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Abstract: As data-driven deep learning (DL) has been applied in various scenarios, the privacy
threats have become a widely recognized problem. To boost privacy protection in federated learning
(FL), some methods adopt a one-shot differential privacy (DP) approach to obfuscate model updates,
yet they do not take into account the dynamic balance between efficiency and privacy protection. To
this end, we propose ASPFL—an efficient FL approach with adaptive sparsity-based pruning and
differential privacy protection. We further propose the adaptive pruning mechanism by utilizing the
Jensen-Shannon divergence as the metric to generate sparse matrices, which are then employed in
the model updates. In addition, we introduce adaptive Gaussian noise by assessing the variation
of sensitivity through post-pruning uploading. Extensive experiments validate that our proposed
ASPFL boosts convergence speed by more than two times under non-IID data. Compared with
existing DP-FL methods, ASPFL can maximally achieve over 82% accuracy on CIFAR-10, while the
communication cost is greatly reduced by 40% under the same level of privacy protection.

Keywords: federated learning; differential privacy; sparsity; channel pruning

1. Introduction

With the vigorous development of deep neural networks (DNNs) for various tasks
such as computer vision (CV) [1,2] and natural language processing (NLP) [3], deep learning
(DL) has evolved into a technology dependent on large amounts of training data. Recently,
the demand for efficient and privacy protection DL solutions has received high attention.
Federated learning (FL) has emerged as a promising paradigm of distributed machine
learning [4,5]. In contrast to traditional deep learning, which uploads data to the cloud for
training, federated learning allows multiple edge devices to locally train the model and
upload the model updates.

Nonetheless, model updates dependent on local private samples and large-scale
parameters among clients raise significant communication burdens and privacy concerns.
As for communication overhead, recent studies have revealed that most deep neural
networks (DNN) are over-parameterized. Denil et al. [6] proposed that using only a few
weights is enough to achieve similar performance to the MLP and CNN. Michel et al. [7]
demonstrated that a significant proportion of the heads in a Transformer can be pruned
without substantially degrading the model’s performance. A feasible scheme is to reduce
parameter transmission by model compression (pruning and distillation) [8], resulting in
an appreciably smaller model and faster inference.

Research on the privacy and security issues of FL has revealed that sensitive personal
parameters uploaded by clients may be leaked through model inversion attacks [9,10].
Therefore, combining differential privacy (DP) with FL is considered an effective privacy
protection technique [11–14]. The mechanism of DP typically involves adding random
noise to intermediate outputs in order to ensure that a change in a particular input element
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will not have a significant impact on the output distribution [12]. However, in DP-based FL,
an inevitable trade-off exists between model utility and privacy protection level. Enhanced
privacy preservation measures typically necessitate the introduction of artificial noise with
higher variance, which inevitably leads to a degradation in the model’s predictive accuracy
and response speed.

Accordingly, we urgently need a general and common framework to strengthen
data privacy protection and reduce communication costs while quantitatively answering
important questions:

Can model pruning and differential privacy be orthogonal? How does pruning affect the
fine-tuning of the private noise?

Several studies have attempted to address similar inquiries from various
perspectives [15–19], and numerous concepts of privacy and associated strategies have
been proposed to tackle related problems. Mireshghallah et al. [15] proposed a method
for evolving large models into compressed ones through a differential privacy iterative
magnitude pruning (DPIMP) framework. Its main idea is to sort the weights by magnitude,
then eliminate the parameters with small magnitudes based on a pruning ratio. This
approach can achieve up to 50% parameter sparsity while maintaining model performance.
However, the system is configured under central machine learning and not placed in the
context of FL, while the pruning ratio is usually determined empirically. Lin et al. [18]
proposed a proprietary model compression framework named RONA, which integrates
knowledge distillation and differential privacy techniques to achieve efficient deployment
of deep learning models on mobile devices. But we cannot guarantee the existence of a
large, powerful, and complex teacher model based on sensitive data for multiple tasks.
GFL-ALDPA aimed to achieve gradient compression and user privacy protection by jointly
using dimensional reduction and local differential privacy (LDP) [19]. However, it has
not fully explained and directly quantified the impact of compression on the injected
private noise.

To address the challenges of capacity bottlenecks and privacy protection when de-
ploying deep learning models on edge devices, we propose an enhanced private model
compression framework based on adaptive DP and develop a learnable sparsity-based
pruning module. Model compression and data privacy protection are achieved jointly
in this framework. We introduce the compressed local model parameters space through
the function of sparsity matrix to reduce the communication overhead. And following
rigorous DP, we propose an adaptive differential privacy to not only provide strong privacy
protection but also effectively defend against non-adversarial attacks. It can also ensure a
high accuracy of model training.

The contributions of this paper are summarized as follows:

(1) We proposed a communication-efficient federated learning framework that achieves a
high-accuracy classification model with a privacy guarantee. This framework jointly
considers the dynamic balance between the efficiency and privacy issues under non-
IID distributions while achieving good model performance.

(2) To enhance communication efficiency, we proposed an adaptive channel pruning
mechanism using a Jensen-Shannon divergence feature pi to generate the sparsity
matrix, reducing the rounds required for equivalent performance by more than
2 times.

(3) To ensure the privacy guarantee, we estimate the sensitivity after pruning and intro-
duce a Gaussian noise to the aggregated model. In addition, we give a lower bound
of variance σ2 for adaptive collaborative training. Our method achieves a higher
model accuracy (82.42%) and 40% improvement in communication rounds to the
baseline methods.

The rest of the paper is organized as follows: Section 2 introduces the context of differ-
ential privacy for federated learning and model pruning. Section 3 describes our proposed
adaptive and efficient Sparsity-pruning-based federated learning scheme. Section 4 exper-
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imentally illustrates the accuracy and performance of our proposed method on CIFAR-10.
Section 5 presents our conclusions.

2. Related Works

Federated learning (FL) is a fundamental training paradigm in machine learning
that was first proposed in 2016 [20]. It aims to build a collaborative machine learning
model on distributed datasets. Recently, federated learning has faced growing challenges,
including communication overhead, data heterogeneity, and privacy threats. This section
gives the introduction of two topics, namely differential privacy for federated learning and
model pruning.

2.1. Differential Privacy for Federated Learning

Differential privacy (DP) has been widely adopted to mitigate user privacy leakage in
federated learning [21–23]. Differential Private Stochastic Gradient Descent (DP-SGD) [22]
was proposed to provide a data-level privacy guarantee and can be easily achieved by
adding Gaussian noise to the clipped gradients. However, FL not only focuses on the
privacy protection of local data but also requires information security between clients.
Existing works can be summarized into two classes: centralized DP (CDP) [12,21,24] and
local DP (LDP) [25–27]. The central idea of LDP is randomized response (RR). In federated
learning, LDP can enable parties to scramble their data and then publish the obfuscated
data to an untrusted server.

2.2. Model Pruning

With the extensive deployment of DNNs, model pruning has become an impor-
tant topic to reduce the computational resources. A popular way is magnitude-based
pruning [15,28]. Jiang et al. [28] apply the lottery hypothesis, which posits that pruning a
network based on the magnitude of its weights, in principle, yields an optimal substructure
of the original network.

In general, pruning methods can be divided into two categories: structured pruning and
unstructured pruning. Structured pruning reduces the model complexity by removing structural
units within the network such as kernels, filters, or layers in different granularities [29–31]. It
typically requires specific network structures, which is inconsistent with the “lottery ticket
hypothesis”. Moreover, selection of the optimal pruning rate mostly depends on the empirical
knowledge, and the original model requires retraining. Zhu et al. [30] proposed an effective
model compression and acceleration framework, FedLP-Q, through hierarchical pruning and
quantization. The pruning process in the frame takes place at each layer of the model, removing
unimportant weights or entire layers to reduce the depth and width of the model, but this
approach results in fewer feature maps in the intermediate representation.

In contrast, unstructured pruning mainly focuses on pruning at the level of individual
weights. Without changing the original structure of the network, it achieves sparsity by
setting unimportant weights to zero. Qian et al. [32] propose a dynamic adjustment strategy
to reduce unnecessary transmission costs by gradually increasing the sparsity ratio and
replacing aggregation weights with the inverse ratio of sparsity. But the authors did not
take into account that the unevenness of the data distribution can affect aggregate weights.

3. Our Methodology: ASPFL Framework

In this section, we present a general framework, ASPFL, introduce the adaptive
sparsity-based pruning module and central differential privacy mechanism, and perform
an extensive privacy analysis of the model after pruning. The notations used in this paper
are summarized in Table 1.
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Table 1. Descriptions of Main Notations.

Symbol Descriptions

N total number of clients
T total number of global epochs
t the index of the t-th global epoch
L number of local epochs for clients in a round
l the index of the l-th local epoch
g gradient of the model
Di local dataset of the i-th client
B batch size
K set of participating clients
θi local model parameters of the i-th client
Wi weight matrices of the i-th client
|∗| size of set
ε global privacy budget
σ the noise level
S f the sensitivity of the query function
∆i model update of the i-th client
R the sparse matrix
γ tailoring factor

3.1. Overview and Problem Statement

Workflow: The workflow of our proposed ASPFL is shown in Figure 1. It can be
summarized into five stages: (1) The server first performs global model initialization and
distributes it to the clients. (2) Sampled clients train their local models based on the current
global model and their respective datasets. During local training, each client executes
local model updates and gradient clipping based on L2-norm to meet the requirements of
DP. (3) After L rounds’ local training, each client performs channel pruning according to
a learnable sparsity matrix and estimates the sensitivity of all local model unions. Then
updates of the local model are uploaded back to the server. (4) The server collects all model
updates and introduces an adaptive noise based on the estimated sensitivity to perform
model aggregation. (5) Finally, a new global model is obtained. Below, we will explain the
specific operation of each stage in detail.

System Model: Based on the client/server (C/S) framework, the basic FL system
comprises N clients and a server aiming to collaboratively train an optimal model while
achieving privacy protection. Assume that the server is honest but curious, client ci holds
the local dataset Di with |Di| samples, where i ∈ {1, 2, . . . , N}. The union of all local
datasets is D :=

⋃Di. The objective of our ASPFL is to aggregate local models from
N clients and obtain an optimal global model θ that minimizes the global empirical risk:

min
θ
L(θ) = ∑N

i=1 piL(θi), (1)

where L(θi) is a non-negative and convex loss function on each client, L(θ) is the global
loss function. In FedAvg [4], pi denotes the aggregation weight, which can be calculated by
the dataset size |Di |

|D| .
Threat model: Assume that the server is honest but curious; it adheres to federation

rules while maintaining a curiosity towards the local data of each client. Although FL keeps
individual datasets locally, sharing model parameters with the server may expose clients’
private information through model-inversion attacks. These attacks include attempts
by the server to recover training datasets or infer private features based on uploaded
parameters and deduce whether a sample belongs to a client’s training dataset from output
differences. Furthermore, each client can also be considered honest but curious. They
potentially perform similar privacy attacks on other clients’ data after receiving broadcast
model parameters.
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3.2. ASPFL Algorithm

Figure 1 shows the workflow of our proposed scheme, consisting of 5 steps. We show
the specific procedures in Algorithm 1, then illustrate each step below.

(1) Global model initialization. The server first initializes global model parameters θ0
(Line 1 in Algorithm 1) and distributes θ0 to each client.

(2) Local models update. In the global round t, K clients are randomly selected to
participate in local training. Local model parameters θt

i,0 is first initialized as the
global model parameters θt

i,0 ← θt−1 . Then L steps local training are performed to
update local model parameters θt

i,l . We designed the gradient clipping process of
incorporating tailoring factors γ into the stochastic gradient descent (SGD) optimizer
to obtain a local model θt

i,l . A tailoring factor γt
i,l is applied to control the magnitude

of parameter updates, which is represented as:

γt
i,l =min(1,

C∥∥∥gt
i,l

∥∥∥
2

), (2)

where gt
i,l denotes the gradient at step l of round t, and C is the upper bound of gradients

to prevent instability in the training regimen. Specifically, for the client i, the local gradient
clipping process is formulated as:

∼
g

t
i,l = γt

i,lg
t

i,l = min(1,
C∥∥∥gt
i,l

∥∥∥
2

)∇L
(

θt
i,l−1; Bt

i,l

)
, (3)

θt
i,l = θt

i,l−1 − η
∼
g

t
i,l , (4)

where Bt
i,l is a random batch of data samples and η denotes the learning rate.
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(3) Sparsity-based channel pruning. In the round t, the client i finishes L steps local
training and obtains a new local model θt

i,L. To reduce the communication overhead
required for uploading parameters, we employ an adaptive sparse matrix to discard
the less significant parts of the model updates. A sparse matrix Ri composed of
elements “1” and “0” is allocated for the client i. By Hadamard product of model
updates with this matrix, the less important weight parameters will be zeroed out.
The client i combines the accumulated gradients θt

i,L − θt−1 with Ri and the uploaded
part is formulated as:

∆θi = (θt
i,L − θt−1)

⊙
Ri = η∑L

l=1 γt
l g

t
i,l

⊙
Ri. (5)

The selection method for the mask matrix Ri will be elaborated in the next subsection.
After channel pruning, the sensitivity of uploading model parameters S f can be estimated as:

S f = 2ηCLpi (6)

where pi is a personalized parameter for the client i.

(4) Model aggregation and noise perturbation. Initially, the server receives all model
updates from participating clients and computes the weighted average of model
updates, yielding a preliminary version of the aggregated global model. To fortify
privacy preservation via differential privacy, the server introduces adaptive Gaussian
noise onto the preliminary global model. The variance σ2 of this noise is judiciously
determined based on the desired privacy budget (ε and δ) and the sensitivity S f .
Mathematically, the noise-injected global model is denoted as:

θt = θt−1 +

(
∑N

i=1
|Di|
|D| ∆θi

)
+N

(
0, σ2Id

)
. (7)

(5) Global model broadcasting. Upon completion of the global model update in round
t, the server is responsible for broadcasting the newly generated global model θt

to all participating clients, thereby initiating the subsequent round of local training
processes as θt+1

i,0 ← θt .

The procedures of our ASPFL algorithm have been concluded in Algorithm 1. The
primary improvements of this algorithm from traditional FL include three aspects: (1)
Scaling rule of accumulated gradients during local training. (2) Adaptive channel pruning
based on sparse matrices for non-IID data distributions. (3) Post-pruning noise addition
strategy at the server side.

3.3. Adaptive Sparsity-Based Channel Pruning

To mitigate client dependence on network stability during parameter uploads, we
propose a method of achieving model sparsity through the introduction of learnable gating
parameters to regulate the extent of model compression. To attain model sparsity within the
context of a federated learning architecture, we incorporate a normalization technique that
entails the direct application of a mask matrix, denoted as Ri, onto the model parameter.
The mask matrix Ri is derived via the gated parameter pi, which serves as a quantitative
indicator of the proportion of “1”s contained within Ri. This operation effectively prunes
the model by zeroing out coefficients based on the binary values of Ri, leading to a decrease
in the bandwidth requirements but also diminishing potential vulnerabilities to model
inversion or membership inference attacks.

In the layer-wise pruning-quantization scheme for efficient federated learning pro-
posed in the literature [29,30], pi represents the probability that the gradient of each layer
will be preserved, catering to the demands of communication efficiency. Specifically,
Zhu et.al. [29,30] proposed that pi is typically set by the central server following three steps:
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• First set a fixed value p;
• Then, specify the layer-preserving rate (LPR) that satisfies the Bernoulli(p) distribution;
• Finally, prune the cumulative gradients according to LPR.

Algorithm 1 ASPFL

Initialization: tailoring threshold C, local models, local datasetsDi, privacy configurations (ε, δ), etc.

1 for global round t = 1, 2, . . ., T do
2 for participating client i in parallel do ※client side
3 for each step l = 1, 2, . . ., L do

4 Clip local gradient:
∼
g

t
i,l ;

5 Update θt
i, l ← Local_Update

(
θt

i, l−1;Di

)
;

6 end
7 Quantize the JS distribution feature: pi;
8 Generalize the mask matrix: Ri ={rjk} , rjk ∼ Bernouli(pi);

9 Conduct sparsity pruning: (θ t
i, L − θt−1

) ⊙
Ri;

10 Upload model updates to the server;
11 end
12 Aggregate updates and calculate the sensitivity S f ; ※server side
13 Introduce Gaussian noise to θt;
14 Download the global model: θt+1

i, 0 ← θt ; ※client side
15 end
Output: global model: θt.

In this strategy, the parameter p is designed to be a constant applicable to all clients in
model homogeneity cases. Essentially, p is an empirical parameter that may require a lot of
prior knowledge and many attempts to determine. However, federated learning faces a
critical challenge due to non-independent and identically distributed (non-IID) data [33].
If the nature of non-IID data is not considered, potential biases in capturing the feature
representations across various clients will occur, further diminishing the model’s accuracy
and generalization ability.

Based on this intuition, we integrate the characteristic of data distribution into the
sparse matrix selection and propose an adaptive channel pruning strategy. There exists a
typical scenario of label skew in federated learning with non-IID data, which may lead to
performance degradation of the model on some clients. The disparity in label distribution
across clients can be quantified through the probability of each label within their respective
datasets. To this end, the distribution of labels from a given client’s dataset is extracted and
denoted by P = {Pi}, i ∈ N. Then, a uniform distribution Q is established as a benchmark
for comparison. For an aggregated dataset D encompassing ‡ distinct label categories,
a perfectly uniform distribution Q implies that each category is endowed with an equal
probability of occurrence, precisely Q =

{
1
z

}
.

We adopt the Jensen-Shannon (JS) divergence as a metric to quantify the difference
between each client’s data label distribution Pi and a standard uniform distribution Q.
JS divergence is a well-established measure for assessing the similarity, which can be
formulated as:

DKL(Pi∥Q ) = ∑x Pi(x)log
Pi(x)
Q(x)

(8)

DJS(Pi∥Q ) =
1
2

DKL

(
Pi

∥∥∥∥Pi + Q
2

)
+

1
2

DKL

(
Q
∥∥∥∥Pi + Q

2

)
(9)

where DKL denotes the Kullback-Leibler (KL) divergence. By calculating the JS divergence
between Pi and Q in Equations (8) and (9), we can quantify how far each client’s label distri-
bution deviates from a uniform distribution. For each client, we utilize each local dataset’s
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JS divergence as a distinctive feature pi, thereby instituting the following procedures to
construct adaptive local sparse matrices:

• Extraction of Label Distributions: Initially, the label distributions pertinent to each
client’s local dataset are meticulously extracted and quantified.

• Computation of JS Divergence: the JS divergence between the client’s label distri-
bution and a predefined uniform distribution is calculated to quantify the similarity.
Since the range value of JS divergence is in [0, ln2], we make a linear transformation
of the feature pi following:

pi =
JSmax − JS

JSmax − JSmin
=

ln2− JS
ln2

(10)

• Normalization and Weighting: The resulting pi should be normalized to ensure
comparability across different clients.

• Matrix Construction: The sparse matrix Ri is sampled from the Bernoulli (pi) distri-
bution for each client. This matrix reflects the unique statistical characteristics of the
client’s data, particularly focusing on the sparsity patterns that emerge from the label
distribution disparities.

This parameter pi essentially governs the sparsity level of the matrix, precisely quan-
tifying the probability of retaining the element “1” among the matrix elements. In this
scenario, mask matrix Ri is a 3D tensor composed of multiple 2D mask matrices, each of
which matches the shape of individual slices within Wi. The elements rjk

(
≡ ri,njk

)
of each

mask matrix Ri, n are independently sampled from a Bernoulli (pi). Here, n indexes the
tensor, and j and k index the rows and columns of the matrix. Specifically, each element rjk
in Ri,n can be formulated as:

rjk =

{
1 with probability pi,

0 with probability 1− pi.
(11)

For the n-th weight tensor, we can get Wi,n = Wi,n
⊙

Ri,n (wjk = wjk×.rjk). If
rjk = 1, then the corresponding weight wjk in Wi will be retained. Conversely, if rjk = 0,
wjk will be set to zero or effectively ignored. The generation process of the mask tensor Ri
has been illustrated in Figure 2. The process of generating Ri through pi ensures that the
resultant matrix selectively preserves critical information while discarding less relevant
data points. By adopting this approach, we can enhance the adaptability and effectiveness
of FL algorithms in scenarios characterized by non-IID, thus improving overall model
performance and convergence rates.
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3.4. Privacy Guarantee after Pruning

To address the privacy and security concerns of participants, we implement the Gaus-
sian mechanism to achieve DP. This approach is instrumental during the aggregation phase
at the central server, where parameter updates from local models are synthesized, thereby
effectively mitigating the risk of privacy leakage. Compared to traditional privacy preserva-
tion mechanisms, differential privacy offers the advantages of quantifiable privacy budgets
and the concealment of sensitive behaviors at the user level. Therefore, we introduce the
basic knowledge of DP, which is defined as follows:

Definition 1 [(ε, δ)-DP [23]]. For two adjacent datasets D and D′ that differ by only one record, a
randomized mechanismM can preserve (ε, δ)-DP if and only if any output S ⊂ Range(M) holds:

Pr[M(D) ∈ S] ≤ Pr
[
M

(
D′

)
∈ S

]
× eε + δ (12)

where ε > 0 is the privacy budget and δ ∈ (0, 1) means the failure probability. Equation (12) is
also termed the Gaussian mechanism in DP.

During each round of updating information from local models, noise should be
introduced, obeying the global privacy budget ε and the sensitivity S f . The Gaussian
mechanism stipulates to add Gaussian noiseN

(
0, σ2) to each output of the query function,

where σ2 must satisfy the following equation:

σ2 ≥
2ln

(
1.25

δ

)
ε2 S2

f (13)

A. L2-norm Sensitivity

Now we specifically analyze the influence of the channel pruning module on the
sensitivity of upload model parameters so as to customize appropriate noise to achieve (ε, δ)-
DP. First, we discuss the L2-norm Sensitivity evaluation of the local parameter updating.
The introduction of γ in Equation (2) is to restrict the range of accumulated gradients. If∥∥∥gt

i, l

∥∥∥
2
> C, then γ < 1, and

∼
g = γgt

i,l to prevent gradient explosion. If
∥∥∥gt

i,l

∥∥∥
2
≤ C, then

γ = 1 and
∼
g = gt

i,l remains unchanged. Thus, the L2-norm of
∼
g can be formulated as:

∥∥∥∼g∥∥∥
2
=

 C, C <
∥∥∥gt

i,l

∥∥∥
2∥∥∥gt

i,l

∥∥∥
2
, C ≥

∥∥∥gt
i,l

∥∥∥
2

(14)

It is observed that the clipped gradient
∼
g for each client is bounded by C, i.e.,

∥∥∥∼g∥∥∥
2
≤

C, for any i, t, and l.
On this basis, the client i completes channel pruning with their respective Ri after L

steps local training. The accumulated gradients after pruning are then uploaded to the
server. In the whole process, the sensitivity of the gradient uploading function is calculated
as follows:

Lemma 1. For the round t at client i, the L2-norm sensitivity of uploading after pruning function is

S f = max
D,D′

∥∥MiGt
i (D)−MiGt

i
(
D′

)∥∥
2 = 2ηCLpi (15)

where M represents the Hadamard product of sparse matrix Ri and G is the accumulated gradients.

Proof. In the round t, client i performs L steps of local clipping SGD to achieve θt
i following:

θt
i = θt−1 −∑L

l=1 ηγt
i, lg

t
i,l (16)
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Since rjk is independently sampled from Bernoulli (pi), then E[Ri] is pi. Consequently,
under certain conditions (e.g., large sample size or independent sampling), the actual
sensitivity can be approximated by its expectation S f ≈ E

[
S f

]
. The expectation of S f can

be represented as:
E[S f ] = max

D,D′
E[∥MiGt

i (D)−MiGt
i (D′)∥2]

= max
D,D′

∥∥∥E[Ri]Gt
i (D)− E

[
Ri]G

t
i
(
D′

)∥∥∥
2

= pimax
D,D′

∥∥Gt
i (D)−Gt

i
(
D′

)∥∥
2 (17)

Since γt
i,l ∈ (0, 1],

∥∥Gt
i (D)−Gt

i
(
D′

)∥∥
2 =

∥∥∥∑L
l=1 ηγt

i, lg
t
i,l(D)−∑L

l=1 ηγt
i, lg

t
i,l
(
D′

)∥∥∥
2

≤ η
∥∥∥∑L

l=1
∼
g

t
i,l(D)−∑L

l=1
∼
g

t
i,l
(
D′

) ∥∥∥
2

(18)

Then, the upper bound of the sensitivity is:

S f ≈ E
[
S f

]
≤ ηpi∑L

l=1

∥∥∥∼g t
i,l(D)−

∼
g

t
i,l
(
D′

)∥∥∥
2
≤ 2ηCLpi. (19)

Given that D and D′ differ by only one sample, the difference in gradient estimates,∥∥∥∼g t
i,l(D)−

∼
g

t
i,l(D′)

∥∥∥
2
, reflects the sensitivity of the gradients to individual samples. Specifi-

cally, this difference captures the sum of gradients produced by performing L local iterations
on that single sample. Given the constant C, which characterizes the maximum change in
the gradient estimates, the upper bound on the sensitivity can be conservatively estimated
as 2ηCLpi. □

B. Privacy Guarantee in Each Round

Privacy Amplification Theorem [34] states that if a mechanismM is (ε, δ)-DP over
a dataset D with size m and a subsampling mechanism is used to draw a subset Ds with
size n (n ≤ m) uniformly at random from D, then applyingM to the subset Ds guarantees
(ε′, (n/m)δ)-DP, where ε′ is defined as ε′ = log(1 + (n/m)(eε − 1)).

Next, we establish the lower bound of the noise variance σ2 for each client to achieve
(ε, δ)-DP in each round. This provides a valuable suggestion for introducing the appropriate
noise for DP-FL. Given that the local updates of clients are conducted on random batches,
we can apply the Privacy Amplification Theorem [34] to mitigate the noise variance and
achieve (ε, δ)-DP.

Lemma 2. For each round t at client i, let qi = (Lb/|Di|) (qi ≤ 1), and each batch is sampled
without replacement, the Gaussian noise with variance σ2 satisfying the condition

σ2 ≥ 32(
ηCLqi pi

ε
)

2
ln(

1.25
δ

) (20)

can achieve (ε, δ)-DP.

Proof. In the round t, client i performs L steps of local clipping SGD, where each batch
b is sampled without replacement from its local dataset Di. Let qi = (Lb/|Di|) (qi ≤ 1),

the Gaussian noise with variance σ2 =
2ln( 1.25

δ )
ε2 S2

f can achieve (log(1 + qi(eε − 1), qiδ))-DP
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based on Equation (13) and Privacy Amplification Theorem [34]. Since ε ∈ (0, 1), we can
apply the following inequality:

ln (1 + qi(eε − 1)) ≤qi(eε − 1) ≤ 2qiε (21)

Thus, we can deduce that, given ε and δ, the Gaussian noise with variance

σ2 =
2ln( 1.25

δ )
ε2 S2

f guarantees at least (2qiε, qiδ)-DP. To achieve (ε, δ)-DP in each global

round t, the low bound for σ2 can be reduced to

σ2 =
8qi

2ln(1.25/δ)

ε2 S2
f . (22)

Since S f ≤ 2ηCLpi in Equation (19), we can infer that the low bound for σ2 is

σ2 = 32(
ηCLqi pi

ε
)

2
ln(

1.25
δ

) (23)

If p = max
i

pi, we can derive that the lower bound σmin = 4qi
ηCLp

ε

√
2ln( 1.25

δ ). □

3.5. Computational Complexity Analysis

The primary computational cost arises from the local model updates and the sparsity-
based pruning processes. Accordingly, this section focuses primarily on analyzing the
computational cost introduced by these two critical stages.

In the stage of local model training, the tailoring factor γt
i,l is computed based on the∥∥∥gt

i,l

∥∥∥
2

which involves summing the squares of all elements and taking the square root. Its
complexity is O(dj), where dj is the dimensionality of the gradient vector for layer j. The
process of multiplying each gradient vector gt

i,l by a scalar has a one-time computational
cost, which can be negligible. Considering that there are L iterations and J layers, the overall
computational complexity of computing the scaling factors and updating the gradients is
O(L∗∑J

j=1 dj).
In the stage of sparsity-based channel pruning. To compute the JS divergence for

client i, we first need to determine the probability of each class. This step has a minimum
complexity of is O(|Di|) since we need to iterate over each sample and update the counts
for each class. Optimization techniques such as using a hash table or dictionary and parallel
processing can improve the efficiency of the process. Then, a vector P is constructed to store
the probability of each class with a dimension equal to the number of class n. According to
Equation (8), we need to access each element in vectors P and Q to compute KL divergence,
so the complexity is O(n). Since addition operations have O(1) complexity, the overall
complexity of computing JS divergence in Equation (9) is O(n + 1), approximately O(n).
Next, we perform linear transformation and normalization to get pi per client, which has
O(1) complexity as it involves a fixed number of simple arithmetic operations. Consequently,
we sample a matrix Ri from the Bernoulli(pi) distribution. Acquiring a binary mask based
on pi introduces a relatively low computation cost, as Bernoulli sampling can be performed
efficiently. The element-wise multiplication of the mask matrix Ri and the accumulated
gradients is an intrinsic operation and introduces a negligible computational overhead.

Incorporating Gaussian noise introduces additional computations during the global
model aggregation process, which is executed on the server side. The complexity of computing
the lower bound σmin is O(n), according to Equation (20), as it needs to find the maximum
value within the vector pi. The generation of Gaussian noise and the noise addition typically
have a constant time complexity of O(1) depending on the random number generator used.
These operations do not significantly impact the total computational overhead.
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In summary, the main computational complexity comes from the computation of
gradient norms and the counting of sample labels. In Python 3.8.18, the use of specialized
libraries such as NumPy 1.24.3, Pandas 2.0.3, and PyTorch 2.1.2 can significantly accel-
erate the counting of sample labels and the computation of norms, reducing the overall
computational complexity of the algorithm.

4. Results and Discussion

In this section, some experiments on the CIFAR-10 and Fashion-MNIST datasets are
conducted to evaluate the performance of the proposed ASPFL algorithm.

4.1. Experimental Settings

The experimental results mentioned below are obtained on a computer with an AMD
Ryzen 5 5600 6-core processor and 16 GB of RAM. Additionally, the computer is equipped
with an NVIDIA GeForce RTX 3070 with 16 GB of memory.

The ratio of the training set to the test set is 8:2. The performance of the model is
measured under non-IID distributions. Specifically, we utilize the Dirichlet (α) to simulate
the dataset distributions across different clients. We adjust the degree of non-IID through
the parameter α (α> 0). A larger α indicates that the data sets are closer to being IID. To
deploy the model on edge devices, we chose ResNet18 [35] as the backbone model, which
mainly functions by multiple convolution layers. In the FL system, the number of clients
N = 10 with various participating ratios. The initial learning rate η is set to 0.01 and the
epochs of local training L is fixed at 3. We select the threshold C for local gradient clipping
as 1. As for the differential privacy, the privacy budget ε is pre-determined to 2.0 and
δ = 10−5. We specify the maximum number of global iterations T as 200.

4.2. Pruning Performance Comparison

We first evaluated the performance of the pruning module in ASPFL without introduc-
ing the DP noise, hereafter denoted as ASPFL-p. With Dirichlet non-IID data, α is set to 0.5,
0.7, 1, and 10. As depicted in Figure 3, when α = 0.5, the distribution of sub-datasets across
clients has shown the extreme imbalance numbers and severe label skew for non-IID data.
It can be observed that some clients may have significantly high numbers of samples for a
particular category and no samples for some categories, resulting in a skewed distribution.
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Figures 4 and 5 show that the ASPFL-p scheme achieved comparable accuracy and
convergence speed to the original FedAvg [4] and FedLP [29] schemes. For instance, in
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Figures 4a and 5a, when the data distribution is highly imbalanced (α = 0.5), ASPFL-p
exhibits a smoother accuracy curve and faster convergence compared to the other two
methods, without significant fluctuations. This suggests that our algorithm maintains
stable performance during training, even when faced with extremely imbalanced data dis-
tributions. This phenomenon may be attributed to the fact that our algorithm incorporates
L2-norm clipping of accumulated gradients, which helps reduce the volatility of model
updates and improve convergence stability on non-IID datasets.
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Table 2 illustrates the comparison results on accuracy and communication overhead.
Under different non-IID data distributions characterized by α, ASPFL-p outperforms both
FedAvg [4] and FedLP [29] in terms of accuracy. This is because our approach introduces
an adaptive strategy that extracts the JS divergence as a feature to ensure the utility of the
model. Additionally, the value of α also affects model performance; a larger α leads to a
data distribution closer to IID, with a more balanced distribution of samples across clients,
thus improving the performance of the aggregated global model. As for communication
overhead, ASPFL-p also achieves lower communication rounds and smaller transmission
parameters compared to the other two methods. In standard FL settings, models are
typically fully connected without specific pruning techniques aimed at reducing model size.
ASPFL-p introduces an adaptive pruning mechanism that is related to the data distribution
feature to decrease the number of channels within the model. This approach considers
the non-IID nature of the data, which may lead to reduced efficacy in model learning
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and introduce potential biases into the training process. Certain features might be more
pronounced or significant in specific scenarios, such as medical data, thereby necessitating
an adaptive approach to matrix design that accounts for these distributional disparities.

Table 2. Comparisons on accuracy, communication rounds, and parameter saving.

Schemes α Max acc % Rounds for 80% acc

FedAvg [4]
0.5 74.32 7
0.7 77.32 5
10 80.34 4

FedLP [29]
0.5 74.33 15
0.7 75.4 14
10 76.79 12

ASPFL-p (ours)

0.5 76.75 5
0.7 78.01 4
1.0 79.22 3
10 81.32 2

4.3. Privacy Performance Comparison

We assess the privacy performance of ASPFL with IID and Dirichlet (α = 15) non-IID
data. We compare the proposed ASPFL with other DP-FL methods, which are either typical
CDP-based [12,13] or LDP-based [25] in federated learning. Experimental results show
that our ASPFL method has better performance compared with other methods. We use flat
clipping with a constant clipping threshold C = 1.

Next, we report the evaluation results on two image datasets: CIFAR-10 and Fashion-
MNIST and provide a detailed explanation of the ASPFL framework. For the CIFAR-10
dataset, our proposed scheme demonstrates competitive accuracy across IID and non-IID.
We set the ratio of participated clients to be 20%. The average test accuracy over all clients
is reported in Table 3. The accuracy under the IID setting (83.57%) is notably higher than
DP-FedAvg [24] (82.68%), f -DP [25] (80.37%), and Wu et al. [13] (81.25%). Under non-IID
settings, our method achieves higher accuracy (82.43%) than DP-FedAvg [24] (81.12%),
f -DP [25] (78.84%), and Wu et al. [13] (79.05%) as well.

Table 3. Comparison of DP-FL methods on CIFAR-10 over two participated clients.

Schemes
Test Accuracy % Communication

RoundsIID Non-IID (α = 15)

DP-FedAvg [12] 82.68 81.12 200

f -DP [25] 80.37 78.84 200

Wu et al. [13] 81.25 79.05 170

ASPFL (ours) 83.57 82.43 120

f To analyze the communication overhead of our proposed method, Table 3 also lists
the number of communication rounds (CR) required for the model to reach convergence.
Our method demonstrates a relatively low number of communication rounds (120), poten-
tially offset by improved accuracy. Relative to DP-FedAvg [24] (200) and f -DP [25] (200), our
proposed ASPFL reduces the number of CRs by 40% for local optimization. In summary,
our method maintains relatively low communication overhead while achieving competitive
accuracy. These enhancements collectively enable federated learning to improve efficiency
and privacy protection while maintaining accuracy. Specifically, the introduction of adap-
tive Gaussian noise, along with the use of the Jensen-Shannon divergence as a metric for
generating sparse matrices, contributes to more efficient model updates. This reduces the
communication overhead, which is crucial in distributed learning settings where data is
stored across multiple devices.
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4.4. Impact on the Number of Participants

The following presents the results of the ASPFL-p system under different participant
client numbers. We set the participated clients to be 2, 5, 8, and 10. Figure 6 depicts the
accuracy curves corresponding to various ratios of participated clients (20%, 50%, 80%, and
100%) with non-IID Dirichlet (α = 0.5) on the CIFAR-10 and Fashion-MNIST datasets.
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As shown in Figure 6, it appears that increasing the number of participating clients
leads to faster convergence and better final performance. On one hand, it attributes to the
diversity and large amount of data because more clients mean a better representation of
the underlying data distribution. Federated learning aggregates gradients from multiple
clients, which helps the model learn from a wider variety of data points. This diversity
can lead to better generalization and thus improved performance. On the other hand, with
more clients contributing to the gradient aggregation, the resulting gradients are more
stable and less noisy. This stability helps the model converge more quickly and accurately.

5. Conclusions

We present a communication-efficient federated learning framework with a privacy
guarantee in this paper. Before transmitting model updates, a sparsity-pruning-based
mechanism is employed based on the JS divergence of each client’s data distribution.
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When introducing privacy protection in model updates, we propose an adaptive Gaussian
noise strategy to achieve (ε, δ)-DP. Based on experimental results in terms of accuracy and
communication cost, we can conclude that our ASPFL scheme exhibits robust performance
and competitive accuracy on the CIFAR-10 dataset. From another perspective, a multitude
of experiments have demonstrated the portability of our proposed strategies to other
domains. With an increase in data diversity and complex tasks, the methods proposed
in this paper are expected to achieve an even better balance on accuracy and overhead
in the future.
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