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Abstract: The contrastive vision–language pre-trained model CLIP, driven by large-scale open-
vocabulary image–text pairs, has recently demonstrated remarkable zero-shot generalization ca-
pabilities in diverse downstream image tasks, which has made numerous models dominated by
the “image pre-training followed by fine-tuning” paradigm exhibit promising results on standard
video benchmarks. However, as models scale up, full fine-tuning adaptive strategy for specific tasks
becomes difficult in terms of training and storage. In this work, we propose a novel method that
adapts CLIP to the video domain for efficient recognition without destroying the original pre-trained
parameters. Specifically, we introduce temporal prompts to realize the object of reasoning about the
dynamic content of videos for pre-trained models that lack temporal cues. Then, by replacing the
direct learning style of prompt vectors with a lightweight reparameterization encoder, the model can
be adapted to domain-specific adjustment to learn more generalizable representations. Furthermore,
we predefine a Chinese label dictionary to enhance video representation by co-supervision of Chinese
and English semantics. Extensive experiments on video action recognition benchmarks show that
our method achieves competitive or even better performance than most existing methods with fewer
trainable parameters in both general and few-shot recognition scenarios.

Keywords: action recognition; CLIP; dual semantic supervision; temporal prompt reparameterization

1. Introduction

Video understanding is an important concept in the field of computer vision, which
aims to enable computers to comprehend and interpret the content presented in videos. As
one of the most fundamental and challenging branches, video action recognition occupies
an important position in fields such as human–computer interaction [1], intelligent trans-
portation [2], and medical image analysis [3]. However, with the explosive growth of video
volume nowadays, addressing the issue of action recognition has become urgent.

In previous research, whether it is early feature engineering [4] or the recent CNN-
based architectures favored by industry professionals, e.g., 3D CNN [5], two-stream net-
works [6], depthwise separable convolutional networks [7], and more recently, Transformer-
based models [8] that have shown outstanding performance in the visual domain, spa-
tiotemporal representation learning has always been an enduring research topic in the
video field. Although action recognition has recently achieved remarkable results by intro-
ducing Transformer to establish long-term temporal dependencies, most existing methods
inevitably encounter the following problems: (i) Locating and annotating relevant human
behaviors in frame-based videos is a long-term project, which is time-consuming and labor-
intensive. Meanwhile, video datasets are relatively scarce and difficult to collect, especially
for rare categories and videos that involve personal privacy, which weakens the model’s
recognition capability in these aspects. Therefore, the ability to learn “few-shot” plays a
crucial driving role in enhancing the robustness of models. (ii) Follow the “closed set”
learning approach, with all categories predefined and labels mapped to numbers. In other
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words, the model’s performance is limited when dealing with new category information
that cannot be obtained during training, resulting in poor generalization. Such methods
are unfriendly for many real-world applications, such as automatic video tagging, sports
analysis [9], etc.

Fortunately, research on large-scale pre-training models in the field of NLP has pro-
vided a stepping stone for the computer vision community. The strong transferability
and generalization presented by fine-tuning large-scale contrastive Vision-Language pre-
trained Models (VLMs, e.g., CLIP [10], Florence [11]) on various downstream image tasks
through the paradigm of “pre-training followed by fine-tuning” have been studied and
proven [12,13]. Such significant improvements are mainly attributed to VLMs breaking
away from the traditional numerical supervision style, using natural language text descrip-
tions as supervision signals, and aligning representations to a common semantic space
through contrastive loss function applied to large-scale and weakly correlated noisy image–
text pairs. Therefore, given the excellent visual–language representations learned, models
equipped with CLIP exhibit outstanding “few shot/zero shot” capabilities.

In the video domain, the idea of replacing image–text pairs with video–text pairs to
train video–language pre-trained models [14] has been proposed. However, constructing
large-scale video–text pair datasets is more difficult, and due to the influence of redundant
frames in videos, the alignment between text content and the corresponding video is
often permanently misaligned. These obstacles are difficult for most ordinary people
to overcome. One feasible implementation is to fine-tune the pre-trained parameters of
VLMs on video datasets to transfer the knowledge to the video domain. It is common to
directly inflate an image-pre-trained model into a video model [5,15] and update the model
parameters during training by “full fine-tuning”. While the above approach performs
well on specific benchmark datasets, it lacks generality and practicality; that is, if the
downstream task datasets have fewer samples, the problem of over-fitting will be obvious
and it is easy to damage the original good general representation of VLMs, ultimately
leading to a significant discount in a model’s generalization ability. Additionally, fine-
tuning and saving a large number of parameters poses a dual challenge for storage and
computing resources.

To overcome the above drawbacks, inspired by the research direction known as
parameter-efficient transfer learning in the NLP field [16], a more economical and practical
approach [17–19] has been introduced into computer vision to achieve efficient knowledge
transfer from the image to the video domain. The goal is to fine-tune only a few parameters
of the additional modules introduced while freezing the large pre-trained model to adapt
image-level representations to video-level representations, which not only maximizes
the preservation of the diversity knowledge learned by the pre-trained models but also
achieves satisfactory performance. Therefore, it is crucial for researchers to design effective
lightweight modules. However, most existing methods focus on transferring pre-trained
image models for image tasks and pre-trained video models for video tasks [20–24]. There
is relatively less exploration of the cross-domain adaptation of pre-trained image models for
video tasks, mainly because image models inherently lack temporal reasoning capability.

In this work, we propose that the key to employing additional modules to reconstruct
CLIP’s image-level representations into video-level representations lies in the effective
modeling of temporal information in vision and providing stronger semantic constraints
for natural language supervision, thereby minimizing the cross-modal representation gap
between vision and text. Specifically, at the visual level, inspired by the effectiveness
of language model reparameterization methods [25,26], we propose a temporal prompt
reparameterization encoder to replace the direct learning style of prompt vectors with im-
plementing prompts reparameterization through a proposed encoder, aiming to make the
prompts not limited by fixed parameters in the frozen CLIP visual encoder, but to establish
dependency relationships with them so as to learn more generalized representations for
specific domains. Finally, the reparameterized prompts are concatenated with input embed-
dings and then guided by the powerful spatial semantics of CLIP to achieve spatiotemporal
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learning layer by layer. It is worth mentioning that the custom temporal prompts cap-
ture long sequence dependencies between frames and the inter-frame communication
information between each frame and all other frames to perform temporal modeling.

At the textual level, considering that the semantic supervision information provided
by simple original category labels is far from rich and diverse enough, we predefine a
Chinese label dictionary and introduce the corresponding Chinese text encoder, and then
form joint semantic supervision of Chinese and English together with the CLIP text encoder.
The intuition behind it is that Chinese culture is vast and profound, and the profound
cultural heritage that Chinese possesses can complement the advantages of other languages.
Experiments show that Chinese semantic supervision further improves performance.

We conduct comprehensive experiments on video action recognition datasets. Specifi-
cally, under the “few-shot” training setting, we verify the data efficiency and generalization
of our method, while under the “closed-set” setting, we compare the accuracy with state-
of-the-art techniques. In summary, we make the following contributions:

• We propose a novel method to adapt CLIP to the video domain for efficient action
recognition. The method is simple to implement, does not disrupt the original pre-
trained parameters, and has very few trainable parameters. Extensive experiments
demonstrate the good performance and generalization of our method in various
learning settings;

• Taking a visual perspective, we design a temporal prompt reparameterization encoder
that aims to enhance the model’s temporal modeling capability. The encoder replaces
the direct learning style of prompt vectors, allowing the model to learn more gen-
eralized temporal representations for specific domains while also being lightweight
and efficient;

• At the textual level, we predefine a Chinese label dictionary and introduce the corre-
sponding Chinese text encoder to realize joint semantic constraints of Chinese and
English in order to enhance video representations.

2. Related Works

In recent years, significant progress in the field of video action recognition cannot
be separated from the development of contrastive visual language pre-training models
represented by CLIP and the introduction of parameter-efficient transfer techniques in
the video field. Therefore, we will briefly review the relevant work in this field from the
following three aspects.

1. Video Action Recognition

The performance of video recognition models depends on their ability to model
temporal information. In the early stages, due to the constraints of data and computing
power, hand-crafted feature descriptors [4] for spatiotemporal representations have become
mainstream; however, they are difficult to design and not easy to generalize. We have wit-
nessed a paradigm shift from CNN-based to Transformer-based methods in deep-learning-
dominated methods. Among them, some methods utilize parallel branches [6,27] to jointly
model static and dynamic features. 3D convolution has also been widely adopted [28], aim-
ing to directly capture spatiotemporal features. Taking into account the trade-off between
efficiency and accuracy, some works [29] decompose convolution in both temporal and
spatial dimensions, while other studies [11,30] focus on deploying plug-and-play temporal
modules for 2D convolution. Recently, Transformer-based network backbones have been
widely used for video recognition [15,31] and are gradually becoming a trend. Considering
that most of the above methods are trained in a conventional one-hot supervised manner,
recent approaches like ActionCLIP [32] and X-CLIP [33] apply VLMs to action recognition
tasks. Given the strong generalization ability of VLMs, these methods perform well in
“few-shot” and “zero-shot” learning settings.

2. Vision–Language Pre-trained Models
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In recent years, ViT [8] and its various variants [34,35] have shown excellent perfor-
mance in the image domain, and their pre-trained models exhibit strong generalization
capabilities across various downstream tasks. Inspired by this, extensive research works
have been conducted on vision–language pre-trained models [10,11], with CLIP [10] being
one of the most representative works in this area. Different from conventional training meth-
ods, VLMs utilize large-scale image–text pairs crawled from the Internet, with text serving
as semantic supervision, and jointly learn fine-grained visual representations through con-
trastive loss training. Benefiting from the impressive zero-shot transferability demonstrated
by VLMs in the image domain, similar ideas are widely applied to various downstream
tasks. For example, semantic segmentation tasks [36]; ref. [37] utilizes a pre-trained VLM
combined with prompt engineering for object detection; PointCLIP [38] transfers knowl-
edge from CLIP to point cloud understanding tasks. In the video domain, some methods
directly replace image–text with video–text, regardless of the cost of pre-training, for tasks
like video retrieval [39]. Subsequently, some methods have also carried out work on video
recognition using CLIP [17–19,32,33]. One type of work [18,19] still follows the traditional
unimodal paradigm, strongly initializing the visual representations learned by CLIP into
the backbone network of the video model by discarding the text branch, whereas several
works [32,33] follow a full fine-tuning approach to convert the image features in CLIP into
video features. By contrast, we directly model temporal cues based on CLIP by fine-tuning
only a few additional parameters to effectively adapt the well pre-trained image model to
the solution of video tasks, significantly saving training costs due to the simplicity of our
proposed approach.

3. Parameter-Efficient Transfer Learning

With the widespread application of large pre-trained language models in various
downstream tasks, the idea of efficient tuning [16,25] has been proposed for the first time
and has received much attention in the field of NLP, aiming to solve the efficiency and cost
problems encountered when fully fine-tuning pre-trained models so as to achieve or exceed
the performance of full fine-tuning by updating only a small number of parameters. Some
existing methods [40] only train adapters that occupy a small portion of the parameters in
the entire model. Some methods exploit sparsity [41] or trainable low-rank decomposition
matrices [42] to achieve efficient transfer. Additionally, some methods [25] choose to
append some discrete or continuous learnable prompt vectors to the input or intermediate
feature sequences of the model, which are used for optimizing specific downstream tasks.
Recently, the idea of efficient transfer learning in NLP has been borrowed from the field
of computer vision [20–24]. However, the above-mentioned methods mainly focus on
fine-tuning models within the same domain; that is, adapting image models to the image
domain and video models to the video domain. In this work, we investigate how to adapt
image-pre-trained models lacking temporal reasoning ability to video recognition tasks.

This paper is aimed at the problem that most methods in the field of video-action
recognition follow the conventional training approach of mapping labels to numbers,
lacking the utilization of textual information. We use the VLM learning framework to
obtain video representations with rich semantics. As for the problem of fine-tuning between
the same domain and fully fine-tuning between cross-domains in previous research on
VLMs, we make targeted improvements (see the Section 3 for details).

3. Methods

In this section, we first briefly outline the workflow of VLMs for video action recogni-
tion in Section 3.1 and our proposed CLIP-based method framework in Section 3.2, and
then elaborate on our two key components, namely video encoder and text encoder, in
Sections 3.3 and 3.4, respectively. Finally, the learning objectives of our method are stated
in Section 3.5.
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3.1. Action Recognition with VLMs

This study is conducted in response to the problem that most studies in the video
field predict a set of predefined categories in a one-hot supervised manner within the
single-modal framework, making the learned visual representations less universal. In this
work, which is inspired by the VLM multi-modal learning framework, we use text labels
as supervision signals and jointly train the visual encoder and text encoder to learn how
to align the obtained visual representations and corresponding textual representations,
thereby extracting rich semantic information.

The workflow of the multi-modal learning framework based on VLMs for video action
recognition is shown in Figure 1.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 24 
 

 

then elaborate on our two key components, namely video encoder and text encoder, in 
Section 3.3 and Section 3.4, respectively. Finally, the learning objectives of our method are 
stated in Section 3.5. 

3.1. Action Recognition with VLMs 
This study is conducted in response to the problem that most studies in the video 

field predict a set of predefined categories in a one-hot supervised manner within the sin-
gle-modal framework, making the learned visual representations less universal. In this 
work, which is inspired by the VLM multi-modal learning framework, we use text labels 
as supervision signals and jointly train the visual encoder and text encoder to learn how 
to align the obtained visual representations and corresponding textual representations, 
thereby extracting rich semantic information. 

The workflow of the multi-modal learning framework based on VLMs for video ac-
tion recognition is shown in Figure 1. 

 
Figure 1. General workflow diagram for VLMs based on contrastive learning. 

The general structure of VLMs consists of two separate encoders and a similarity cal-
culation module. Assume that given a set of video samples V composed of multiple static 
images and a set of category labels, the videos and text labels in the samples are, respec-
tively, encoded by the visual encoder ( | )f θ⋅   and the text encoder ( | )f θ⋅   to obtain 
video embedding representations ε   and text label embedding representations ε  . 
Using the similarity calculation module, the dense cosine similarity matrix for all video-
label pairs is calculated. 

3.1.1. Video Representations 
Specifically, one video clip 3T H W× × ×∈  is selected from the set of samples, which 

consists of T frames with a spatial resolution of H W× . Following the ViT architecture, 
each image frame is segmented into N non-overlapping square patches of spatial size 
P P× , where the total number of patches is / /N H P W P= × . Then, all square patches

3P P× ×∈  of each frame are flattened into a set of vectors that are then projected through a 
linear projection layer to generate patch embeddings represented as (0) (0) (0)

,,1 ,2[x , x , , x ]... t Nt t , 
where t = {1, 2, …, T} represents the frame number and the superscript represents the 
number of the encoder layer where the feature is located. Subsequently, an additional 
learnable classification token xcls is prepended to the patch embedding sequences for each 
frame. Finally, the frame sequence input of each ViT block of the visual encoder is given 
by Equation (1): 

( ) ( )( )
1
( ) ( ) ( ) ( )( ) spatial temporal

,,1 ,2

[z ,..., z ]

z [x , x , x ,..., x ] e e

l ll
T

l l l ll
t Nt tclt s

Z

++=

= ，  (1)

where { }1,...,Ll∈ ， etemporal, and espatial denote temporal and spatial position encoding, re-
spectively, and (N + 1) embedded sequences are added element-by-element with them to 

Figure 1. General workflow diagram for VLMs based on contrastive learning.

The general structure of VLMs consists of two separate encoders and a similarity
calculation module. Assume that given a set of video samples V composed of multiple
static images and a set of category labels, the videos and text labels in the samples are,
respectively, encoded by the visual encoder f (·|θV ) and the text encoder f (·|θT ) to obtain
video embedding representations εV and text label embedding representations εT . Using
the similarity calculation module, the dense cosine similarity matrix for all video-label
pairs is calculated.

3.1.1. Video Representations

Specifically, one video clip V ∈ RT×H×W×3 is selected from the set of samples, which
consists of T frames with a spatial resolution of H × W. Following the ViT architecture,
each image frame is segmented into N non-overlapping square patches of spatial size P × P,
where the total number of patches is N = H/P × W/P. Then, all square patches∈ RP×P×3

of each frame are flattened into a set of vectors that are then projected through a linear
projection layer to generate patch embeddings represented as [x(0)t,1 , x(0)t,2 , . . . , x(0)t,N ], where
t = {1, 2, . . ., T} represents the frame number and the superscript represents the number
of the encoder layer where the feature is located. Subsequently, an additional learnable
classification token xcls is prepended to the patch embedding sequences for each frame.
Finally, the frame sequence input of each ViT block of the visual encoder is given by
Equation (1):

Z(l) = [z(l)1 , . . . , z(l)T ],

z(l)t = [x(l)cls, x(l)t,1 , x(l)t,2 , . . . , x(l)t,N ] + espatial + etemporal
(1)

where l ∈ {1, . . . , L}, etemporal, and espatial denote temporal and spatial position encoding,
respectively, and (N + 1) embedded sequences are added element-by-element with them
to obtain spatiotemporal enhancement. In the L-layer ViT block of the visual encoder,
the frame-level embedding of the t-th frame feature of the i-th layer is described using
Equation (2):

z(i)=t f (z(i−1)
t

∣∣∣θV) (i) ∈ R(N+1)×D (2)
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where i ∈ {1, . . . , L} refers to the Transformer block layer index and D is the channel
dimension.

Then, the classification token xcls is extracted from the output embeddings of the last
layer z(L)

t and mapped to the D̃ dimension through a linear projection layer Pproj ∈ RD×D̃

to obtain the final frame-level representation sequences, as in Equation (3):

F = [F1, . . . , Ft, . . . , FT ],

Ft = PT
projzt,0

(L) ∈ RD̃ (3)

where Ft is the frame-level representation of frame t and zt,0
(L) represents the classifica-

tion token xcls in the output embeddings of the t-th frame in the last layer of the visual
encoder. Finally, in order to obtain the video-level representations, the extracted frame-
level representation sequences F is generally averaged by pooling, which is expressed as
Equation (4).

εV= MeanPool(F) (4)

3.1.2. Text Representations

The text representations εT = f (T |θT ) is generated by the text encoder for the input
text label T . Considering that the text description information during VLM pre-training is
basically short sentences, and that most of the labels in existing datasets exist in the form of
words, in order to compensate for this difference in data distribution and solve the problem
of polysemy, it is common to convert a word into a form like “A video of the action of
{label}” via manual prompt templates [10]. However, manual prompt templates are not
static, and appropriate prompt templates should be selected for specific datasets.

3.1.3. Similarity Calculation

Finally, the visual encoder and the text encoder based on VLMs obtain the video
representations εV and the text representations εT , and the similarity score SV↔T between
the two is calculated using the cosine similarity function, represented as Equation (5):

SV↔T = s(εT , εV) (5)

where s(·, ·) denotes the cosine similarity function. During training, the objective is to
maximize the scores of matched video-label pairs while minimizing the scores of all other
mismatched pairs. During inference, the scores between the input video and each category
label are calculated and sorted as the prediction result.

3.2. Proposed CLIP-Based Framework

We present our framework in Figure 2. Unlike the CLIP model, which requires two
parallel encoders to generate visual and textual representations separately, our proposed
model consists of three encoders. In this paper, we extend the CLIP visual encoder in a
lightweight manner and introduce an additional text encoder, aiming to transfer VLMs to
action recognition tasks, as described in Sections 3.3 and 3.4.

Different from the conventional method of obtaining video representations εV by
mean pooling the frame-level representations F, we use word embedding as a query to
calculate the similarity between each word and T frames, further perform softmax to obtain
the similarity score between 0 and 1, and finally aggregate the similarity scores between
specific frames and different words to obtain the weight coefficients for each frame. The
specific expression is described by Equation (6):

Wt =
1
N

N

∑
n=1

exp(FT
t wn/τ)

T
∑

t=1
exp(FT

t wn/τ)

, t ∈ [1, T], n ∈ [1, N] (6)
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where wn represents the word embeddings obtained by the text encoder, N represents the
number of words in the category label, and τ is the temperature hyperparameter. Next, we
aggregate these frame-level representations using the weight coefficients of each frame to
obtain the final enhanced video representations εV , as in Equation (7):

εV =
T

∑
t=1

Ft · Wt (7)Electronics 2024, 13, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 2. Overview of the overall framework. Our proposed method contains three branches: video 
encoder, Chinese text encoder, and CLIP text encoder. 

Different from the conventional method of obtaining video representations ε  by 
mean pooling the frame-level representations F , we use word embedding as a query to 
calculate the similarity between each word and T frames, further perform softmax to ob-
tain the similarity score between 0 and 1, and finally aggregate the similarity scores be-
tween specific frames and different words to obtain the weight coefficients for each frame. 
The specific expression is described by Equation (6): 

T

1 T

1

exp( / )1 , [1, ], [1, ]
exp( / )

N
t n

t Tn
t n

t

w
W

F
t T n N

N F w

τ

τ=

=

=  ∈ ∈


 (6)

where nw  represents the word embeddings obtained by the text encoder, N  represents 
the number of words in the category label, and τ  is the temperature hyperparameter. 
Next, we aggregate these frame-level representations using the weight coefficients of each 
frame to obtain the final enhanced video representations ε  , as in Equation (7): 

1

T

t t
t
F Wε

=
=  ⋅  (7)

3.3. Video Encoder 
At the visual level, our proposed video encoder is roughly divided into two parts: (1) 

a simple yet effective temporal prompt reparameterization module, which re-encodes the 
received temporal prompt vectors into more discriminative and adaptive temporal repre-
sentations; (2) the frozen original image encoder from CLIP, which provides semantic 
guidance for spatiotemporal modeling with its powerful spatial semantics. 

  

Figure 2. Overview of the overall framework. Our proposed method contains three branches: video
encoder, Chinese text encoder, and CLIP text encoder.

3.3. Video Encoder

At the visual level, our proposed video encoder is roughly divided into two parts:
(1) a simple yet effective temporal prompt reparameterization module, which re-encodes
the received temporal prompt vectors into more discriminative and adaptive temporal
representations; (2) the frozen original image encoder from CLIP, which provides semantic
guidance for spatiotemporal modeling with its powerful spatial semantics.

3.3.1. Temporal Prompts

Our custom prompts are shown in Figure 3. Formally, we first extract the classification
tokens of all frames in the previous layer, perform linear projection Pcls on them, and then
apply multi-head self-attention to obtain the dependencies of the current frame with other
frames, represented by Equation (8):

X(l−1)
cls = [PT

clsz
(l−1)
1,0 , . . . , PT

clsz
(l−1)
t,0 , . . . , PT

clsz
(l−1)
T,0 ] ∈ RT×1×D,

C(1) = MHSA(LN(X(l−1)
cls )) + X(l−1)

cls ,

X(l−1)
cls = [x̂(l−1)

1,cls , · · · , x̂(l−1)
t,cls , · · · , x̂(l−1)

T,cls ],

C(l) =
[

c(l)1 , . . . , c(l)T

] (8)
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where C(l) represents the classification token sequences calculated by attention in the
l-th layer, MHSA represents the multi-head self-attention operation, and LN represents
layer normalization.
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interchange prompts, and CLS tokens mapped with the attention module.

Next, we introduce the randomly initialized learnable global prompts G(l) = [g1
(l),

. . ., gs
(l)] ∈ RT×S×D, which are used to provide the model with additional long-sequence

dependencies of the video. Here, S represents the number of global prompts, which can be
freely adjusted.

Subsequently, we combine randomly initialized interchange prompts I(l) = [i1(l), . . .,
iT(l)] with the previously extracted classification token X(l−1)

cls representing the current frame
information, thereby obtaining discriminative information between each frame and all
other frames, represented by Equation (9):

X̂(l−1)
cls = (X(l−1)

cls )
T

T ∈ RT×T×D,

Î(l) = I(l) + X̂(l−1)
cls

(9)

Finally, the above prompts are concatenated to obtain the final temporal prompts, as
in Equation (10):

P =
{

C(l), G(l), Î(l)
}
∈ RT×P×D (10)

For convenience, we simplify it to the format represented by Equation (11):

P = [P1][P2] . . . [PH ], P = T + 1 + S (11)

3.3.2. Reparameterization Encoder

Taking inspiration from the effectiveness of language model reparameterization [25,26],
we propose a lightweight reparameterization encoder. This encoder is fine-tuned on the
downstream task such that prompt tokens undergo domain-specific adjustments before
being forwarded to the fixed visual encoder to better provide adaptive temporal model-
ing for video tasks. Specifically, we project the temporal prompts P as reparameterized
embedding sequences PR via the encoder, as in Equation (12):

PR = R(P) = β(P) + P (12)

where R(·) represents the reparameterized function of the encoder, which consists of a
network β(·) with residual connection, as shown in Figure 4a. The ST-Block in the network
β(·) draws on the design idea in the R(2+1)D model [29] by default to further enhance
spatiotemporal modeling; that is, decomposes the 3D space–time convolution into 2D
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spatial convolution and 1D temporal convolution, as shown in Figure 4b. Meanwhile, there
are other designs available for ST-Block, which are explored in the Ablation Studies Section.
The network β(·) implements task-related reparameterization in prompt embeddings,
aiming to enhance domain-specific temporal information in prompts and improve the
model’s adaptability. Different encoder network architectures have varying impacts on
the model’s adaptability and performance, which are explored in the Ablation Studies
Section. Additionally, the residual connection in the encoder enables the model to more
flexibly combine the original embeddings of prompts with the embeddings projected from
the network, thus integrating the raw knowledge encoded in CLIP parameters with new
learned knowledge obtained from training samples through the network β(·), as shown in
Equation (12). The Ablation Studies Section provides the effect of residual connection in
the network β(·) on the model.
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Figure 4. (a) Shows the structural details of the reparameterization encoder β(·); (b) illustrates the
detailed information on ST-Block in β(·).

Overall, the core idea of our proposed reparameterization encoder is to reparame-
terize the prompts embeddings before forwarding them to the CLIP visual encoder with
fixed parameters, rather than letting the model directly optimize the prompts during back-
propagation optimization. Through the learnable reparameterization encoder, our model
can flexibly capture task-related dependencies within the prompts embeddings, freeing
itself from the limitation of being encoded only by the frozen CLIP vision encoder. In
addition, combining these associate-learned prompt tokens that have undergone reparame-
terization with the input tokens through concatenation operation and feeding them into
the CLIP visual encoder will be more conducive to the model learning more contextually
generalizable and field-specific knowledge during the optimization process.

3.3.3. Spatial Semantic Guidance of CLIP

Finally, the projected context sequences PR obtained from the encoder is attached to
the Z(l−1) embedding sequences and applied to the multi-head self-attention in the frozen
CLIP visual encoder of this layer, as in Equation (13):

[Ẑ(l),PR]= MHSA(LN([Z(l−1),PR])) + [Z(l−1),PR] (13)

Before feeding Ẑ(l) into the multi-layer perceptron (MLP) in the CLIP visual encoder
of this layer, we remove the additional prompt tokens for subsequent processing, as in
Equation (14):

Z(l) = MLP(LN( Ẑ(l))) + Ẑ(l) (14)

Then, the subsequent Z(l) obtained will repeat the above operation in the next layer
until Z(L) is obtained.

3.4. Text Encoder

At the text level, we introduce an additional text encoder pre-trained with Chinese
text pairs, aiming to combine with the CLIP text encoder to form joint supervision of
Chinese and English semantics to strengthen text constraints so as to obtain stronger video
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representations. Specifically, to bridge the text format gap between CLIP pre-training
data and downstream datasets, we append the original labels with the prefix prompt
“This is a video about {label}” before feeding them into the CLIP text encoder. For the
Chinese text BERT encoder f (·|θC) introduced from the Chinese-CLIP model [43], we
adopt a predefined Chinese label dictionary as its input. We believe that the rich semantics
contained in Chinese play a key role in obtaining more robust video representations.

3.5. Learning Objectives

To sum up, our architecture extracts embedded representations of videos, predefined
Chinese labels, and category labels εV , εC, εT through corresponding encoders, all of which
are initialized by the weights of the pre-trained model. In this paper, we freeze the original
encoder and only fine-tune the additional module to apply the image representations
generated by the VLM to the video task.

During training, our objective is to maximize the similarity between εV and εT when
they are correlated and minimize the similarity when they are uncorrelated. εV and εC are
the same. Formally, assume a batch of B quadruples {εV i, εT i, εCi ≡C[yi], yi}B

i=1, where
C is a set of K categories, with subscripts yi ∈ [0, K − 1] representing the index of labels
in the dataset, and εV i, εT i, εCi denoting the video embedding, category label embedding,
and Chinese label embedding of the i-th video, respectively. We consider the learning
objectives as per the conventional practice [19,32], where the loss function uses symmetric
cross-entropy to maximize the similarity between εV and εT when matched and minimize
the similarity between other irrelevant pairs, formulated as in Equation (15):

LV→T = − 1
B

B
∑
i

1
|K(i)| ∑

k∈K(i)
log

exp(s(εT i, εVk)/τ)
B
∑
j

exp(s(εT i, εV j)/τ)

,

LT →V = − 1
B

B
∑
i

1
|K(i)| ∑

k∈K(i)
log

exp(s(εT k, εV i)/τ)
B
∑
j

exp(s(εT j, εV i)/τ)

,

LV⇄T =
1
2
(LV→T + LT →V )

(15)

where k ∈ K(i) = {k|k ∈ [1, B], yk = yi} and τ generally refers to the temperature hy-
perparameter used for scaling. Similarly, the loss between εV and εC is calculated as in
Equation (16):

LV→C = − 1
B

B
∑
i

1
|K(i)| ∑

k∈K(i)
log

exp(s(εCi, εVk)/τ)
B
∑
j

exp(s(εCi, εV j)/τ)

,

LC→V = − 1
B

B
∑
i

1
|K(i)| ∑

k∈K(i)
log

exp(s(εCk, εV i)/τ)
B
∑
j

exp(s(εC j, εV i)/τ)

,

LV⇄C =
1
2
(LV→C + LC→V )

(16)

In summary, the total loss L expression is described by Equation (17):

L = LV⇄T + LV⇄C (17)

In the inference stage, we use Equation (18) to combine the similarity scores between
the video and two types of labels to obtain the final inference result.

S = λSV↔T + (1 − λ)SV↔C (18)

where λ is the fusion weight.
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4. Experiments

In this section, we conduct experiments on three widely used video datasets, HMDB-51,
UCF-101, and Something-Something V1, under different settings, namely fully supervised
and few-shot. The three video datasets cover a broad range of activities, and such diverse
datasets allow us to comprehensively evaluate the model across different scales and do-
mains. We first introduce a series of environmental configurations and implementation
details used in the experiments, then conduct ablation research on the key components of
our proposed method. Extensive experiments demonstrate the efficiency and generaliza-
tion of our method on “few-shot” training, as well as the Top-1 accuracy of the best model
on the three datasets, which is competitive with most existing state-of-the-art methods.

4.1. Experimental Configurations and Details

In this section, we briefly describe the datasets required for the experiment, a se-
ries of environment configurations and implementation details for the model, and the
experimental baseline.

4.1.1. Datasets and Evaluation

We evaluate the proposed method on three different benchmarks. Specifically, HMDB51
is a small dataset that provides about 7 K videos of 51 action categories. We use all three
splits; each split consists of 3570 and 1530 videos for training and evaluation, respectively.
The UCF101 dataset contains a total of 13,320 video samples, divided into 101 different
action categories. The videos cover various activities and actions in real life, and each
video has a duration ranging from 7 s to 20 s. Something-Something V1 (SSv1) is a more
challenging dataset since it requires more temporal modeling. It contains 174 fine-grained
human activities, with a total of approximately 86 K/12 K training and validation videos.
Details about the datasets are given in Table 1.

Table 1. Detailed information on HMDB-51 and UCF-101 datasets.

Datasets Categories Training Set Test Set Total Split Sources

HMDB-51 51 3570 1530 7000 3 Movies and web videos

UCF-101 101 9537 3783 13,320 3 YouTube

Something-Something V1 174 ∼86 K ∼12 K ∼100 K 1 Crowdsourcing collection

Unless otherwise stated, we spatially scale the short side of each input frame in the
datasets to 256, and the input frame resolution is 224 × 224. To balance inference speed and
accuracy, we adopt two evaluation protocols: (1) Single view: we efficiently evaluate each
video using 1 central crop and clip; (2) Multi-view: to improve model accuracy, it is routine
to randomly sample each video to obtain multiple clips with multiple spatial crops [6]. To
achieve optimal performance, we use 4 temporal clips × 3 spatial crops, and the final Top-1
and Top-5 accuracies are derived from the average score of all views.

4.1.2. Training Details

In our experiment, we used CLIP [10] pre-trained image and text encoders for visual
and original text label level processing, while for the encoding predefined Chinese labels,
we chose the RoBERTa-wwm-Base architecture in the Chinese-CLIP [43] as the Chinese text
encoder, and kept all encoders’ pre-trained parameters constant during training. In the
training phase, we set all temperature hyperparameters τ to 0.01 and input frames T (e.g., 8,
16, 32) based on the sparse sampling strategy. Details of the remaining hyperparameters
are shown in Table 2.
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Table 2. Detailed settings of model training hyperparameters.

Setting Value
Training Hyperparameter
Batch size 256 (Fully), 64 (Few-shot)
Training epochs 30 (ViT-B), 20 (ViT-L)
Optimizer AdamW, betas = [0.9,0.999]
learning rate 5 × 10−6 (Fully), 4 × 10−6 (Few-shot)
Learning rate schedule cosine
Linear warm-up epochs 5
Weight decay 1 × 10−2

Data Augmentation
Training resize RandomSizedCrop
Training crop size 224
Random Flip 0.5
Gray Scale 0.2

4.1.3. Baseline

To analyze the effectiveness of each component in our method, we design a “baseline”
model for ablation research. This model is based on CLIP and only replaces mean pooling
with aggregating frame-level representations using the weight coefficients of each frame to
obtain the final video-level representations, as shown in Equation (7). Compared with our
method, there are two differences: (1) at the visual level, the input embeddings before the
CLIP image encoder do not contain the temporal prompts obtained by the reparameteriza-
tion encoder; (2) at the textual level, the predefined Chinese label text encoder branch is
not applied to the “baseline”.

4.2. Ablation Studies

In this section, we provide detailed ablation studies to illustrate the effectiveness of
our proposed key design. We train all models on 2 NVIDIA GeForce RTX 4090 GPUs,
unless otherwise stated; the models in this section use ViT-B/16 as the backbone, and all
experiments are trained on the HMDB-51 and UCF-101 training sets and tested on the
validation sets using a single view. The results are shown in Figure 5.

4.2.1. Effect of Key Components

In Figure 5a, we obtain video representations through mean pooling over 8 frames
to evaluate the performance of the original CLIP model on the video datasets. Compared
to the “baseline”, our model significantly improves the Top-1 accuracy by equipping only
temporal prompts, increasing by +5.5% and +8.2% on the HMDB-51 and UCF-101 datasets,
respectively. After further reparameterizing the temporal prompts through the β(·) network
to obtain domain-specific temporal information, model performance on the two datasets is
further improved by +3.5% and +2.7%, respectively. It is evident that temporal modeling
plays a crucial role in bridging the significant gap between image and video domains.
Moreover, the additional Chinese label text encoder branch also shows positive effects, with
the Top-1 accuracy improved by +2.9% and +3.1% on the HMDB-51 and UCF-101 datasets,
respectively, indicating the effectiveness of the rich semantics contained in Chinese for
obtaining more powerful video representations.

4.2.2. Number of Sampled Frames

We explored the impact of the number of sampled video frames T on the model
in Figure 5b. We compared multiple results for T∈{4, 8, 16, 32}, and observed that the
performance gain on HMDB-51 gradually levels off and that on UCF-101 declines as the
number of T increases. Although the model with T equal to 32 performs the best on
HMDB, we believe that the corresponding increase in computational cost can be completely
negligible given the slight performance gain. To balance performance and efficiency, we
set T to 16 in the subsequent experiments and we speculated that the reason why the
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model cannot obtain proportional performance gains from more frames is mainly due
to the existence of redundant frames that contain a lot of background noise unrelated to
the task, which cannot be eliminated by additional parameters. As a result, the frozen
CLIP image encoder introduces internal variance between frames, thus not achieving the
expected results.
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The experiments in this chapter all use single-view testing. (a) The effectiveness of our proposed
key components is proved step by step; (b) illustrates the impact of the number of sampling frames
on the model; (c) shows the performance of learnable global prompts with different lengths. Note:
TP is the abbreviation for Temporal Prompts; CN.Branch is the abbreviation for Chinese Label Text
Encoder Branch.

4.2.3. Length of Learnable Global Prompts

As shown in Figure 5c, we evaluated the impact of global prompts on model perfor-
mance when S∈{5, 8, 10, 12} under the same settings. The results show that as S increases,
the performance gain of the model is gradually improved, except when S is 12. When S
increases from 5 to 12, the Top-1 accuracy of our model increases by 0.8% and 0.5% on
HMDB-51 and UCF-101, respectively. We speculate that longer global prompts provide the
model with a clearer and more concise overall overview of the sampled frames. When S
equals 8, the accuracy of the model almost tends to saturation. Therefore, we set S to 8 by
default in the subsequent experiments.
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4.2.4. The Influence of Different β(·) Networks

To further investigate the impact of different reparameterization network architectures
on model performance, we implemented a series of structural variants for the β(·) network,
including (i) Bottleneck MLP: composed of a down-projection layer, activation function,
and an up-projection layer; (ii) Shallow Transformer network, consisting of two Trans-
former encoders; and (iii) Long Short-Term Memory (LSTM) [44] network. The ST-Block
in the β(·) network we adopt by default is designed to provide reparameterization of
spatiotemporal information and offers several designs to choose from, such as convolution-
based TAdaConv [45], C3D [46], and R(2+1)D [29]. The Top-1 and Top-5 accuracies of the
aforementioned networks on HMDB-51 and UCF-101 are shown in Table 3. The results
show that our proposed β(·) network is more conducive to reparameterizing the prompt
vectors to adapt VLMs to video tasks, with the ST-Block based on R(2+1)D achieving the
best performance. In contrast, the performance of the Bottleneck MLP network is slightly
inferior to those of other networks, ultimately due to the fact that MLP is a feed-forward
network that lacks capturing valuable contextual information in prompt vectors.

Table 3. The impact of different structural variants of β(·) network on model performance.
“-” indicates that this module is not available for β(·).

β(·) TAda C3D R(2+1)D
HMDB-51 UCF-101

Top-1 Top-5 Top-1 Top-5

MLP

-

70.1 91.3 92.6 96.2
LSTM 71.0 91.8 93.9 97.0

Transformer
Encoders 71.8 92.5 94.4 97.5

Ours
✓ 72.3 92.9 94.8 98.2

✓ 72.8 93.5 94.6 98.2
✓ 73.2 93.6 95.8 99.0

4.2.5. The Role of Residual Connection in β(·)
We conducted ablation studies on different ST-Block designs in the β(·) network to

evaluate the impact of residual connection in the β(·) network on performance. Specifically,
we compared the performance of structural variants when prompt vectors pass through
the β(·) network without additional residual connection. As shown in Table 4, removing
the residual connection from the β(·) network results in varying degrees of decrease in
Top-1 and Top-5 accuracies of all structural variants on HMDB-51 and UCF-101, indicating
significant vulnerabilities in the network when handling input prompt embeddings. We
speculate that the removal of residual connection diminishes the model’s ability to capture
complementary knowledge, thereby weakening the model’s performance.

Table 4. Ablation study of different ST-Block designs in the β(·) network with and without residual
connection.

β(·) Residual Connection
HMDB-51 UCF-101

Top-1 Top-5 Top-1 Top-5

Ours

TAda
× 70.5 92.0 95.1 97.8
✓ 72.3 92.9 94.8 98.2

C3D
× 71.2 92.5 92.9 97.4
✓ 72.8 93.5 94.6 98.2

R(2+1)D
× 70.0 90.9 93.0 96.0
✓ 73.2 93.6 95.8 99.0
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4.2.6. Hand-Crafted [CLS] Prefix Prompt

We explored the initialization effect of attaching different prefix prompts to text labels.
We designed three manually crafted prompts with lengths of 3, 4, and 5. As shown in
Table 5, the performance of the model was hardly affected by manual prompts for different
initializations, proving that the manual prefix we adopted is relatively stable for video tasks.

Table 5. The initialization effects of different prefixes for [CLS].

Manual Prefix Initialization for [CLS]
HMDB-51 UCF-101

Top-1 Top-5 Top-1 Top-5

a video about [CLS]. 73.1 93.7 95.8 98.8
This is a video about [CLS]. 73.2 93.6 95.8 99.0

the video is about [CLS]. 72.9 93.6 95.6 98.9

4.2.7. Trainable Parameters and Time Efficiency

Table 6 shows the comparison between our method and the CLIP-based methods
under the same hardware and backbone network. When the input frames are 8 or 16,
our method outperforms other methods, except for BIKE; however, compared to BIKE,
our method is slightly better when T = 8 on HMDB. We also report the comparison of
trainable parameter occupancy with Vita, BIKE, and XCLIP in Figure 6a, where our trainable
parameters account for only 50% and 40% of those of BIKE and XCLIP, respectively (that is,
54.2 M vs. 106.8 M/131.5 M). In addition, in Figure 6b, we show that our proposed method
still performs well when reducing training cycles, even at lower training costs.

Table 6. Comparison of trainable parameters and training time and memory between our method
and the CLIP-based method on the same hardware and backbone network. Note: The units for
tunable parameters and memory are both MB.

Methods Backbone T Tunable
Parameters

Epoch Batch
Size

Training GPU
Minutes
(HMDB)

Memory
(HMDB)

Top-1 (%)

HMDB UCF

Vita

ViT-B/16

8
38.88

30

96
45

17,721 67.25 91.54
16 48 18,182 63.79 90.38

BIKE
8

106.8 (+100%) 32
24 6445 72.22 96.15

16 45 10,603 73.31 96.63

XCLP
8

131.5 (+147%)
16 32

17,674
70.22 94.20

16 8 54 70.75 94.10

Ours
8

54.2 32
22 6601 72.50 95.33

16 41 10,759 73.21 95.81

4.2.8. Visualization

The visualization effect of the attention map in our method is shown in Figure 7. We
compared our method with the baseline that does not include our proposed temporal
prompts and reparameterized encoder. It can be observed that our proposed approach is
more conducive for the model to focus on the dynamic regions and key parts used for the
final recognition task in the video.
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Figure 7. We illustrate some behavioral actions such as “Clap”, “Cartwheel”, and “Fencing” on
the original video frames and the attention map without and with our proposed method. It can be
observed that our method focuses on distinguishable motion information and some key regions. Note:
red indicates the areas that the model focuses on, while green mainly represents the background or
some less important areas.

4.3. Few-Shot Video Recognition

In this section, we conduct few-shot experiments on HMDB-51 and UCF-101 datasets
to demonstrate the few-shot recognition capability of our method, which achieves video
recognition using only a small number of training samples. For a fair comparison, we
follow the standard K-shot setting as in X-CLIP [33]; that is, randomly select K samples
from each category to construct a training dataset. Here, we set K∈{2, 4, 8, 16} and evaluate
the “few-shot” model using single-view on a standard test set. The final Top-1 accuracy
is the average of multiple inference results. We train our model using CLIP pre-trained
ViT-B/16 without further pre-training on Kinetics-400, with a batch size of 64 and an initial
learning rate of 4 × 10−6. We not only compare the “few-shot” capability of our model
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with state-of-the-art and representative methods but also explore the performance of key
components we proposed under the “few-shot” setting.

Table 7 shows the learning results under the K-shot setting, from which we draw the
following conclusions: (i) The key components we designed still play a non-negligible role
in the “few-shot” experiments. For example, on HMDB-51/UCF-101 with K = 2, our model
equipped with TP alone outperforms “Baseline” by 6.2%/9.8%, and the combination of TP
and β(·) further improves accuracy by 3.5%/4.9%. Finally, there is a further improvement
of 2.3%/2.9% through CN.Branch. (ii) Compared with state-of-the-art and representative
methods, our model achieves higher performance gains with smaller K, as shown in
Figure 8. We outperform some traditional single-modal methods by a large margin. Taking
VideoSwin [15] as an example, our 2-shot model on HMDB-51 and UCF-101 is 40.7% and
29.4% higher, respectively. Such a large gap further verifies the effectiveness of transferring
knowledge from VLMs to the video domain and the importance of improving the quality
of pre-training data. Compared with the same VLM-based methods, our method is still
better than [47], X-CLIP [33], and ActionCLIP [32] on HMDB-51 by 6.3%, 8.6%, and 6.8%,
respectively, in the extreme case of K = 2, proving the powerful learning ability of our
method even with extremely limited training data (i.e., about 3% of the videos in the training
set). This also indicates that our Chinese text constraints based on CLIP have strengthened
the semantic supervision of the model compared to the above methods, and compared
to the full fine-tuning of X-CLIP [33] and ActionCLIP [32], only fine-tuning the proposed
temporal prompt vectors and reparameterization encoder can retain the generalization
ability of the CLIP pre-trained model to the greatest extent. This is the reason why our
model can achieve advantages in “few-shot” environments. (iii) However, compared with
the BIKE method, which is also based on VLMs, our model is inferior. We determined
that the main reason is that the BIKE framework, based on the CLIP model, builds a
complementary bridge between the visual and textual domains through bidirectional
cross-modal knowledge mining, while we only strengthen video representations through
an additional Chinese text branch without fully exploring the bidirectional knowledge
between the two modalities. (iv) In summary, our method exhibits excellent transferability
under data-scarce conditions and achieves leading “few-shot” performance on HMDB-51
and UCF-101 datasets.
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Table 7. Few-shot training results on HMDB-51 and UCF-101 datasets under K-shot setting. The
value range for K is {2, 4, 8, 16}. In the case of scarce data resources, we have significant performance
advantages compared to methods other than BIKE.

Methods Pretrain TP β(·) CN.
Branch

HMDB-51 UCF-101

K

2 4 8 16 2 4 8 16

STM
ImageNet-1k - - -

35.8 39.0 43.6 - 65.4 73.9 81.3 -
3D-ResNet-50 43.2 44.3 49.9 - 68.8 71.1 85.8 -

TSM-R50 17.5 20.9 18.4 31.0 25.3 47.0 64.4 61.0

TimeSformer ImageNet-21k - - - 19.6 40.6 49.4 55.4 48.5 75.6 83.7 89.4
Video Swin-B 20.9 41.3 47.9 56.1 53.3 74.1 85.8 88.7

X-Florence FLD-900M - - - 51.6 57.8 64.1 64.2 84.0 88.5 92.5 94.8

ActionCLIP CLIP+
Kinetics-400 - - - 54.8 56.7 57.3 - 80.7 85.3 89.2 -

X-CLIP-B/16

CLIP-400M

- - -

53.0 57.3 62.8 64.0 76.4 83.4 88.3 91.4
Vita-B/16 39.9 44.5 54.0 57.0 70.1 79.3 83.7 90.0

BIKE-B/16 64.3 67.6 71.3 71.9 88.6 91.5 92.8 93.3
[47] 55.3 58.7 64.0 64.6 82.4 85.8 89.1 91.6

Baseline - - - 49.6 52.8 57.3 60.3 65.1 74.8 77.6 80.2

Ours
✓ 55.8 59.1 61.8 63.7 74.9 77.8 80.4 84.3
✓ ✓ 59.3 62.4 66.0 67.9 79.8 82.1 84.8 88.2
✓ ✓ ✓ 61.6 64.8 69.6 70.4 82.7 86.0 89.5 92.1

4.4. Comparison with the State-of-the-Art

In this section, we compare the fully supervised performance under a “closed set”
setting with the state-of-the-art video recognition models on three widely studied action
recognition datasets. All experiments in this section are based on the CLIP [10] pre-trained
model; the pre-trained weights are fixed for all layers. For HMDB-51 and UCF-101, the
initial learning rate is set to 5 × 10−6 and the model is trained for 30 epochs; the batch
size is 32. We test the accuracy of the split datasets using multi-view (i.e., 4 temporal
clips × 3 spatial crops). In Table 8, we report the results on HMDB-51 and UCF-101 and
compare our method with the previous methods conducted with different pre-training
data, including K400, ImageNet, and web-scale vision–language pre-trained model (CLIP).

Table 8. Comparison between our method and state-of-the-art methods on HMDB-51 and UCF-101
datasets under fully supervised training settings. “Frozen” means freezing CLIP pre-trained parameters.

Methods Pretrain Data Modalities Frozen
Top-1 (%)

UCF-101 HMDB-51

ARTNet

- RGB ×

94.3 70.9

TSM 95.9 73.5

STM 96.2 72.2

MVFNet 96.6 75.7

TDN 97.4 76.4

R3D-50 92.0 66.0

NL-I3D - 66.0
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Table 8. Cont.

Methods Pretrain Data Modalities Frozen
Top-1 (%)

UCF-101 HMDB-51
Methods with Kinetics pre-training

STC K400

RGB ×

95.8 72.6

ECO K400 93.6 68.4

R(2+1)D-34 K400 96.8 74.5

FASTER32 K400 96.9 75.7

SlowOnly-8x8-R101 K400 + OmniSource 97.3 79.0
Methods with ImageNet pre-training

I3D ImageNet + K400

RGB ×

95.6 74.8

S3D ImageNet + K400 96.8 75.9

LGD-3D ImageNet + K600 97.0 75.7
Methods with large-scale image-language pre-training

BIKE ViT-L CLIP + K400

RGB

× 98.8 82.2

ViT-B/16 w/ST-Adapter CLIP + K400 ✓ 96.4 77.7

VideoPrompt [17] CLIP ✓ 93.6 66.4

[47] CLIP ✓ 96.3 72.9

BIKE ViT-B CLIP × 96.6 73.3

XCLIP-B CLIP × 94.2 70.8

Vita ViT-B [48] CLIP ✓ 91.5 67.3

Ours ViT-B CLIP ✓ 96.5 73.8
Methods with additional modalities

Two-Stream I3D ImageNet + K400 RGB + Flow

×

98.0 80.7

Two-Stream LGD-3D ImageNet + K600 RGB + Flow 98.2 80.5

PERF-Net ImageNet + K700 RGB + Flow + Pose 98.6 83.2

SlowOnly-R101-RGB + I3D-Flow OmniSource RGB + Flow 98.6 83.8

SMART ImageNet + K400 RGB + Flow 98.6 84.3

Compared with methods pre-trained on ImageNet, we find that our model only
achieves comparable performance with I3D, and slightly lags behind other models. How-
ever, it is worth mentioning that they fine-tune based on the Kinetics dataset, although, our
method fails to learn more good spatiotemporal representations from relevant fields to fit
the model. The fully fine-tuned strategy requires them to save a large number of model
parameters for each task, while our method not only has the advantage of a small number
of adjustable parameters but can also save a lot of memory when facing increasingly large
model backbones. Due to the limitation of computing resources, we believe there will be a
significant performance improvement if our model is also pre-trained on Kinetics.

Compared with methods pre-trained on K400, our method outperforms STC and
ECO based on RGB modality by 1.2%, 5.4% and 0.7%, 2.9% on HMDB-51 and UCF-101,
respectively. We found that the performance gap mentioned above is partly due to the fact
that traditional methods are mostly based on CNN architecture, in which the convolution
operation can effectively capture local features of images; however, the ability to model
global information over long distances is limited; on the contrary, our method is based
on the ViT architecture, where the attention mechanism excels at modeling long-range
temporal dependencies. However, compared with the SlowOnly-8×8-R101 method sup-
ported by OmniSource [49], we are clearly lagging behind, mainly due to the fact that the
OmniSource framework can improve the model’s performance on the given target dataset.
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Our method is also competitive compared with the same pre-trained method using
CLIP-400M. Compared with the [48] and [47] methods that also freeze the backbone
network, the Top-1 accuracy of our method on HMDB-51 increases by +6.5%, and +0.9%,
respectively. For the VideoPrompt [17] method, we have a significant performance gap of
+7.4%. We believe that the +7.4% Top-1 gap is mainly due to the fact that VideoPrompt only
adds a simple Transformer block after the frozen visual encoder and adds simple learnable
prompts before and after text embedding to improve the quality of video embeddings, while
our method not only adds new semantic constraints on the text but also re-parameterizes
the temporal prompts through the encoder to enhance the temporal modeling ability of the
model. Meanwhile, for X-CLIP [33] and BIKE ViT-B [50], which both fine-tune the visual
backbone network, we not only have better performance but also have fewer trainable
parameters, as shown in Figure 6a, which further proves that we can achieve a good
transformation from large-scale image-based models to video models by only fine-tuning
additional module parameters.

In addition, we also compared our method with methods based on multiple input
modalities, and we found that our method is not advantageous or is even far inferior to
them. However, this also inspired us to consider developing a CLIP-based model in a
dual-stream or even multi-stream manner. Compared with optical flow-based methods,
CLIP-based methods can avoid expensive optical flow calculation costs and improve speed.

Based on the above comparison, we can observe that, compared with popular video
recognition models based on CNN and Transformer, our method maintains
considerable competitiveness while also possessing the strong generalization ability
demonstrated previously.

For the SSv1 dataset where action categories are less related to static backgrounds
but closely associated with dynamic content, the model should be able to distinguish
fine-grained behaviors in daily life, such as “digging something out of something”, “letting
something roll down a slanted surface”, “moving something across a surface without
it falling down”, and other specific actions. To this end, different from the HMDB-51
and UCF-101 datasets, we used more powerful data augmentation techniques for the
SSv1 dataset, including RandAugment, random erasing, and label smoothing. The initial
learning rate was set to 5 × 10−4 and the model was trained for 40 epochs with a batch size
of 16. Comparison of performance between our model and other state-of-the-art techniques
on the SSv1 dataset is shown in Table 9.

Compared with methods based on the CNN architecture, our model has a slight advan-
tage in terms of accuracy. Specifically, compared with methods based on ImageNet-1K pre-
trained, our model has a performance gap of +7.7% at the highest and +0.8% at the lowest
on the Top-1 accuracy. However, compared with methods based on ImageNet21K + K400
pre-trained, the performance of our model is slightly inferior. According to our speculation,
this may be due to the large-scale and diverse data in the K400 dataset, which plays a
vital role in the migration of the model to downstream tasks, mainly in enhancing the
model’s feature learning ability so that it can better capture temporal dynamic information
in the samples.

Our method is also at a disadvantage among the methods based on Transformer
architecture and pre-trained on cross-modal data. One reason for this may be that SSv1 is a
“temporal-heavy” dataset that requires the model to understand the temporal changes in
the video from the essence. Another reason is that the Chinese text branch we proposed can
only constrain video representations semantically, while the proposed temporal prompt
reparameterization encoder only adjusts task-specific parameters based on frozen CLIP
parameters, without fully learning the temporal dependencies in the task. This reminds us
that we need to fundamentally model temporal dynamics in our next work.

In summary, although our model has achieved relatively good results on the three
video datasets mentioned above, there are still some potential limitations in practical appli-
cations, especially in processing data noise and video quality. During the training phase,
although our model simulates video sources of various quality levels encountered in the
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real world through data augmentation and other techniques to enhance its robustness
under various conditions in real-world environments, we still need to focus on the actual
application performance of the model in future research and applications when faced with
extremely complex real-world situations in order to improve its accuracy and stability. Fi-
nally, our method is simple and feasible, and in future research, more powerful contrastive
language–image pre-trained models may be utilized to enhance model performance. In ad-
dition, since temporal modeling on video data can be seen as a form of sequence modeling,
it is highly likely that in the future we will reuse pre-trained weights from audio, 3D point
clouds, and sensor models instead of image models.

Table 9. Comparison between our model and state-of-the-art methods on the SSv1 dataset under
fully supervised training settings.

Methods Pretrain Data Architecture Frozen
SSv1

Top-1 Top-5
Methods with ImageNet pre-training

TANet-R50

ImageNet-1K

CNN ×

47.6 77.7

TSM 47.2 78.1

TEANet 48.9 -

SmallBig 50.0 79.8

STM 50.7 80.4

TEINet 51.0 -

AIA (TSM) 51.6 79.9

MSNet 52.1 82.3

TEA 52.3 81.9

SDA-TSM 52.8 81.3

CT-NET 53.4 81.7

TDN 53.9 82.1

TAdaConvNeXtV2-T 54.1 -

TAdaConvNeXtV2-S
ImageNet21K + K400

59.7 -

TAdaConvNeXtV2-B 60.7 -
Methods with large-scale image-language pre-training

Ours-B/16

CLIP-400M Transformer

✓ 54.9 83.8

TAdaFormer-B/16 × 59.2 -

Side4Video-B/16 ✓ 60.7 86.0

UniFormerV2-B/16 × 56.8 84.2

5. Conclusions

In the field of video action recognition, using the spatial feature knowledge of large
pre-trained image models to improve the spatiotemporal reasoning ability of the model
is an important research direction. However, traditional methods often require full fine-
tuning of the video model, which not only consumes computing resources but may also
make it difficult to achieve optimal performance in specific application scenarios. Therefore,
in order to address the above issue, in this work, we proposed a novel method that is
extremely easy to implement without losing performance advantages for transferring the
powerful spatial representation knowledge learned by large pre-trained image models
to video action recognition where spatiotemporal reasoning capability is indispensable.
Based on CLIP of frozen features, we designed a prompt vector for temporal modeling
and further implemented model adaptation for specific domains through our proposed
reparameterization encoder. The predefined Chinese label dictionary aimed to generate
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video representations with semantic diversity through the introduced Chinese encoder.
Extensive experiments in various learning scenarios demonstrate that our method achieves
comparable or even better performance compared with prohibitive fully fine-tuned video
models and existing state-of-the-art techniques.
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