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Abstract: In this work, we explore the behavior of a classical RLC resonance-based bandpass filter,
which includes two resistors (one of which is associated with a non-ideal inductor), when either
of these resistors is self voltage-controlled. In particular, self-feedback control is achieved by using
the voltage developed across the inductor or the capacitor to dynamically change the value of the
controlled resistor. This results in a multiplication-type non-linearity, which transforms the linear
filter into a non-linear filter described by a set of non-linear differential equations. When gradually
increasing the strength of the non-linearity, a notch-like behavior is observed at twice the resonance
frequency. However, the non-linear filter can lose its stability with excessive feedback. Simulations
and experimental results are provided to support the theory.

Keywords: analog filters; non-linear filters; resonance filters; band-pass filters; voltage-controlled
resistors

1. Introduction

The study of non-linear resonance is a fundamental topic in circuit theory due to its
numerous applications [1–3]. Non-linear resonators are used to widen the bandwidth of
wireless power transfer systems [4] and reduce their sensitivity to position mismatch [5]
because they can have more than one peak power frequency and can also show hysteresis
behavior [6,7]. Non-linear resonance networks have also been widely used to model
oscillatory systems such as the Van der Pol and Duffing oscillators [8,9], among others.
However, little attention has been given to the filtering behavior and applications of these
networks, as briefly demonstrated in our recent work [10]. In general, non-linear analog
filters are not widely used, although some work has demonstrated their value in noise
suppression [11–14]. Non-linear analog filters should not be confused with analog filters
realized using non-linear analog circuits such as Log-domain circuits [15].

It is important to recall that non-linear resonators have been playing an increasingly
important role in advancing wireless power transfer technologies and maintaining high
power transfer efficiency despite changes in environmental parameters, such as the distance
between transmitter and receiver or their relative alignment. Traditional linear resonators
often show strong sensitivity to these variations, with large associated losses in power
transfer efficiency. By contrast, non-linear resonant circuits, like parity-time symmetric or
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Duffing resonators, are quite robust and can intrinsically accommodate parameter varia-
tions. For example, in [16], a non-linear parity-time-symmetric circuit utilized in a wireless
power transfer system shows that an operation window is quite wide, wherein efficiency
remains close to unity without the need for frequency tuning or internal coupling param-
eters. The result is that such systems become highly valuable in dynamic environments,
where the relative positioning of transmitter and receiver changes, like in wireless charging
of moving vehicles or medical devices. Additionally, the non-linear Duffing-based res-
onators can be integrated into wireless power transfer systems to improve their operational
bandwidth [17]. This type of non-linear resonator has the ability to maintain a wide band-
width and attaining a similar amplitude level compared to linear resonators, without the
associated frequency sensitivity.

It is thus concluded that non-linear circuits play an important role in compensating for
problems created by frequency detuning in wireless power transfer systems. Detuning can
result from system parameter variations, such as inductance or capacitance, which result in
a loss in transmission efficiency. In particular, non-linear resonant circuits developed to
counter the influence of such effects are mainly based on the Van der Pol equation. These
circuits exhibit a broadened frequency response that allows them to maintain high output
power even when the working frequency is far from the resonant frequency. These make
them suitable for applications in which a fine control of the frequency is difficult to realize
or in systems that go through different loads and environmental conditions [18,19].

It is important to recall that a large number of non-linear resonators are modeled in
normalized form by the forced Liénard second-order differential equation [20]

ẍ + f (x)ẋ + g(x) = f (t) . (1)

The classical linear resonance network is described by (1) with f (x) = 1/Qr and
g(x) = ω2

r x, where Qr is the quality factor of the resonance network and ωr is its resonance fre-
quency.

In this work, we focus our attention on a classical RLC bandpass filter and use self
feedback to induce non-linearity, resulting in a non-linear bandpass filter. In particular,
the voltage vL developed across the inductor or the voltage vC across the capacitor are
used to dynamically change the value of the two resistors in the filter structure. This yields
four possible non-linear filters, as depicted in Figure 1. However, none of these non-linear
filters can be described by (1) as opposed to the circuits in [10]. In the filter of Figure 1a, the
value of the resistance rL is controlled via the capacitor voltage vC, whereas in Figure 1b
the feedback control uses the inductor voltage vL. In Figure 1c,d, it is resistance R that is
feedback-controlled. We show that as the strength of the feedback control voltage increases
(i.e., magnitude of the non-linear term increases), a notch-like behavior is observed in
the magnitude response of the bandpass filter at twice the resonance frequency, and a
second notch develops at three times the resonance frequency with further increase in
non-linearity. This notch behavior appears due to the inter-modulation terms resulting
from the multiplication non-linearity. The non-linear filter’s quality factor, and hence its
bandwidth, is also shown to be modulated by the non-linearity. However, these non-linear
filters have a narrow stability range and are not always stable. Numerical simulations are
used to study the filters and experimental results support the predicted theory.

The work is organized as follows: the circuit analysis is performed in Section 2, while
design examples are given in Section 3 and the obtained experimental results confirm the
finding of this work.
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(a) (b)

(c) (d)

Figure 1. Classical bandpass filter based on parallel resonance when (a) rL is controlled by vC, (b) rL

is controlled by vL, (c) R is controlled by vC, and (d) R is controlled by vL.

2. Circuit Analysis

Consider the circuit shown in Figure 1a, which is a classical bandpass filter based on a
parallel LC resonance network. The transfer function of this filter is given by:

HL(s) =
Qs + ϵ

s2 + (Q + ϵ
Q )s + (1 + ϵ)

=
1

1 + s
Q + 1

Qs
|ϵ=0 , (2)

where we define 1/Q = R
√

C/L and ϵ = rL/R. This transfer function reduces to an ideal
bandpass filter when the inductor is ideal and hence rL tends to zero (i.e., ϵ → 0). Note
that s = jωn in (2) is normalized with respect to the resonance frequency ωr = 1/

√
LC

(ωn = ω/ωr), hence setting the filter’s ideal center frequency at ωn = 1.

2.1. Voltage-Controlled rL

Now, let us consider that rL is replaced with a physical resistance composed of a fixed
part r f and a voltage-controlled part rv; i.e.,

rL = r f ± rv

(
vC

vre f

)
, (3)

where vC is the voltage on the capacitor and vre f is an arbitrary reference voltage. This
change in the circuit structure transforms the filter into a non-linear filter, which can be
seen by writing the state-space model of the circuit (see Figure 1a):

C
dvC
dt

=
vi − vC

R
− iL, L

diL
dt

= vC − iLrL , (4)

where iL is the inductor current. We introduce the dimensionless variables x = vC/vre f ,
y = iLR/vre f , ϵ1 = r f /R, ϵ2 = rv/R, transforming (4) into:

1
Q

ẋ = −x − y + f (t) (5)

Qẏ = x − ϵ1y ∓ ϵ2xy (6)
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where f (t) = vi/vre f and time is normalized as t = t · ωn. The non-linearity in (6) appears
in the multiplication term ϵ2x · y, which will disappear only when ϵ2 = 0, i.e., rL becomes
a fixed resistance. Numerical simulation results of the above set of differential equations
with f (t) = A sin Ωt are plotted in Figure 2 for Q = A = Ω = 1, ϵ1 = 0.1 and for four
different values of ϵ2, namely ϵ2 = (0, 0.1, 0.5, 1) (see first two columns of the figure). It
is clear from these results that a stable limit cycle is observed in all cases, indicating that
the filter remains stable despite the increasing strength of the non-linear term ϵ2. The filter
remains stable until ϵ2 ≈ 2, and beyond this value, the trajectories diverge.

x(t) y(t)

x(t) y(t)

x(t)

x(t)

x(t)

y(t)

y(t)

y(t)

ε1=0, ε2=0

ε1=0.1, ε2=0

ε1=0.1, ε2=0.1

ε1=0.1, ε2=0.5

ε1=0.1, ε2=1

Figure 2. Numerically simulated time-domain waveforms of x(t) and y(t) obtained from (5) and (6)
and corresponding magnitude and phase responses calculated using (7). First and second rows
correspond to linear bandpass filter response and remaining rows correspond to non-linear filter
response at increasing non-linearity strength. The best fit waveform of x(t) is also plotted as a dashed
red curve, compared to the exact waveform in blue.

The linear filter transfer function (2) can be retrieved only when ϵ2 = 0. When ϵ2 ̸= 0,
we obtain the following transfer function:

H−1
N (s) = 1 +

s
Q

+
1

Qs + ϵ1
∓
(

ϵ2

Qs + ϵ1

)(Lx(t)y(t)
X(s)

)
, (7)
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where Lx(t)y(t) is the Laplace transform of the non-linear term. Note that (7) for ϵ1 = 0
(i.e., ideal inductor) can also be re-written as:

H−1
N (s) = 1 +

s
Q

+
1

QN(s)s
, (8)

where QN(s) = Q/(1 ∓ ϵ2
Lx(t)y(t)

X(s) ). When compared to the linear bandpass filter transfer
function (2), it is clear that the non-linear term modulates the quality factor of the filter.
To evaluate the magnitude and phase responses of (7), we perform the following steps:

• solve numerically the differential equations of the system for different values of ϵ2;
• obtain the best fit expressions for x(t), y(t), and hence compute x(t) · y(t);
• find X(s) and Lx(t)y(t) from the best fit expressions;
• use (7) to obtain the magnitude and phase responses of HN(s).

Following the above procedure, we show in Figure 2 (columns 3 and 4) plots of
the filter’s magnitude and phase responses when ϵ2 = (0, 0.1, 0.5, 1). We note that the
ideal bandpass response with center frequency located at the normalized value ωn = 1
is observed. However, for higher values of ϵ2, a notch-like behavior appears at twice
the normalized center frequency, i.e., at ωn = 2 when ϵ2 = (0.1, 0.5) and then a second
notch appears at ωn = 3 when ϵ2 = 1 (very strong non-linearity). Sharp changes can
also be seen in the phase response at these critical frequencies. To verify this behavior
further, an input signal f (t) = sin(ωnt) + sin(2ωnt) was used with ωn varied in the range
(0.1− 10). At each frequency, we isolated the first and second harmonics of x(t), measuring
their amplitudes. The results are plotted in Figure 3, where, consistently, we observed an
attenuation in the amplitude of the second harmonic that intensifies with increasing ϵ2.

Output	harmonic	@	ω
Output	harmonic	@	2ω	(ϵ2	=	0.5)
Output	harmonic	@	2ω	(ϵ2	=	0.75)
Output	harmonic	@	2ω	(ϵ2	=	1)

M
ag

	(d
B
)

−20

−15

−10

−5

0

Freq	(rad/s)
1 10

Figure 3. Numerical simulation results of (5) and (6) at ϵ1 = 0.1 and ϵ2 = (0.5, 0.75, 1), showing
the amplitude versus frequency of the first and second harmonics of x(t) when the input signal is
f (t) = sin(ωnt) + sin(2ωnt), verifying the consistent attenuation at twice the resonance frequency.

In Table 1, the corresponding filter transfer functions HN(s) (obtained using (7)) in
each case are provided. It is important to mention here that the magnitude and phase of
HN(s) cannot be experimentally obtained using classical frequency-sweep analyzers. This
is confirmed later in the experimental results section.

Now, consider the circuit shown in Figure 1b, where the inductor voltage vL is used
to control the resistor rL (recall Equation (3)) instead of the capacitor voltage vC. It can be
shown that the circuit is hence described by the equations:

1
Q

ẋ = −x − y + f (t), Qẏ =
x − ϵ1y
1 ± ϵ2y

. (9)
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Numerical simulations of these differential equations with f (t) = A sin Ωt are plotted
in Figure 4 when Q = A = Ω = 1, ϵ1 = 0.1 and for three different values of ϵ2, namely
ϵ2 = (0, 0.1, 0.5) (see first two columns of the figure). A stable limit cycle is observed,
indicating that the filter is stable, until ϵ2 ≈ 0.65, where the trajectories diverge and the
filter becomes unstable. The stability range of this filter is therefore narrower than the one
of Figure 1a, and its non-linear transfer-like function is given by

H−1
N (s) = H−1

L (s)±
(

ϵ2

s + ϵ1/Q

)(Ly(t)ẏ(t)
X(s)

)
. (10)

Following a similar procedure to that described above, in Figure 4, a plot of the non-
linear filter’s magnitude and phase responses compared to the linear filter’s response
(ϵ2 = 0) is shown. Again, it is noted that a notch-like response appears at twice the
normalized resonance frequency as ϵ2 is increased with a corresponding change in the
phase response.

Table 1. Transfer functions obtained using (7), corresponding to the magnitude and phase responses
plotted in Figure 2 when ϵ1 = 0.1.

ϵ2 = Transfer Function

0 s+0.1
s(s+1.1)+1.1

0.1
(s+0.1)

(
0.91

s2+1
+ 0.004

s

)
(s(s+1.1)+1.1)

(
0.91

s2+1
+ 0.004

s

)
−0.1

(
0.041

s − 0.82
s2+4

)
0.5

(s+0.1)
(

0.90
s2+1

+ 0.019
s

)
(s(s+1.1)+1.1)

(
0.90

s2+1
+ 0.019

s

)
−0.5

(
0.041

s − 0.79
s2+4

)
1

(s+0.1)
(

0.88
s2+1

+ 0.04
s

)
(s(s+1.1)+1.1)

(
0.88

s2+1
+ 0.04

s

)
−
(

0.043
s − 0.726

s2+4

)

x(t) y(t)

x(t) y(t)

x(t) y(t)

Figure 4. Numerical simulation results of (5) and (9) with corresponding magnitude and phase
responses calculated using (10). First row corresponds to linear response at ϵ1 = 0.1 and ϵ2 = 0 and
remaining rows correspond to non-linear filter response at ϵ1 = 0.1 and ϵ2 = (0.1, 0.5), respectively.
Best fit waveform of x(t) is also plotted as a dashed red curve.
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2.2. Voltage-Controlled R

Consider the circuit shown in Figure 1c, where vC controls the resistor R, which is
composed of a fixed part R f and a variable part Rv such that:

R = R f ± Rv

(
vC

vre f

)
. (11)

Defining x = vC/vre f , y = iLrL/vre f , ϵ1 = R f /rL, ϵ2 = Rv/rL, and 1/Q = rL
√

C/L, it
can be shown that this filter is described by the set of equations:

1
Q

ẋ =
f (t)− x
ϵ1 ± ϵ2x

− y, Qẏ = x − y . (12)

where the non-linearity is clearly of the form ϵ2xẋ and ϵ2xy. Therefore, it is too complicated
to proceed forward with computing the transfer function for this non-linear system.

Similarly, for the circuit in Figure 1d, where vL controls resistor R, the describing
equations are:

1
Q

ẋ =
f (t)− x

ϵ1 ± ϵ2(x − y)
− y, Qẏ = x − y . (13)

The non-linearity in this case is also complex. We investigated the stability of the
above two filters numerically when Q = A = Ω = 1, ϵ1 = 0.1 and found that both have a
very limited stability range with respect to increasing ϵ2 (ϵ2 < 0.15). Figure 5 shows the
numerical simulations of (13) for ϵ2 = (0, 0.1). The limited stability range can be improved
at different values of Q, but this requires a more detailed study. In what follows, we focus
our attention on the realization and experimental verification of the circuit in Figure 1a.

x(t)

y(t)

0 10 20 30 40

-1

0

1

t

-1 0 1

-1

0

1

x(t)

y
(t
)

x(t)

y(t)

0 10 20 30 40

-1

0

1

t

-1 0 1

-1

0

1

x(t)

y
(t
)

Figure 5. Numerical simulations of (12) for ϵ1 = 0.1 and ϵ2 = (0, 0.1) demonstrating filter stability.

3. Circuit Design and Experimental Results

The non-linear bandpass filter in Figure 1a was realized using the circuit in Figure 6a.
The resistor rL in that circuit is composed of r f in series with a MOSFET transistor, func-
tioning as the variable resistor rv. The voltage across the capacitor vC is sensed by an
operational amplifier, which subsequently controls the resistance of the MOSFET. The
measurement results of this circuit were carried out with L = 78 mH (with a quality factor
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of 20 at 10 kHz), C = 3.2 nF, and R = 5 kΩ. The LMC662 operational amplifier (powered
by ±5 V supplies) was used and was configured with R1 = R2 =100 kΩ. An NMOS from
a CD4007 transistor array was used and, for proper operation, a biasing circuit consisting
of Cb = 1 nF, Rb = 10 kΩ and Vb = 2.5 V was used.

The measurement setup used for circuit validation is illustrated in Figure 6a. In the
circuit of Figure 6b, r f accounts for all fixed resistances, including a physical resistor of
100 Ω (needed to measure the inductor current), a parasitic resistor of 245 Ω associated with
the non-ideal inductor and a fixed MOSFET resistance of 805 Ω. These circuit components
and biasing voltage values correspond to a non-linear filter with ϵ1 = 0.23 and ϵ2 = 0.15.
Figure 6c shows the experimentally measured waveforms of x(t) = vC(t) and y(t) = iL(t)R
with an input signal of vin(t) = 0.5 sin(2π104t).

Function Generator
Digital Oscilloscope

Breadboard/DC Supplies and DUT

Vi

Vb

Vo

C2

C3

DUT

(a)

+

−
vi

R

C

+

−

vC

vo

L

rf

M1

Cb

Rb

Vb

−

+

OA

R2

R1

x(t)
y(t)

A
m

pl
itu

de

−0.5

−0.25

0.25

0.5

time (ms)
0 0.1 0.2 0.3

y(
t)

−0.5

−0.25

0

0.25

0.5

x(t)
−0.5 −0.25 0 0.25 0.5

(b) (c)

Figure 6. (a) Experimental setup for circuit validation, including signal source, measurement device,
and power supply interfaced with the device under test (DUT). The oscilloscope channels (C2 and
C3) are used to measured inductor current. (b) Schematic of the circuit implementation utilized for
experimental measurements of the bandpass filter shown in Figure 1a. The resistance rv is realized
using a MOSFET, which is controlled by the voltage vC. (c) Measured waveforms x(t) and y(t)
corresponding to the non-linear filter response at ϵ1 = 0.23 and ϵ2 = 0.15.

Figure 7a shows the measured magnitude and phase responses of the circuit in
Figure 6a. The transfer function H(s) was directly obtained from data measured using
a spectrum analyzer, while HN(s) was obtained by evaluating (7) with the measured
waveforms of x(t) and y(t). This result shows a notch-like behavior around twice the
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center frequency, as theoretically expected. The notch-like behavior was not captured
by the spectrum analyzer, which employs a frequency sweeping method, because the
transfer function (7) of the non-linear filter is dependent on both X(s) and Lx(t)y(t). Thus,
the notch-like behavior can only be identified through post-processing the measured time-
domain data of x(t) and y(t) or alternatively using a spectrum analyzer with a wide-band
excitation signal rather than with frequency sweep. Figure 7b illustrates the bandwidth
dependency of the non-linear filter on the input signal amplitude. Specifically, the 3-dB
bandwidths were found to be 7.17 kHz, 7.30 kHz, and 7.43 kHz for input signal amplitudes
of 1 V, 0.5 V, and 0.1 V, respectively. The filter bandwidth decreases with increased ampli-
tude.

HN(s)
H(s)

M
ag
	(d
B
)

−30
−25
−20
−15
−10
−5
0
5

Freq	(Hz)
1000 104 105

HN(s)
H(s)

Ph
as
e	
(d
eg
)

−100

−75

−50

−25

0

25

50

Freq	(Hz)
1000 104 105

HN(s),	A=0.1V
HN(s),	A=0.5V
HN(s),	A=1V

M
ag
	(d

B
)

−30

−20

−10

0

10

Freq	(Hz)
1000 104 105

−3

15050 15150 15250

−3

7860 7900 7940

(a) (b)

Figure 7. (a) Measured magnitude and phase responses of the circuit shown in Figure 6a at ϵ1 = 0.23
and ϵ2 = 0.15. H(s) (represented by a dashed red line) is obtained directly from the spectrum analyzer,
while HN(s) (shown as a solid black line) is obtained using (7) with the measured waveforms x(t)
and y(t). (b) Measured magnitude responses at different input signal amplitudes A = 0.1 V, 0.5 V, 1 V.

The transfer functions in Table 1, which correspond to the cases of ϵ1 = 0.1 and
ϵ2 = 0, 0.5, 1 were also implemented using the Field Programmable Analog Array (FPAA)
AN231E04 device provided by Anadigm [21]. The clock frequency is equal to fclk = 250 kHz.
Using the Anadigm Designer® ver.2 software provided by Anadigm [21], the resulting design
for implementing the transfer function for ϵ2 = 0 is depicted in Figure 8a, where the
FilterBiquad Configurable Analog Modules (CAMs) have been employed. This originates
from the fact that this biquadratic transfer function is decomposed as as sum of second-
order band-pass and low-pass filter functions

H(s) =
GBP1

(
2π f01

Q

)
s + GLP1(2π f0)

2

s2 + 2π f01
Q1

s + (2π f01)2
. (14)

Employing the partial fraction expansion tool for decomposing the associated transfer
functions that correspond to the cases of = 0.5, 1, the resulting simplified expression is

H(s) =
GBP1

(
2π f01

Q

)
s + GLP1(2π f01)

2

s2 + 2π f01
Q1

s + (2π f01)2
+

GBP2

(
2π f02

Q2

)
s + GLP2(2π f02)

2

s2 + 2π f02
Q2

s + (2π f02)2
+

GLP3(2π f03)

s + 2π f03
, (15)
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and the resulting design is demonstrated in Figure 8b, where the FilterBiquad and Filter-
LowFreqBilinear CAMs are utilized.

Denormalizing the utilized transfer functions to the frequency 10 krad/s, the values
of the characteristics of the filters, described by (14) and (15), are summarized in Table 2.

(a) (b)

Figure 8. (a) FPAA-based implementation of the transfer function in (14) and (b) the associated
implementation of the transfer function in (15).

Table 2. Values of the characteristics of the filters, described by (14) and (15).

Characteristic ϵ1 = 0.1 and ϵ2 = 0 ϵ1 = 0.1 and ϵ2 = 0.5 ϵ1 = 0.1 and ϵ2 = 1

f01 (kHz) 10.49 20.78 21.58
Q1 0.953 20.6 12.99

GBP1 0.91 0.483 0.711
GLP1 0.091 −0.042 −0.066

f02 (kHz) — 10.68 10.78
Q2 — 1.08 1.21

GBP2 — 0.961 0.984
GLP2 — 0.139 0.170

f03 (Hz) — 3.66 8.39
GLP3 — 4.65 3.89

The obtained input and output waveforms are demonstrated in Figures 9–11, while
the measured values of the gain and phase at specific frequencies are summarized in
Table 3. The corresponding theoretically predicted values are given between parentheses
and confirm the accuracy of the presented implementations.

(a) (b)

Figure 9. Input and output waveforms of the filter described by (14) for ϵ1 = 0.1 and ϵ2 = 0,
stimulated by (a) 1 V, 1 kHz and (b) 1 V, 10 kHz sinusoidal signal.
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(a) (b)

Figure 10. Input and output waveforms of the filter described by (15) for ϵ1 = 0.1 and ϵ2 = 0.5,
stimulated by (a) 1 V, 1 kHz and (b) 1 V, 10 kHz sinusoidal signal.

(a) (b)

Figure 11. Input and output waveforms of the filter described by (15) for ϵ1 = 0.1 and ϵ2 = 1,
stimulated by (a) 1 V, 1 kHz and (b) 1 V, 10 kHz sinusoidal signal.

Table 3. Values of the characteristics of the filters described by (14) and (15).

Characteristic ϵ1 = 0.1 and ϵ2 = 0 ϵ1 = 0.1 and ϵ2 = 0.5 ϵ1 = 0.1 and ϵ2 = 1

gain at 1 kHz (dB) −17.9 (−17.7) −18.8 (−18.5) (−18.7)
phase at 1 kHz (◦) 41 (39.2) 29 (28.2) (16)

gain at 10 kHz (dB) −0.9 (−0.8) −0.9 (−0.8) (−0.8)
phase at 10 kHz (◦) 0 (0) 0 (0) (0)

4. Conclusions

In this study, we explored the dynamics of a non-linear RLC resonance-based bandpass
filter with self-voltage-controlled resistors. Our investigations show that the non-linearity
modulates the quality factor of the filter, and hence its bandwidth, but does not change the
resonance frequency. The bandwidth is thus a function of the strength of the feedback signal
and is dependent on the input signal amplitude. Also, a pronounced notch-like behavior
appears at twice the resonance frequency. The technique presented here for transforming a
linear filter into a non-linear one is not limited to the studied prototype example in Figure 1
and can be easily extended to other types of filters. Our future work will target transforming
other passive and active filters from linear to non-linear filters using a similar self feed-back
control technique while examining the effects of this transformation on the filter parameters.
It is needless to say that such a study cannot be automated and may or may not lead to
identical findings, since the transformed filters are described by non-linear differential
equations, which need to be solved numerically. It is also possible to use current-controlled
resistors instead of voltage-controlled ones to obtain the non-linear filters.
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