On the Behavior of a Non-Linear Bandpass Filter with Self Voltage-Controlled Resistors
Abstract
:1. Introduction
2. Circuit Analysis
2.1. Voltage-Controlled
- solve numerically the differential equations of the system for different values of ;
- obtain the best fit expressions for , and hence compute ;
- find and from the best fit expressions;
- use (7) to obtain the magnitude and phase responses of .
2.2. Voltage-Controlled R
3. Circuit Design and Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ikehashi, T.; Maekoba, H.; Parent, A. Characterization of Nonlinear Behavior of Weakly Coupled Resonators Based on Nonlinearity Factor. IEEE Sens. J. 2021, 21, 24226–24237. [Google Scholar] [CrossRef]
- Ardila, V.; Ramírez, F.; Suárez, A. Analytical and Numerical Bifurcation Analysis of Circuits Based on Nonlinear Resonators. IEEE Trans. Microw. Theory Tech. 2021, 69, 4392–4405. [Google Scholar] [CrossRef]
- Coccolo, M.; Cantisan, J.; Seoane, J.M.; Rajasekar, S.; Sanjuan, M.A. Delay-induced resonance suppresses damping-induced unpredictability. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2021, 379, 20200232. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Jiao, C.; Yang, J.; Fan, J.; Li, D.; Wang, B. Bandwidth Enhancement for Wireless Power Transfer System Employing Non-Linear Resonator. IEEE Access 2021, 9, 485–496. [Google Scholar] [CrossRef]
- Abdelatty, O.; Wang, X.; Mortazawi, A. Position-Insensitive Wireless Power Transfer Based on Nonlinear Resonant Circuits. IEEE Trans. Microw. Theory Tech. 2019, 67, 3844–3855. [Google Scholar] [CrossRef]
- Buscarino, A.; Famoso, C.; Fortuna, L.; Spina, G.L. Nonlinear Jump Resonance: Recent Trends From Analysis to Electronic Circuits Implementations. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 1727–1732. [Google Scholar] [CrossRef]
- Bucolo, M.; Buscarino, A.; Fortuna, L.; Frasca, M. Multiple Hysteresis Jump Resonance in a Class of Forced Nonlinear Circuits and Systems. Int. J. Bifurc. Chaos 2020, 30, 2050258. [Google Scholar] [CrossRef]
- Chen, K.Y.; Biernacki, P.; Lahrichi, A.; Mickelson, A. Analysis of an experimental technique for determining Van der Pol parameters of a transistor oscillator. IEEE Trans. Microw. Theory Tech. 1998, 46, 914–922. [Google Scholar] [CrossRef]
- Menzel, K.O.; Bockwoldt, T.; Arp, O.; Piel, A. Modeling Dust-Density Wave Fields as a System of Coupled Van der Pol Oscillators. IEEE Trans. Plasma Sci. 2013, 41, 735–739. [Google Scholar] [CrossRef]
- Elwakil, A.S.; Allagui, A.; Psychalinos, C.; Maundy, B.J. A New Class of Nonlinear Resonance Networks Modeled by Levinson–Smith and Liénard Equations. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3669–3673. [Google Scholar] [CrossRef]
- Barazideh, R.; Natarajan, B.; Nikitin, A.V.; Niknam, S. Performance Analysis of Analog Intermittently Nonlinear Filter in the Presence of Impulsive Noise. IEEE Trans. Veh. Technol. 2019, 68, 3565–3573. [Google Scholar] [CrossRef]
- Barazideh, R.; Natarajan, B.; Nikitin, A.V.; Davidchack, R.L. Performance of analog nonlinear filtering for impulsive noise mitigation in OFDM-based PLC systems. In Proceedings of the 2017 IEEE 9th Latin-American Conference on Communications (LATINCOM), Guatemala City, Guatemala, 8–10 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Nikitin, A.V.; Scutti, D.; Natarajan, B.; Davidchack, R.L. Blind adaptive analog nonlinear filters for noise mitigation in powerline communication systems. In Proceedings of the 2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), Austin, TX, USA, 29 March–1 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Barazideh, R.; Nikitin, A.V.; Natarajan, B. Practical Implementation of Adaptive Analog Nonlinear Filtering for Impulsive Noise Mitigation. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Kontogiannopoulos, N.; Psychalinos, C. Switched-Current Filters Revisited: Square-Root Domain Sampled-Data Filters. IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 1373–1377. [Google Scholar] [CrossRef]
- Assawaworrarit, S.; Yu, X.; Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 2017, 546, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mortazawi, A. Bandwidth Enhancement of RF Resonators Using Duffing Nonlinear Resonance for Wireless Power Applications. IEEE Trans. Microw. Theory Tech. 2016, 64, 3695–3702. [Google Scholar] [CrossRef]
- Wang, M.; Song, G.; Shi, Y.; Yin, R. Enhancement of robustness to frequency detuning with wireless power transfer based on Van der Pol resonance. Int. J. Circuit Theory Appl. 2022, 50, 4294–4306. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, B.; Xiao, W.; Qiu, D.; Chen, Y. Nonlinear Parity-Time-Symmetric Model for Constant Efficiency Wireless Power Transfer: Application to a Drone-in-Flight Wireless Charging Platform. IEEE Trans. Ind. Electron. 2019, 66, 4097–4107. [Google Scholar] [CrossRef]
- Wax, N. On Some Periodic Solutions of the Lienard Equation. IEEE Trans. Circuit Theory 1966, 13, 419–423. [Google Scholar] [CrossRef]
- Anadigm. AN231E04 dpASP: The AN231E04 dpASP Dynamically Reconfigurable Analog Signal Processor. Available online: https://anadigm.com/an231e04.asp (accessed on 12 July 2024).
Transfer Function | |
---|---|
0 | |
0.1 | |
0.5 | |
1 |
Characteristic | and | and | and |
---|---|---|---|
(kHz) | 10.49 | 20.78 | 21.58 |
0.953 | 20.6 | 12.99 | |
0.91 | 0.483 | 0.711 | |
0.091 | −0.042 | −0.066 | |
(kHz) | — | 10.68 | 10.78 |
— | 1.08 | 1.21 | |
— | 0.961 | 0.984 | |
— | 0.139 | 0.170 | |
(Hz) | — | 3.66 | 8.39 |
— | 4.65 | 3.89 |
Characteristic | and | and | and |
---|---|---|---|
gain at 1 kHz (dB) | −17.9 (−17.7) | −18.8 (−18.5) | (−18.7) |
phase at 1 kHz (°) | 41 (39.2) | 29 (28.2) | (16) |
gain at 10 kHz (dB) | −0.9 (−0.8) | −0.9 (−0.8) | (−0.8) |
phase at 10 kHz (°) | 0 (0) | 0 (0) | (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elwakil, A.S.; Elamien, M.B.; Allagui, A.; Maundy, B.J.; Psychalinos, C. On the Behavior of a Non-Linear Bandpass Filter with Self Voltage-Controlled Resistors. Electronics 2024, 13, 3434. https://doi.org/10.3390/electronics13173434
Elwakil AS, Elamien MB, Allagui A, Maundy BJ, Psychalinos C. On the Behavior of a Non-Linear Bandpass Filter with Self Voltage-Controlled Resistors. Electronics. 2024; 13(17):3434. https://doi.org/10.3390/electronics13173434
Chicago/Turabian StyleElwakil, Ahmed S., Mohamed B. Elamien, Anis Allagui, Brent J. Maundy, and Costas Psychalinos. 2024. "On the Behavior of a Non-Linear Bandpass Filter with Self Voltage-Controlled Resistors" Electronics 13, no. 17: 3434. https://doi.org/10.3390/electronics13173434
APA StyleElwakil, A. S., Elamien, M. B., Allagui, A., Maundy, B. J., & Psychalinos, C. (2024). On the Behavior of a Non-Linear Bandpass Filter with Self Voltage-Controlled Resistors. Electronics, 13(17), 3434. https://doi.org/10.3390/electronics13173434