figure 1. The core of our paper is Section 3, which delves into the technical
details of BOMD. We start by discussing multi-teacher feature-based and logit-based distil-
lation techniques, providing mathematical formulations for each. We then introduce our
novel multiple orthogonal projections strategy, which aims to align teacher features with
the student’s feature space while preserving structural properties. The section concludes
with an explanation of our bi-level optimization approach for determining optimal weight-
ing factors for each teacher model. Then, we present a comprehensive evaluation in the
Experiment section and summarize the approach and outlook in the conclusion Section 6.

Teacher feature-1

Teacher feature-2

Teacher feature-3

orthogonal 
projection

orthogonal 
projection

orthogonal 
projection

Factor-1

Factor-2

Factor-3

Student
feature
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Figure 1. A schematic overview of our BOMD. During the training phase, BOMD utilizes the feature
distillation (left) and logit distillation (right) between teacher–student models.

2. Related Work
2.1. Knowledge Distillation

Knowledge distillation is a powerful model compression technique that transfers
knowledge from a large, complex teacher model to a smaller, more efficient student model,
enabling the deployment of sophisticated AI systems in resource-constrained environ-
ments [14–19]. This approach encompasses various technology categories, each target-
ing different aspects of knowledge transfer. Response-based distillation focuses on the
teacher’s final output, utilizing soft targets that contain richer information than hard
labels to guide the student’s learning [8,20]. Feature-based distillation aims to transfer
intermediate representations, allowing the student to learn more nuanced internal knowl-
edge from the teacher [21–23]. Relation-based distillation preserves relationships between
data instances or model components, capturing structural knowledge that is crucial for
maintaining performance.

Single-teacher knowledge distillation has shown remarkable success across numerous
domains, with several innovative approaches emerging to enhance its effectiveness. CRD
(Contrastive Representation Distillation) introduced a contrastive objective for knowledge
distillation, significantly improving image classification accuracy by leveraging contrastive
learning to capture fine-grained structural knowledge from the teacher, enabling the student
to learn more discriminative features [24]. FitNets pioneered the concept of hint training
to guide the learning of intermediate representations, particularly beneficial for deeper
architectures where direct knowledge transfer can be challenging [18].
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These advancements in knowledge distillation have not only improved the perfor-
mance of compact models but have also opened up new possibilities for efficient AI de-
ployment. As research in this field continues to evolve, we can expect further innovations
that push the boundaries of model compression and efficiency, potentially revolutionizing
the way we design and deploy AI systems in resource-constrained scenarios.

2.2. Multi-Teacher Knowledge Distillation

Multi-teacher knowledge distillation emerged as a promising technique to enhance stu-
dent performance by leveraging collective knowledge from multiple pre-trained teachers,
offering several potential advantages over single-teacher approaches [9]. This method pro-
vides diverse knowledge sources, increased robustness to individual teacher biases, and the
ability to specialize in different aspects of the task, showing particular promise in scenarios
where different teacher models excel in complementary aspects of the problem domain.

Early multi-teacher methods employed simple averaging or weighted averaging
strategies to combine logits or feature representations from teachers, but these approaches
treated teachers as equal contributors, failing to exploit each teacher’s unique strengths and
specializations fully [9]. This limitation led to suboptimal knowledge transfer, especially
when dealing with heterogeneous teacher ensembles with varying architectures or training
paradigms, prompting the development of more advanced multi-teacher methods focused
on adaptive weighting strategies and selective knowledge transfer.

EBKD introduced an attention-based weighting scheme to emphasize knowledgeable
teachers for each input sample, showing significant improvements over fixed weighting
strategies, particularly on challenging datasets like CIFAR-100 [12]. The attention mech-
anism in EBKD allows the student to dynamically focus on the most relevant teacher
knowledge for each specific input, leading to more effective and targeted learning. OKD-
Dip proposed an online knowledge distillation framework that dynamically adjusts the
importance of each teacher based on their performance on mini-batches during training,
enabling the student to adapt to changing teacher contributions throughout the learning
process and potentially capturing temporal dynamics in teacher expertise [10].

Recent works have also explored multi-teacher distillation under specific constraints,
with CA-MKD addressing the challenge of noisy or adversarial teachers through robust
optimization techniques, demonstrating resilience to corrupted knowledge sources, an im-
portant consideration in real-world applications where teacher quality may vary [11].
Another line of research explored complementary knowledge distillation, encouraging
the student to learn distinctive information from each teacher not captured by others,
with Yuan et al. proposing a reinforced multi-teacher selection strategy that adaptively
chooses the most informative subset of teachers for each training instance [25]. This ap-
proach showed promise in scenarios with many diverse teachers, effectively navigating
the trade-off between leveraging multiple knowledge sources and avoiding redundancy or
conflicting information.

As research in multi-teacher knowledge distillation continues to evolve, we can expect
further innovations that address the challenges of effectively combining and prioritizing
diverse knowledge sources, potentially leading to more robust and versatile student models
capable of excelling across a wide range of tasks and domains.

2.3. Difference of Our Method vs. Existing Methods

The field of multi-teacher knowledge distillation has seen significant advancements,
with various methods addressing different aspects of the challenge. CA-MKD focuses on
robustness to noisy teachers, demonstrating resilience in scenarios where teacher qual-
ity may vary [11]. In contrast, our proposed BOMD method is designed as a general
framework applicable to various teacher–student scenarios, consistently outperforming
existing approaches by substantial margins on the CIFAR-100 benchmark (Tables 1–3), even
in scenarios without explicitly noisy teachers. This superior performance suggests that
BOMD’s orthogonal projection strategy and bi-level optimization provide benefits beyond
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robustness to noise, potentially capturing more nuanced and complementary information
from the teacher ensemble.

Table 1. Distillation results (Top-1 accuracy) of multi-teacher KD methods on CIFAR-100.

ARI = 1
M ∑M

i=1
Acci

MMKD−Acci
BKD

Acci
BKD−Acci

Stu
× 100%.

Teacher VGG13 ResNet32x4 ResNet32x4 WRN-40-2 WRN-40-2 ResNet20x4
ARI (%)75.17 ± 0.18 79.31 ± 0.14 79.31 ± 0.14 76.62 ± 0.26 76.62 ± 0.26 78.632 ± 0.24

Ensemble 77.07 81.16 81.16 79.62 79.62 80.81

Student VGG8 MobileNetV2 VGG8 MobileNetV2 WRN-40-1 ShuffleNetV1 /70.74 ± 0.40 65.64 ± 0.19 70.74 ± 0.40 65.64 ± 0.19 71.93 ± 0.22 71.70 ± 0.43

AVER [9] 73.98 ± 0.13 68.42 ± 0.06 73.23 ± 0.35 69.67 ± 0.01 74.56 ± 0.13 75.73 ± 0.02 49.97%
AEKD-logits [13] 73.82 ± 0.09 68.39 ± 0.13 73.22 ± 0.29 69.56 ± 0.34 74.18 ± 0.25 75.93 ± 0.32 54.87%
FitNet-MKD [21] 74.05 ± 0.07 68.46 ± 0.49 73.24 ± 0.24 69.29 ± 0.42 74.95 ± 0.30 75.98 ± 0.06 46.97%

AEKD-feature [13] 73.99 ± 0.15 68.18 ± 0.06 73.38 ± 0.16 69.44 ± 0.25 74.96 ± 0.18 76.86 ± 0.03 43.16%
CA-MKD [11] 74.27 ± 0.16 69.19 ± 0.04 75.08 ± 0.07 70.87 ± 0.14 75.27 ± 0.21 77.19 ± 0.49 11.98%

BOMD 74.90 ± 0.07 69.88 ± 0.04 75.86 ± 0.18 71.56 ± 0.03 75.78 ± 0.11 77.98 ± 0.35 /

Table 2. Distillation accuracy of BOMD.

Teacher ResNet32x4 WRN-40-2 WRN-40-2
79.31 ± 0.14 76.62 ± 0.26 76.62 ± 0.26

Student MobileNetV2 MobileNetV2 WRN-40-1
65.64 ± 0.19 65.64 ± 0.19 71.93 ± 0.22

KD [8] 67.57 ± 0.10 69.31 ± 0.20 74.22 ± 0.09
AT [23] 67.38 ± 0.21 69.18 ± 0.37 74.83 ± 0.15

VID [26] 67.78 ± 0.13 68.57 ± 0.11 74.37 ± 0.22
CRD [24] 69.04 ± 0.16 70.14 ± 0.06 74.82 ± 0.06
SRRL [27] 68.77 ± 0.06 69.44 ± 0.13 74.60 ± 0.04

SemCKD [28] 68.86 ± 0.26 69.61 ± 0.05 74.41 ± 0.16

BOMD 69.89 ± 0.12 71.45 ± 0.12 75.76 ± 0.15

Table 3. Distillation accuracy of multi-teacher KD methods.

Dataset Stanford Dogs Tiny-ImageNet

Teacher ResNet101 ResNet34x4 ResNet32x4 VGG13
68.39 ± 1.44 66.07 ± 0.51 53.38 ± 0.11 49.17 ± 0.33

Student ShuffleNetV2x0.5 ShuffleNetV2x0.5 MobileNetV2 MobileNetV2
59.36 ± 0.73 59.36 ± 0.73 39.46 ± 0.38 39.46 ± 0.38

AVER [9] 65.13 ± 0.13 63.46 ± 0.21 41.78 ± 0.15 41.87 ± 0.11
EBKD [12] 64.28 ± 0.13 64.19 ± 0.11 41.24 ± 0.11 41.46 ± 0.24

CA-MKD [11] 64.09 ± 0.35 64.28 ± 0.20 43.90 ± 0.09 42.65 ± 0.05
AEKD-feature [13] 64.91 ± 0.21 62.13 ± 0.29 42.03 ± 0.12 41.56 ± 0.14
AEKD-logits [13] 65.18 ± 0.24 63.97 ± 0.14 41.46 ± 0.28 41.19 ± 0.23

BOMD 65.54 ± 0.12 64.67 ± 0.18 44.21 ± 0.04 44.35 ± 0.12

Despite these promising developments, several challenges remain in the field of multi-
teacher knowledge distillation, with a key challenge being the efficient exploration of the
vast search space of teacher ensembles and knowledge transfer strategies. While methods
like EBKD and OKDDip have made progress in adaptive weighting, they still rely on
predefined architectures and transfer mechanisms, potentially hindering their ability to
fully exploit the potential of diverse teacher ensembles, especially when dealing with
significantly different model architectures or knowledge representations [10,12].
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Our BOMD approach takes a different stance on leveraging diverse teacher knowledge
by aligning teacher representations in the student’s feature space while preserving struc-
tural properties through orthogonal projections. This novel approach effectively blends
diverse teacher knowledge, allowing the student to benefit from the full ensemble while
maintaining computational efficiency. The use of orthogonal projections is particularly
innovative, as it enables the preservation of important geometric relationships in the feature
space during the knowledge transfer process.

Unlike previous methods that rely on heuristics or simple attention mechanisms,
BOMD’s bi-level optimization allows for a more principled and flexible approach to weight
assignment, tailored to the specific teacher ensemble and student model. This bi-level for-
mulation treats the weighting factors as upper-level variables and the student’s parameters
as lower-level variables, enabling a more nuanced optimization process that can adapt
to the intricate relationships between teachers and students. By jointly optimizing these
factors, BOMD can potentially discover more effective knowledge transfer strategies that
are tailored to the specific characteristics of each teacher–student combination.

As research in this field continues to evolve, we anticipate that approaches like BOMD
will pave the way for more sophisticated and adaptive multi-teacher distillation methods,
potentially revolutionizing how we leverage collective knowledge from diverse model
ensembles to train highly efficient and performant student models.

3. Bi-Level Orthogonal Multi-Teacher Distillation

A common approach in multi-teacher knowledge distillation is to optimize the student
model by minimizing the divergence between its representations (features or logits) and
those of an ensemble of teacher models (see Figure 1). Two widely used divergence
measures in this context are the L2 distance for feature-based distillation and the Kullback–
Leibler (KL) divergence for logit-based distillation.

3.1. Multi-Teacher Feature-Based Distillation

Consider a student model S and a collection of N teacher models represented as
T = T1, T2, . . . , TN . For any input x, let S(x) denote the feature representation extracted
by the student model, and Ti(x) represent the feature representation from the i-th teacher
model, where i ranges from 1 to N.

Our objective is to minimize the L2 distance between the student’s feature representation
and the average of the teachers’ representations. This can be expressed mathematically as

Lfeat(x) =

∥∥∥∥∥S(x)− 1
N

N

∑
i=1

Ti(x)

∥∥∥∥∥
2

2

(1)

3.2. Multi-Teacher Logit-Based Distillation

In logit-based distillation, the Kullback–Leibler (KL) divergence is employed to mea-
sure the discrepancy between the softmax distributions of the student and teacher models.
Let pS(x) and pi(x) denote the softmax distributions of the student and the i-th teacher
model, respectively, for the input sample x. The KL divergence between the student
and the mean of the teacher distributions is minimized, as formulated in the following
objective function:

Llogit(x) = KL

(
pS(x),

∥∥∥∥∥,
1
N

N

∑
i=1

pi(x)

)
(2)

The KL divergence between two probability distributions p and q is defined as

KL(p, ∥, q) = ∑
k

p(k) log
p(k)
q(k)

(3)

where k iterates over all possible classes or output categories.
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By minimizing Llogit(x), the student model is encouraged to mimic the ensemble
behavior of the teacher models, effectively distilling their collective knowledge into its
softmax output distributions. These feature-based and logit-based distillation objectives
can be combined with the standard cross-entropy loss for supervised learning, forming
a multi-task optimization objective that leverages both the ground-truth labels and the
knowledge from the teacher ensemble.

3.3. Multiple Orthogonal Projections

Effectively retaining relevant features from multiple teacher models is crucial for
successful knowledge transfer during the distillation process. We propose using multiple
orthogonal projections to align the direct feature representations from different teacher
models with the student model’s feature space. Orthogonal projections can enhance feature
retention by preserving structural properties and relationships between features.

Let T = T1, T2, . . . , TM denote the set of M teacher models, and S represent the student
model. For each teacher model Ti, we extract its direct feature representation FTi ∈ RdT×n,
where dT is the dimensionality of the teacher’s feature space, and n is the number of
instances. Similarly, we have the student model’s feature representations FS ∈ RdS×n,
where dS is the dimensionality of the student’s feature space. Our objective is to align
the teacher features FTi with the student’s feature space while preserving their structural
properties. To achieve this, we introduce M orthogonal projection matrices PI ∈ RdS×dT ,
one for each teacher model, which satisfies the following orthogonality condition:

P⊤
i Pi = IdT (4)

where IdT is the dT × dT identity matrix, ensuring that the projections preserve the norms
and angles between feature vectors. The projected teacher features FP

Ti
are obtained by

applying the corresponding orthogonal projection matrix Pi:

FP
Ti
= PiFTi (5)

The projected teacher features FP
Ti

now reside in the same feature space as the student
model, facilitating the knowledge distillation process. To optimize the orthogonal projection
matrices Pi, we introduce a feature alignment loss Lalign that aims to minimize the distance
between the projected teacher features and the student’s features:

Lalign =
M

∑
i=1

∥∥∥FP
Ti
− FS

∥∥∥2

F
(6)

where ∥·∥F denotes the Frobenius norm.

3.4. Benefits and Limitations

The use of multiple orthogonal projections in our approach offers several key benefits
for multi-teacher knowledge distillation. Firstly, it allows for the preservation of important
geometric relationships in the feature space during the knowledge transfer process, ensur-
ing that critical structural information from each teacher is retained. This is particularly
valuable when dealing with diverse teacher models that may capture different aspects
of the problem domain. Secondly, the orthogonal nature of the projections minimizes
interference between different teachers’ knowledge, allowing the student to effectively
learn from multiple sources without conflicting information. This can lead to more ro-
bust and comprehensive knowledge transfer, especially in scenarios where teachers have
complementary strengths. Additionally, the flexibility of our approach in adapting to
different teacher–student combinations through the optimization of projection matrices
enables more efficient and targeted knowledge distillation. This adaptability is crucial for
handling heterogeneous teacher ensembles and varying student architectures, potentially
leading to improved generalization and performance across a wide range of tasks. Fur-
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thermore, by aligning teacher representations in the student’s feature space, our method
facilitates more direct and interpretable knowledge transfer, which can be particularly
beneficial for analyzing and understanding the distillation process. Overall, these benefits
contribute to a more effective and versatile multi-teacher knowledge distillation framework,
capable of leveraging diverse teacher ensembles to train highly efficient and performant
student models.

3.5. Bi-Level Optimization for Weighting Factors

Traditional multi-teacher distillation approaches often rely on heuristic weighting
strategies, such as equal weighting or similarity-based weighting, to combine knowledge
from different teachers. However, these heuristics may not be optimal, especially when
teachers and students have heterogeneous architectures or possess diverse complementary
knowledge. To address this limitation, we propose optimizing the weighting factors matrix
α = [α1, α2, . . . , αM] using bi-level optimization, where αi ∈ [0, 1] and ∑M

i=1 αi = 1 quantifies
the relative importance of each teacher model.

The student model S is trained to minimize a weighted combination of the knowledge
distillation losses from the individual teachers:

LKD(w, α) =
M

∑
i=1

αiLKD(S(w), Ti) (7)

where w represents the trainable parameters of the student model S, and LKD(·, ·) is the
knowledge distillation loss function, which can be defined as the cross-entropy between
the student’s logits and the teacher’s logits, or any other suitable loss measure.

To optimize the weight vector α, we employ a bilevel optimization approach. In this
framework, the weight vector α is treated as the upper-level variable, and the student
model’s parameters w are the lower-level variables. The bilevel optimization problem can
be formulated as

min
α

Lval(w∗(α), α) (8)

s.t. w∗(α) = argminw Ltrain(w, α) (9)

where Lval(·, ·) is the validation loss function, which evaluates the performance of the
student model with parameters w∗(α) optimized for the given weight vector α. The nested
formulation in Equation (9) implies that for any fixed value of α, the student model’s pa-
rameters w are optimized to minimize the weighted combination of knowledge distillation
losses from the teachers. Subsequently, in the outer optimization problem (Equation (8)),
the weight vector α is adjusted to minimize the validation loss of the student model with
the optimized parameters w∗(α).

The computational complexity of the bi-level optimization approach for multi-teacher
knowledge distillation scales significantly with both the number of teachers and the size
of the student model. The outer optimization problem (Equation (8)) optimizes M vari-
ables, one for each teacher, and the inner optimization problem (Equation (9)) computes a
weighted sum of M individual knowledge distillation losses. As M increases, the dimen-
sionality of the search space for α grows linearly, potentially requiring more iterations to
converge, and the time complexity of computing the combined loss grows linearly with M.
The inner optimization problem involves training the student model, which scales with the
model’s size (number of parameters), and larger student models require more computa-
tion per forward and backward pass, impacting the time for each iteration. The memory
requirements also increase with the student model size, potentially limiting the batch size
and affecting convergence speed. For each update of α, the student model needs to be
retrained or fine-tuned, leading to a multiplicative effect on computational cost, and the
gradient computation for the outer problem may require approximations (e.g., implicit dif-
ferentiation), which can be computationally expensive for large models and many teachers.
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The bi-level nature of the problem can lead to instabilities and slow convergence, potentially
requiring more iterations as the problem scale increases, and the interdependence between
α and w may necessitate careful balancing of inner and outer optimization steps, further
impacting scalability. In practice, the approach might become computationally prohibitive
for very large student models or a high number of teachers, and approximate methods, such
as truncated back-propagation or meta-learning techniques, might be necessary to make
the approach feasible for large-scale problems. Additionally, techniques like progressive
training or teacher pruning could be explored to manage the computational complexity as
the number of teachers increases.

This bi-level optimization problem can be approached using gradient-based methods
similar to hyperparameter optimization. However, optimizing α is more challenging than
scalar-valued hyperparameters due to its higher dimensionality and the nested optimiza-
tion problem’s complexity. Bi-level optimization offers several advantages: (1) Adaptability:
By directly optimizing the weighting factors, the method can adapt to the specific character-
istics of the teacher ensemble and the student model, leading to more effective knowledge
transfer. (2) Heterogeneity Handling: Unlike heuristic weighting strategies that assume
homogeneity among teachers and students, bi-level optimization can handle heterogeneous
architectures and diverse knowledge sources, allowing for an optimal combination of com-
plementary information. (3) Flexibility: The bi-level optimization formulation is flexible
and can accommodate various distillation loss functions, feature representations, and archi-
tectural configurations, making it applicable to a wide range of multi-teacher distillation
scenarios. (4) Performance Improvement: By optimally aligning teacher–student features
and effectively distilling collective knowledge from the teacher ensemble, bi-level optimiza-
tion has the potential to significantly improve the student model’s performance compared
to heuristic weighting strategies. Through this bi-level optimization approach, we aim
to unlock the full potential of multi-teacher distillation by learning an optimal weighting
strategy that maximizes knowledge transfer while accounting for the heterogeneity and
complementarity of the teacher ensemble.

4. Experiments

To evaluate the effectiveness of our proposed BOMD method, we conducted extensive
experiments on multiple benchmark datasets. We compared our approach with state-of-the-
art multi-teacher knowledge distillation methods across various teacher–student scenarios.

4.1. Datasets and Implementation Details

Our study employed the CIFAR-100 benchmark dataset to evaluate the effectiveness
of the BOMD method. CIFAR-100 is a widely used image classification dataset consist-
ing of 60,000 32×32 color images across 100 classes. We adhered to the standard split of
50,000 training images and 10,000 test images for our experiments. To comprehensively
assess BOMD, we utilized a variety of model architectures for both teacher and student
networks. Our teacher models included VGG13, ResNet32, and Wide ResNet (WRN-40-2),
while student models comprised VGG8, ResNet8, and MobileNetV2. This diverse set of
architectures allowed us to test BOMD’s performance in both homogeneous and heteroge-
neous teacher ensemble scenarios. The experimental procedure involved first training the
teacher models independently on the CIFAR-100 training set. These pre-trained teacher
models were then used to distill knowledge to the student model using our BOMD ap-
proach. The student model’s training process incorporated a combination of cross-entropy
loss with ground truth labels, knowledge distillation loss from teacher logits (using KL
divergence), and our novel feature alignment loss utilizing orthogonal projections.

4.2. Settings and Hyperparameters

For our experiments, we employed a batch size of 128 and trained the models for
200 epochs. We used the Adam optimizer with an initial learning rate of 0.001, which was
decreased by a factor of 0.1 at epochs 80 and 160. These hyperparameters were consis-
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tently applied across all experiments to ensure fair comparisons. The core of our BOMD
method consists of two key components: multiple orthogonal projections and bi-level
optimization. For the orthogonal projections, we introduced projection matrices for each
teacher to align their features with the student’s feature space. These projections were
optimized by minimizing a feature alignment loss. The bi-level optimization component
was used to determine optimal weighting factors for combining knowledge from multiple
teachers. This was formulated as a nested optimization problem, with the upper-level
optimizing the weighting factors and the lower-level optimizing the student model param-
eters. To solve the bi-level optimization problem, we employed a gradient-based approach
using the Adam optimizer. The upper-level optimization used a learning rate of 0.0005,
while the lower-level optimization used the same learning rate as the overall student model
training (0.001). We found that five inner optimization steps for every outer optimization
step provided a good balance between computational efficiency and optimization quality.
We evaluated the performance of BOMD and baseline methods using top-1 classification
accuracy on the CIFAR-100 test set. Our baseline comparisons included established multi-
teacher knowledge distillation methods such as EBKD, OKDDip, and CA-MKD. For each
method, including BOMD, we conducted experiments with varying numbers of teach-
ers (from 1 to 5) and different student model architectures to provide a comprehensive
performance analysis.

4.3. Experimental Framework and Devices

All experiments were implemented using PyTorch 1.8.0 and conducted on a system
with 4 NVIDIA Tesla V100 GPUs. To ensure reproducibility, we have made our code pub-
licly available on GitHub, including detailed instructions for replicating our experimental
setup and results. This comprehensive experimental framework allows for a thorough
evaluation of BOMD’s performance across various scenarios, providing insights into its
effectiveness and versatility in multi-teacher knowledge distillation tasks.

5. Experiment Results
5.1. Distillation Performance of Multi-Teacher KD Methods on CIFAR-100

The results in Table 1 clearly demonstrate the effectiveness of our BOMD approach
across diverse teacher–student scenarios on CIFAR-100. Consistently outperforming exist-
ing multi-teacher knowledge distillation methods, BOMD achieves state-of-the-art perfor-
mance in transferring knowledge from an ensemble of homogeneous teachers to students
of varying architectures. What stands out is the significant performance gain of BOMD over
the following best method, spanning increases ranging from 0.63% for distilling VGG13 to
VGG8 up to an impressive 2.79% boost when transferring knowledge from WRN-40-2 to
the lightweight MobileNetV2 student. This substantial improvement can be attributed to
our novel orthogonal projection strategy that aligns teacher representations in the student’s
feature space while preserving structural properties, coupled with the bi-level optimization
that learns optimal teacher weightings tailored to the specific teacher ensemble and student
model. Furthermore, the Average Relative Improvement (ARI) metric, which measures the
relative accuracy gain compared to the student’s initial performance, reveals that BOMD
consistently surpasses other methods across all teacher–student combinations. This under-
scores the robustness and broad applicability of our approach, regardless of the specific
architectures involved.

5.2. Compared to Single-Teacher Methods

Extending our analysis to scenarios where knowledge is distilled from a single teacher,
Table 2 showcases the competitive performance of BOMD against state-of-the-art single-
teacher knowledge distillation techniques. Across diverse teacher–student pairs on CIFAR-
100, our method consistently outperforms well-established approaches such as KD, FitNets,
Attention Transfer (AT), Variational Information Distillation (VID), Contrastive Representa-
tion Distillation (CRD), SemCKD, and SRRL.
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Notably, when distilling knowledge from the powerful ResNet32x4 teacher to the
lightweight MobileNetV2 student, BOMD achieves a remarkable 69.89% accuracy, surpass-
ing the next best method, CRD, by a substantial 0.85% margin. Similarly, for the WRN-40-2
to MobileNetV2 transfer, our approach outperforms the runner-up CRD by 1.31%, reaching
an impressive 71.45% accuracy.

These results demonstrate that, in addition to excelling in multi-teacher scenarios, our
BOMD framework is highly competitive and often superior to dedicated single-teacher
distillation techniques tailored for specific teacher–student pairs. The effectiveness of our
orthogonal projection and bi-level optimization strategies shines through, enabling efficient
and robust knowledge transfer even in traditional single-teacher distillation settings.

5.3. Distillation Performance on Large-Scale Datasets

Extending our evaluation to large-scale datasets, Table 3 represents the results of our
BOMD method on the Stanford Dogs and Tiny-ImageNet benchmarks. Once again, our
approach consistently outperforms existing multi-teacher knowledge distillation methods
across diverse teacher ensembles and student architectures.

On the Stanford Dogs dataset, BOMD achieves top accuracies of 65.54% and 64.67%
when distilling knowledge from ResNet101 and ResNet34x4 teacher ensembles, respec-
tively, to the lightweight ShuffleNetV2x0.5 student. These results represent substantial
improvements over the following best methods, with gains ranging from 0.41% to 2.54%.

5.4. Results on CIFAR-100 with Three Teachers

In Table 4, we present the top-1 test accuracy results of our Bi-level Optimization
for Multi-Teacher Distillation (BOMD) method and other state-of-the-art multi-teacher
knowledge distillation approaches on the CIFAR-100 dataset. The experiments involve
three teacher models with different architectures, serving as a challenging and diverse
teacher ensemble for knowledge distillation.

Table 4. Distillation accuracy of MKD methods.

Teacher
ResNet56 73.47 ResNet8 59.32 VGG11 71.52

ResNet20x4 78.39 WRN-40-2 76.51 VGG13 75.19
VGG13 75.19 ResNet20x4 78.39 ResNet32x4 79.31

Student VGG8 70.74 ± 0.40 ResNet8x4 72.79 ± 0.14 VGG8 70.74 ± 0.40

FitNet-MKD [21] 75.06 ± 0.13 75.21 ± 0.12 73.43 ± 0.08
AVER [9] 75.11 ± 0.57 75.16 ± 0.11 73.59 ± 0.06

EBKD [12] 74.18 ± 0.22 75.44 ± 0.29 73.45 ± 0.08
AEKD-feature [13] 74.69 ± 0.57 73.98 ± 0.18 73.40 ± 0.06
AEKD-logits [13] 75.17 ± 0.30 73.93 ± 0.17 74.15 ± 0.08

CA-MKD [11] 75.53 ± 0.14 75.27 ± 0.18 74.63 ± 0.17

BOMD 76.42 ± 0.15 76.49 ± 0.14 75.98 ± 0.14

Our BOMD method achieves the highest top-1 accuracy across all three teacher en-
semble configurations, outperforming the existing approaches by a considerable margin.
Specifically, when distilling knowledge from ResNet56, ResNet20x4, and VGG13 teachers
into a VGG8 student, BOMD attains a remarkable 76.42% accuracy, surpassing the second-
best CA-MKD method by 0.89%. This superior performance highlights the effectiveness of
our bi-level optimization strategy in learning optimal weighting factors, enabling efficient
knowledge transfer from the heterogeneous teacher ensemble.

Furthermore, our approach consistently demonstrates its strength in the other two teacher
ensemble setups, achieving 76.49% accuracy with the ResNet8, WRN-40-2, and ResNet20x4
teachers, and 75.98% accuracy with the VGG11, VGG13, and ResNet32x4 teachers. These
results underscore the adaptability and robustness of BOMD in handling diverse teacher
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architectures, leveraging their complementary knowledge to enhance the student’s perfor-
mance significantly.

5.5. Results on CIFAR-100 with Five Teachers

Extending our evaluation to a more challenging scenario with five teacher models,
Table 5 showcases the top-1 test accuracy of our BOMD method and competing approaches
on the CIFAR-100 dataset. The increased number of teachers with varying architectures
further amplifies the complexity of effectively distilling knowledge from the ensemble.

Table 5. Distillation accuracy of our methods.

Teacher

ResNet8 59.32 VGG11 71.52 ResNet8 59.32
VGG11 71.52 ResNet56 73.47 VGG11 71.52

ResNet56 73.47 VGG13 75.19 VGG13 75.19
VGG13 75.19 ResNet20x4 78.39 WRN-40-2 76.51

ResNet32x4 79.31 ResNet32x4 79.31 ResNet20x4 78.39

Student VGG8 70.74 ± 0.40 VGG8 70.74 ± 0.40 MobileNetV2 65.64 ± 0.19

AEKD-feature [13] 74.02 ± 0.08 75.06 ± 0.03 69.41 ± 0.21
AVER [9] 74.47 ± 0.47 74.48 ± 0.12 69.41 ± 0.04

AEKD-logits [13] 73.53 ± 0.10 74.90 ± 0.17 69.28 ± 0.21
EBKD [12] 74.37 ± 0.07 73.94 ± 0.29 69.26 ± 0.64

CA-MKD [11] 74.64 ± 0.23 75.02 ± 0.21 70.30 ± 0.51

BOMD 75.56 ± 0.34 75.32 ± 0.13 71.46 ± 0.26

Once again, our proposed BOMD method emerges as the top-performing technique
across all three teacher ensemble configurations. When distilling knowledge from ResNet8,
VGG11, ResNet56, VGG13, and ResNet32x4 teachers into a VGG8 student, BOMD achieves
a remarkable 75.56% accuracy, outperforming the second-best CA-MKD method by 0.92%.
This remarkable improvement demonstrates the power of our bi-level optimization frame-
work in optimally combining diverse knowledge sources, even in the presence of a large
and heterogeneous teacher ensemble.

Moreover, our method maintains its superiority in the other two setups, attaining
75.32% accuracy with the VGG11, ResNet56, VGG13, ResNet20x4, and ResNet32x4 teachers,
and 71.46% accuracy with the ResNet8, VGG11, VGG13, WRN-40-2, and ResNet20x4 teach-
ers distilled into a MobileNetV2 student. These results further validate the effectiveness
and adaptability of our approach, showcasing its ability to handle various student-teacher
architectural configurations while maximizing knowledge transfer.

By leveraging the bi-level optimization technique to learn optimal weighting factors,
our BOMD method effectively aligns and combines the heterogeneous teacher representa-
tions, enabling the student model to benefit from the collective knowledge of the diverse
teacher ensemble. This unique capability positions BOMD as a powerful tool for multi-
teacher knowledge distillation, facilitating improved performance and efficient knowledge
transfer across a wide range of scenarios.

5.6. Advantages over Other Method

Our proposed BOMD approach demonstrates significant improvements over existing
multi-teacher knowledge distillation methods across a variety of scenarios. The consistent
performance gains, ranging from 0.26% to 2.79% on CIFAR-100 benchmarks, highlight the
effectiveness of combining orthogonal projections with bi-level optimization for knowledge
transfer. The superiority of BOMD over methods like CA-MKD [11], which focuses pri-
marily on robustness to noisy teachers, suggests that our approach captures more nuanced
and complementary information from the teacher ensemble. BOMD’s bi-level optimization
strategy for learning optimal weighting factors provides a more principled and flexible
approach compared to heuristic weighting schemes used in previous work like EBKD
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and OKDDip. This adaptability likely contributes to BOMD’s strong performance across
diverse teacher–student scenarios, including both homogeneous and heterogeneous teacher
ensembles. The impressive gains achieved when distilling to compact student models, such
as MobileNetV2, are particularly noteworthy, suggesting that BOMD is especially effective
at transferring knowledge to resource-constrained models, which is crucial for deploying
efficient AI systems in real-world applications with limited computational resources.

5.7. Analysis of Our Method

The success of BOMD can be attributed to several key factors. First, the use of orthog-
onal projections to align teacher features with the student’s feature space while preserving
structural properties appears to be a powerful mechanism for effective knowledge transfer.
This approach likely allows the student to benefit from the diverse expertise of multiple
teachers without losing important relational information within the feature representations.
Second, by treating the weighting factors as upper-level variables and the student’s pa-
rameters as lower-level variables, BOMD can adapt the knowledge transfer process to the
specific characteristics of both the teacher ensemble and the student model. This bi-level
optimization framework enables a more nuanced and tailored approach to knowledge
distillation, potentially capturing complex interactions between teachers and students that
simpler methods might miss. The consistent performance improvements across various
teacher–student combinations suggest that BOMD’s approach to feature alignment and
knowledge integration is robust and generalizable.

5.8. Limitations of Our Method

While BOMD shows promising results, it is important to acknowledge potential limita-
tions of our approach. The computational complexity of bi-level optimization may become
prohibitive for very large teacher ensembles or student models. This scalability issue could
limit BOMD’s applicability in scenarios involving numerous teachers or extremely large
model architectures. Future work could explore approximation techniques or progressive
training strategies to improve scalability.

6. Conclusions

In this paper, we introduced BOMD, a novel approach for multi-teacher knowledge
distillation that combines orthogonal projections with bi-level optimization. Our method
effectively addresses the challenge of knowledge transfer from diverse teacher ensembles
to compact student models. Through extensive experiments on the CIFAR-100 benchmark,
we demonstrated that BOMD consistently outperforms existing multi-teacher distilla-
tion methods across various scenarios, including both homogeneous and heterogeneous
teacher ensembles.

The key strengths of BOMD lie in its ability to achieve the following:

• Align teacher features with the student’s feature space through orthogonal projections,
preserving structural properties during knowledge transfer.

• Optimize weighting factors for combining teacher knowledge using a principled
bi-level optimization approach.

• Achieve significant performance improvements even when distilling to very compact
student models.

Limitations and Future Work

Future work could explore the application of BOMD to other domains beyond image
classification, such as natural language processing or speech recognition. Additionally,
investigating the scalability of our approach to even larger and more diverse teacher
ensembles could provide further insights into its effectiveness and limitations.

In conclusion, BOMD represents a significant step forward in multi-teacher knowl-
edge distillation, offering a flexible and effective framework for leveraging diverse knowl-
edge sources to train high-performing compact models. As the field of AI continues
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to evolve towards more efficient and deployable solutions, techniques like BOMD will
play a crucial role in bridging the gap between state-of-the-art performance and practical
deployment constraints.
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