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Abstract: Addressing the issue of significant speed fluctuations in permanent magnet synchronous
motors (PMSM) under load, this paper proposes an active disturbance rejection control strategy
based on an improved particle swarm optimization (PSO) algorithm. Initially, the speed of the
PMSM is considered as the comprehensive optimization objective, and an active disturbance rejection
control (ADRC) model for the PMSM is established by integrating the ADRC with vector control.
Subsequently, an adaptive PSO algorithm incorporating genetic algorithms is proposed. This algo-
rithm uses chaotic initialization for uniform particle distribution, introduces adaptive inertia weight
and dynamic cognitive factors to enhance search efficiency, and integrates the crossover and muta-
tion modules from genetic algorithms, optimizing mutations using a Gaussian probability function.
Simulation results demonstrated that: (1) under identical external load conditions, the proposed
ADRC strategy ensured smaller speed fluctuations and a smoother waveform for the PMSM, and
(2) compared to the traditional PSO algorithm, the proposed method reduced the speed fluctuation
after external load by approximately 26%.

Keywords: active disturbance rejection control; parameter tuning; particle swarm optimization;
permanent magnet synchronous motors; cross; mutation; adaptive weights

1. Introduction

Permanent magnet synchronous motors can deliver higher power output for the
same weight and volume, making them widely used across various fields. With the
increasing application of PMSMs in high-performance AC servo drive systems, such as
aerospace, new energy technologies, and electric vehicles, there are heightened control
performance requirements for these motors. In recent years, high-performance systems
have demanded increasingly stringent speed performance from PMSMs [1], specifically
requiring the mitigation of speed fluctuations caused by load torque variations. The authors
of [2] demonstrated that in practical systems, the speed performance of PMSMs is affected
by disturbances, such as sudden changes in load torque and magnetic flux harmonics. To
meet the needs of high-performance systems, it is essential to investigate strategies for
suppressing speed loop disturbances in PMSM drive systems under complex conditions to
reduce speed fluctuations and achieve smooth, stable speed control.

To address the challenges of motor operation in complex environments, researchers
have turned their attention to sensorless control technologies. Currently, sensorless control
techniques primarily include the back-EMF method, flux estimation method, and current
sampling method [3]. However, these methods are not particularly effective in dealing with
external disturbances. The authors of [4] indicated that in PMSM control systems, sudden
load torque application is often considered one of the most severe non-periodic disturbances
in the speed loop, causing significant speed drops. Among high-performance control
methods, traditional PI control and various new intelligent control methods in PMSM vector
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control systems still have shortcomings [5,6]: The PI control algorithm is simple in structure
and easy to implement, but due to the nonlinear characteristics of PMSM, its performance
is affected by parameter variations, thus failing to provide ideal disturbance rejection.
In contrast, ADRC has strong disturbance rejection capabilities and is a better control
method for PMSMs. ADRC uses an extended state observer (ESO) to observe the system’s
real-time state and internal and external disturbances, compensating for them accordingly.
It provides feedback based on the observer’s values, offering excellent robustness. The
limitations of traditional linear ADRC have been analyzed in the literature [7,8], which
proposes an improved ADRC method based on model predictive compensation. Another
study [9] introduces an adaptive ESO based on an ADRC, where the gains of the ESO
are adjusted in real time to minimize the total disturbance of state estimation errors and
measurement noise, and this method has been applied to air–fuel ratio control in gasoline
engines. Further research [10] employed interpolation fitting to reconstruct the extended
state observer and nonlinear feedback to optimize ADRC. Additionally, in [11], a third-
order nonlinear extended state observer was proposed for position and velocity estimation
of sensorless internal permanent magnet synchronous motor drives with further improved
immunity and accuracy. An ESO with predefined decreasing gain was designed [12] to
reduce the impact of measurement noise in steady-state conditions, and experiments were
conducted on a magnetic levitation ball system. Another study [13] suggested an offline
Q-learning-based adaptive adjustment algorithm for ADRC parameters, applying it to ship
heading control. Furthermore, the authors of [14] presented a linear/nonlinear switching
extended state observer (L/NLSESO) to address the issue of large disturbance estimation
limitations in NLESO, indirectly improving the performance of the corresponding ADRC
algorithm. In [15], a new load-adaptive dual-loop drive system based on an improved
position–velocity integral self-immunity controller and a parameter fuzzy self-tuning
method was proposed, which enhanced the system’s accuracy and ability to adapt to
load variations.

The aforementioned literature on the improvement of ADRC primarily focuses on
optimizing the ESO model. While these optimization methods have enhanced the control
performance of ADRC to some extent, there has been limited research on the parameter
settings for the ESO and nonlinear feedback, often relying on empirical methods. In ADRC,
the mathematical models for differential trackers, state observers, and nonlinear feedback
contain multiple unknown parameters that need to be defined. Relying solely on experience
to set these parameters makes it challenging to obtain the optimal solution. Therefore,
solving for the optimal parameter configuration is imperative.

To address the problem of optimal parameter configuration, many scholars have
utilized heuristic optimization algorithms [16–18] to tune ADRC parameters. In recent
years, the application of PSO algorithms in the intelligent tuning of ADRC parameters has
garnered increasing attention from researchers in related fields. A study [19] employed the
PSO algorithm to refine the initial ADRC parameter configuration for achieving precise
motion control in antenna servo systems. Simulation results indicated that the enhanced
ADRC exhibited advantages, such as small overshoot, fast response speed, strong anti-
interference capability, high reliability, and robust performance. However, this algorithm
tended to fall into local optima. The authors of [20] proposed an adaptive PSO algorithm,
which determines the current evolutionary state based on the evolution factor calculated by
the particle swarm and switches between multiple velocity update functions accordingly,
thus improving the convergence speed. The authors of [21] used a genetic algorithm to
adjust motor ADRC parameters based on a multi-objective optimization function, ulti-
mately determining the ADRC control parameters after multiple iterations. Additionally,
an improved PSO algorithm was proposed in [22], which introduced a constraint factor
to control the inertia coefficient of particle velocity, addressing the issue of slow search
speed in the PSO algorithm, thereby enhancing the search speed and convergence accuracy.
Nevertheless, this algorithm still encounters the problem of local optima.
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Existing literature on the improvement of PSO algorithms primarily focuses on the
inertia weight function and acceleration constants. While these improvements enhance the
algorithm’s optimization accuracy and convergence speed, two issues remain unaddressed.
First, the use of random initialization methods results in an overly dispersed initial search
range for the particles, with multiple particles distributed near the interval extrema, thus
affecting convergence precision. Second, during the particle swarm update process, the
differences in fitness among particles are not considered, leading to a tendency to fall into
local optima during the solution process. To address these issues, this paper proposes a
globally optimized IPSO algorithm. This algorithm uses logistic chaotic initialization to
determine the initial positions of the particles. It adaptively adjusts the inertia weight and
velocity factors based on fitness and the number of iterations. Additionally, it integrates
genetic algorithms, selecting particles for crossover and mutation based on their fitness to
optimize particle adaptability.

The contributions of this work are as follows:

1. Logistic chaotic mapping initialization. Replacing random initialization with logistic
chaotic mapping optimizes the distribution of population particles within the value
range, ensuring a more uniform distribution and improving the convergence speed.

2. Linearly decreasing inertia weight function. Introducing a linearly decreasing inertia
weight function to adaptively adjust the inertia weight improves the acceleration
constants by incorporating a dynamic learning function, which adjusts the acceleration
constants corresponding to the number of population iterations, thus enhancing
adaptability.

3. Genetic algorithm integration. Combining genetic algorithms to select particles for
crossover and mutation based on fitness and introducing a Gaussian probability
function to help escape local optima, thereby improving optimization accuracy.

The remainder of this article is organized as follows:
Section 2 outlines a PMSM ADRC system, including the mathematical model of the

PMSM and the ADRC, and describes the principle of the components of the ADRC. Section 3
presents the basic PSO algorithm and describes in detail the various improved parts of
the IPSO algorithm. Section 4 describes the operation of the IPSO algorithm in ADRC
and verifies the superiority of the IPSO algorithm by comparing it with other algorithms.
Section 5 compares the simulation of the ADRC system of the PMSM and verifies the
superiority and effectiveness of the IPSO algorithm. Section 6 summarizes the contents of
this paper.

2. Mathematical Model of ADRC and PMSM

In this paper, the output speed of the PMSM was selected as the optimization target.
The speed loop uses an ADRC instead of a PI controller to achieve the desired output curve
according to actual needs. This approach aims to ensure a smooth output while reducing
overshoot, improving response speed, and enhancing disturbance rejection capability.

2.1. SPMSM Mathematical Model

This paper focused on the surface-mounted permanent magnet synchronous motor
(SPMSM), ignoring the nonlinear characteristics of the motor, airgap permeance, internal
permeance of the permanent magnets, and rotor winding damping. Additionally, the
three-phase stator windings of this motor are symmetrically distributed in space, and the
airgap magnetic field is sinusoidally distributed. The mathematical model of the SPMSM
can be obtained based on motor control theory. To design a better controller model, the
Park transformation is typically used to convert the PMSM mathematical model from the
α-β coordinate system to the d-q coordinate system. The mathematical model of PMSM in
the two-phase synchronous rotating d-q coordinate system is as follows:{

ud = Rid + Ld
did
dt −ωeLqiq

uq = Riq + Lq
diq
dt +ωeLdid +ωeψf

(1)
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Magnetic flux equation: {
ψd = Ldid +ψf
ψq = Lqiq

(2)

Electromagnetic torque equation:

Te =
3
2

pn
[
ψfiq +

(
Ld − Lq

)
idiq

]
(3)

Mechanical motion equation:

J
dωm

dt
= Te − TL − Bωm (4)

Here, ud and uq are the stator voltage components in the d-axis and q-axis, respectively;
ψd and ψq are the stator flux components in the d-axis and q-axis, respectively; Ld and Lq
are the inductance components in the d-axis and q-axis, respectively; ωe is the electrical
angular speed; ψ f is the permanent magnet flux linkage; J is the moment of inertia; B is
the damping coefficient; TL is the load torque, and ωm is the mechanical angular speed of
the motor.

2.2. ADRC Mathematical Model

ADRC is a classical model-free control method with the capability to control nonlinear
systems. The ADRC consists of three main components: the tracking differentiator (TD),
the nonlinear state error feedback (NLSEF), and the ESO. The TD tracks the desired setpoint
signal used for arranging the transition process, reducing overshoot during system regula-
tion. The ESO, the core component of the ADRC controller, is primarily used for observing
the system’s state feedback and compensating for disturbances through the extended state.
The NLSEF generates control outputs to compensate for the total disturbances in the system.
This structure is illustrated in Figure 1.
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In this paper, we constructed an ADRC mathematical model for speed control of
permanent magnet synchronous motors, with the following Equation (5) motor speed
equation derived from Equation (4):

dwm

dt
=

1
J

Te −
1
J

TL −
B
J

wm (5)

For SPMSM, the stator inductance meets the following Equation (6):

Ld = Lq (6)
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The motor speed equation can be obtained from Equations (5) and (6), as shown in
Equation (7):

dwm

dt
=

3Pnψf
2J

iq −
1
J

TL −
B
J

wm (7)

The TD mathematical model is shown in Equation (8):
e0 = x1 − v0.
x1 = x2.
x1 = −r · fal(e0,α0, δ)

(8)

The nonlinear smooth function, fal, is defined in Equation (9):

fal(e,α, δ) =

{
|e|αsign(e), |e|> δ

e
δ1−α , |e| ≤ δ (9)

After discretization by the Euler method, the following Equation (10) is obtained:{
x1(k + 1) = x1(k) + hx2(k)
e(k) = x1(k)− v0

(10)

In the above equation, r is a variable that controls the speed of the tracking signal and
is proportional to the tracking speed, x1 is the speed signal after arranging the transition
process, v0 is the input speed signal, δ is the filtering factor, and α0 is the nonlinear factor.

The NLSEF mathematical model is shown in Equation (11):
e1 = v1(k)− z1(k)
u0 = β1 · fal(e1,α1, δ)
u = u0 − z2(k)

b

(11)

In the Equation (11), e1 is the error between the speed signal, v1(k), after the transition
process and the observed value, z1(k), of the actual output, y, while− z2(k)

b is the component
that compensates for disturbances.

According to Equation (7), the system equation is built, as shown in Equation (12):{ .
x1 = f(x1, t) + bu
y = x1

(12)

where f(x1, t) = − 1
J TL − B

J wm is an unknown disturbance, which is suppressed by a non-

smooth feedback effect, b = 3Pnψf
2J , u = iq. Let x2 = f(x1, t),

.
x2 = g(x1, t); then, there is the

following Equation (13): 
.
x1 = x2 + bu
.
x2 = g(x1, t)
y = x1

(13)

Build the mathematical model of the ESO according to Equation (13), as shown in
Equation (14): 

e2 = z1 − y
.
z1 = z2 − β2fal(e2,α2, δ) + bu
.
z2 = −β3fal(e2,α3, δ)

(14)

After discretization by the Euler method, the following Equation (15) is obtained:
e2 = z1(k)− y(k)
z1(k + 1) = z1(k) + h[z2(k)− hβ2fal(e2,α2, δ) + bu(k)]
z2(k + 1) = z2(k)− hβ3fal(e2,α3, δ)

(15)
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The PMSM active disturbance rejection control model built based on the above mathe-
matical model is shown in Figure 2.
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3. Improved PSO Algorithms

The PSO algorithm [23] is an intelligent optimization algorithm that simulates the
behavior of animal groups [24,25]. It is widely used to solve optimization problems in
various scenarios due to its wide search range and fast iteration speed [26–28]. However,
it suffers from issues, such as premature convergence and susceptibility to local optima.
Therefore, in this paper, we propose improvements to the PSO algorithm by using adaptive
inertia weights, dynamic learning speed factors, and integrating genetic algorithms

3.1. Basic PSO Algorithms

Let the search space be d-dimensional, with n particles. The position of the i-th particle
is xi, and the velocity change rate of the i-th particle is vi. The best position found by the
entire particle swarm so far is pg. For each iteration, the expression of the i-th particle’s
movement in the d-th dimension is shown in Equation (16):

vi = ωvi + c1r1

(
xpbest − xi

)
+ c2r2

(
xgbest − xi

)
(16)

The particle position xi is shown in Equation (17):

xi = xi−1 + vi (17)

Here, c1 and c2 are cognitive factors, with c1 being the individual cognitive factor
for each particle and c2 being the social cognitive factor for each particle. r1 and r2 are
random numbers between 0 and 1. ω is known as the inertia weight; when the inertia
weight is large, the global search capability is strong, but the local search capability is
weak. Conversely, when the inertia weight is small, the global search capability is weak,
but the local search capability is strong. Algorithm 1 shows the pseudocode for the basic
PSO algorithm.
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Algorithm 1 Particle swarm optimization algorithm.

Input: Population size, N, dimension, d, cognition constants, c1 and c2, inertia weight, w.
Output: The best solution, gbest(t)
1: Initialization
2: while Terminate condition has not been met do
3: for j← 1 to N do
4: Compute v(j) according to Equation (16)
5: Compute x(j) according to Equation (17)
6: Evaluate particle fitness, f(x(j))
7: Update the best personal solution, p(j)
8: Update the best global solution, g(j)
9: end for
10: end while
11: Select the best solution, gbest(t)

3.2. IPSO Algorithms
3.2.1. Particle Initialization Method Based on Logistic Chaos Initialization

The random initialization of the particle swarm space has high randomness and
uneven distribution, leading to issues, such as a lack of population diversity and low search
efficiency. To address these problems, we used the logistic mapping function for particle
swarm initialization to improve the algorithm’s performance. Logistic chaotic initialization
has nonlinear and periodic characteristics, enabling it to generate more complex and
random sequences. This helps increase population diversity and prevents the swarm from
falling into local optima.

The logistic mapping function is shown in Equation (18) below:

Zn+1 = k · Zn · (1− Zn) (18)

In Equation (18), n is the current number of iterations, Zn is the value after the n-th iter-
ation, and k is the mapping parameter. K affects the evolution process of logistic mapping,
and the larger the mapping parameter, k, the more uniform the mapping distribution.

The logistic chaos initialization flowchart is shown in Figure 3.
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We used chaotic initialization k = 4, with a population size of 300. The random
initialization and logistic chaotic initialization particle distribution within a given interval
are shown in Figure 4.
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As shown in Figure 4a, the population particles under random initialization were
mostly distributed at the interval edges, with uneven distribution and particle clustering in
certain regions. In contrast, Figure 4b demonstrates that the chaotic initialization resulted
in a more uniform distribution of population particles within the value space, enhancing
population diversity.

3.2.2. Adaptive Weights and Dynamic Cognitive Factors

Inertia weight and cognitive factors are crucial components of the PSO algorithm. The
inertia weight significantly affects the performance of the PSO algorithm. During the initial
iterations, particles have higher velocities, which enhances global search capabilities but
weakens local search abilities. As the number of iterations increases, the inertia weight
decreases, resulting in reduced particle velocity and improved local search capabilities.
The size of the inertia weight influences the search range and convergence speed of the
algorithm. Therefore, we introduced an adaptive inertia weight function that adjusts the
inertia weight of the particle swarm based on the iterative fitness.

When fi < fa, the inertia weight is shown in Equation (19) below:

wi = wl −
(wh −wl) · (fi − fmin)

fa − fmin
(19)

When fi ≥ fa, the inertia weight is shown in Equation (20) below:

wi = wh (20)

In Equation (19), fi is the fitness of the i-th particle, fa is the average fitness, wi is the
inertia weight of the i-th particle, wh is the maximum inertia weight set to 0.9, and wl is the
minimum inertia weight set to 0.4.

The cognitive factors, c1 and c2, represent the individual and social cognitive factors,
respectively. When c1 is large and c2 is small, the algorithm exhibits better global search
capabilities. Conversely, when c1 is small and c2 is large, the algorithm demonstrates better
local optimization abilities. Therefore, we introduced dynamic cognitive factors, adjusting
the cognitive factors of the particle swarm based on the number of iterations.

The dynamic cognitive factors are shown in Equation (21): c1 = 2sin2
[
π
2

(
1− gi

gmax

)]
c2 = 2sin2

(
πgi

gmax

) (21)

In Equation (21), gi represents the i-th iteration and gmax represents the total number
of iterations.
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3.2.3. Particle Update Method Based on Genetic Algorithm Cross-Mutation

The PSO algorithm is prone to falling into local optima during iterations, resulting in
the failure to obtain a global optimal solution. To address this issue, we integrated the ge-
netic algorithm (GA) into PSO to enhance its performance. The genetic algorithm [29,30] is
a classical global optimization algorithm inspired by the theory of natural evolution, which
finds optimal solutions by mimicking the processes of natural selection and reproduction.
In this study, crossover and mutation were introduced during the population iteration
process. The randomness of crossover and mutation in the genetic algorithm helps resolve
the problem of local optima. Additionally, a Gaussian probability function was used to
optimize the mutation effect, thereby improving the accuracy of the algorithm.

The obtained crossover positions are shown in Equation (22):

cxj = r · x(j1) + (1− r) · x(j2) (22)

In Equation (22), cxj represents the position of the j-th child, and x(j1) and x(j2)
represent the particle positions of the hybrid parent.

The Gaussian probability function is shown in Equation (23):

f(xj) =
1√
2πσ

exp

(
−
(
xj − µ)2

2σ2

)
(23)

In Equation (23), xj is the j-th particle, µ is the global best, and σ is the Gaussian
mutation parameter.

The position of the mutated particles is shown in Equation (24):

mxj = xj + f
(
xj
)
. ∗
(

xj − xgbest

)
. ∗ rand (24)

In Equation (24), mxj represents the position of the mutated particle.

4. Implementation of IPSO Algorithm in ADRC

The specific steps for solving the ADRC adaptive dynamic optimization model using
the IPSO algorithm are as follows:

1. Initialize the IPSO algorithm and determine the inertia weight, dynamic learning
factor function, and population interval. Perform logistic chaotic initialization for the
three-dimensional population particles within the given parameter range. Calculate
each particle’s velocity, current position, and fitness, then determine the initial optimal
position and optimal fitness of the population.

2. Calculate the population’s average fitness, fa, and minimum fitness, fmin, and assess
whether the particle’s fitness is less than the average fitness. Compute the correspond-
ing inertia weight for the particle, and update its velocity and position based on the
calculated fitness.

3. Select particles for crossover operations, evaluate both parent and offspring parti-
cles, update their respective positions, calculate the particle fitness, and update the
individual and population historical optimal fitness.

4. Perform particle mutation using a Gaussian probability function, replace the parent
particles with mutated particles, calculate their fitness, and update the individual and
population historical optimal fitness.

5. Check if the maximum number of iterations has been reached. If reached, terminate
the iteration; otherwise, return to step 2.

6. Output the optimal fitness value and position of the particles and obtain the parame-
ters required for ADRC.

The process flowchart is shown in Figure 5.
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Algorithm 2 displays the pseudocode of the IPSO algorithm.

Algorithm 2 IPSO algorithm.

Input: Population size, N, dimension, d, cognition constants, c1 and c2, inertia weight, w,
crossover probability, pc, mutation probability, pm.
Output: The best solution, gbest(t)
1: Logistic chaos initialization according to Equation (18)
2: while Terminate condition has not been met do
3: Compute c1(j) and c2(j) according to Equation (21)
4: for i← 1 to N do
5: if (f(x(i))<fa) then
6: Compute w(i) according to Equation (19)
7: end if
8: Compute v(i) according to Equation (16)
9: Compute x(i) according to Equation (17)
10: Evaluate particle fitness, f(x(i))
11: Update the best personal solution, p(i)
12: Update the best global solution, g(i)
13: end for
14: for j← 1 to cross-pool do
15: Crossover (seed1, seed2) according to (22)
16: Evaluate particle fitness, f(x(j))
17: Update the best global solution, g(j)
18: end for
19: for k← 1 to mutation pool do
20: Mutation (seed3) according to (24)
21: Evaluate particle fitness, f(x(k))
22: Update the best global solution, g(k)
23: end for
24: end while
25: Select the best solution, gbest(t)
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We applied the IPSO algorithm to the parameter optimization of the ADRC in the
PMSM control system. Specifically, considering the stability and accuracy of the system,
IPSO optimizes the adjustable key parameters β1, β2, and β3. The fitness function deter-
mines the trend of particle position changes. Therefore, an appropriate fitness function is
needed to connect IPSO and ADRC to obtain suitable ADRC parameters. The performance
indicators for PMSM ADRC include both stability and dynamic performance metrics. When
the system input is a step response, the integral of time-weighted absolute error (ITAE) is
used to measure system performance. We used ITAE to evaluate the observation error of the
total disturbance in the system by the ESO. The ITAE expression is shown in Equation (25):

ITAE =
∫ T

0
t|ei(t)|dt (25)

In Equation (25), T is the system response period, ei(t) is the total disturbance obser-
vation error of the system, and ei(t) is expressed as follows:

ei(t) = v1(k)− z1(k) (26)

In Equation (26), ei(t) is the error between the speed signal, v1(k), after the transition
process and the observed value, z1(k), of the actual output, y.

The effectiveness of the proposed improved PSO algorithm, traditional PSO algorithm,
chaotic PSO algorithm, and adaptive weight PSO algorithm was verified through the fitness
values and speed waveforms of different algorithms. Figure 6 shows the fitness value
iteration curves for the different algorithms, and Table 1 presents the ITAE values of the
fitness functions for each algorithm.
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As shown in Figure 6, compared to the PSO algorithm, the IPSO algorithm described
in this paper achieved the greatest optimization in fitness value. Both the APSO and CPSO
algorithms also showed slight improvements in the fitness value.

Table 1. Fitness function value.

PSO APSO CPSO IPSO

ITAE (10−3) 9.4 9.0 9.3 7.4
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5. Experimental Results and Analysis of PMSM Control System
5.1. Simulation Model Construction

The ADRC model for the PMSM based on the improved PSO algorithm used in this
paper is shown in Figure 7. The motor used was a SPMSM. The speed loop used an ADRC
to control the motor speed, and the ADRC parameters were tuned using the IPSO algorithm
to obtain the optimal parameter ratios and the PMSM output waveform. The current loop
used PI control, and under the ideal condition of id = 0, the SVPWM module controlled iq
to achieve the desired speed for PMSM operation.
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The PMSM control system flowchart is shown in Figure 8 below.
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The relevant parameters of PMSM are shown in Table 2 below.
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Table 2. Parameter table of PMSM.

Motor Parameters Parameter Value Unit

Flux linkage 0.175 Wb
Moment of inertia 0.003 kg·m2

Damping coefficien 0.008 N·m·s
Stator resistance 2.875 Ω

Stator inductance 8.500 mH
Number of pole pairs 4

5.2. Experimental Results and Analysis

In the simulation system, an expected speed signal was applied to the PMSM. The
motor speed output waveform was observed to measure the time required to reach the
target speed from zero, the overshoot, and the oscillation amplitude. Once the motor
reached a steady state, a load of 10 N ·m was applied at 0.1 s. The speed change of the
PMSM under different control strategies was recorded after the external load was applied.
The total simulation duration was 0.2 s. Figure 9 shows the output speed waveforms of
the PMSM using the ADRC strategy under no-load conditions, and Figures 10–12 show
the output speed waveform when 8 N ·m, 10 N ·m, and 12 N ·m loads were applied at
0.1 s using the ADRC strategy. In Figure 9, the horizontal axis is time, and the vertical axis
is speed.
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Figure 10 shows the output speed waveforms when a 8 N ·m load was applied at 0.1 s
using the ADRC strategy.
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Figure 11 shows the output speed waveforms when a 10 N ·m load was applied at
0.1 s using the ADRC strategy.

Figure 12 shows the output speed waveforms when a 12 N ·m load was applied at
0.1 s using the ADRC strategy.
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The initial input signal was 1250 r/min. As shown in Figure 9, the response times of
the four different algorithms were roughly the same. However, in terms of overshoot and
oscillation amplitude, the IPSO algorithm proposed in this paper performed better than
the other three algorithms. After applying external loads when the system was stable, as
seen in Figures 10–12, in the case of the same-load PSO algorithm, after the rectification
of the ADRC controller in the face of speed fluctuations of the longest recovery time, and
when speed overshooting occurred, the APSO and CPSO algorithms’ recovery time was
similar to the phenomenon of when overshooting did not occur significantly. The IPSO
algorithm was calibrated to provide a ADRC controller with better robustness and dynamic
recovery, minimal speed fluctuations after sudden load application, and providing better
immunity to interference, effectively solving the issue of excessive speed fluctuation due
to the external load. This allows the controlled motor’s output speed to more accurately
match the desired value. Comparative analysis showed that the IPSO algorithm proposed
in this paper had better accuracy and robustness.

Under the same conditions, the input was changed to a step input to test the control
effect. Initially, the transmission value remained at 1250 r/min, and the step signal changed
to 800 r/min at 0.2 s. At the system steady-state time of 0.3 s, a 10 N ·m load was applied.
The control effect is shown in Figure 13, comparing the PMSM speed output under different
control strategies.
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Figure 13a shows that the ADRC controller optimized by the PSO algorithm had small
fluctuations in the output curve in PMSM control in the face of a suddenly decreasing speed
input, but the speed fluctuation was larger and there were overshooting and oscillations
after the load was applied. Figure 13b shows the ADRC controller optimized by the
APSO algorithm, with a smoother curve in the face of a suddenly decreasing speed input
in PMSM control, and the speed recovery curve was smooth without overshooting and
oscillations, compared to the PSO algorithm. Figure 13c shows the ADRC controller
optimized by the CPSO algorithm, with reduced speed fluctuations after load and no
overshooting and oscillations. Compared with the PSO algorithm, the speed fluctuation was
reduced after adding load, and the speed recovery curve was smooth, without overshooting
oscillation. Figure 13d shows the IPSO method compared to the PSO, APSO, and CPSO
algorithms. Facing the sudden change in speed input, speed adjustment was more stable,
there was basically no overshooting, and after increasing the load, the speed dynamics of
the drop were still the smallest, the speed recovery was fast, there was basically no vibration
phenomenon, and the stability of the PMSM and the anti-jamming was more powerful.

The values of speed fluctuation for different methods facing sudden changes are
shown in Table 3 below.

Table 3. Speed Fluctuations of Different Particle Swarm Optimization Algorithms.

PSO APSO CPSO IPSO

Speed value (r/min) 757 760 762 768
Fluctuated value 43 40 38 32
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From Table 3, it can be seen that the ADRC controller tuned by the IPSO algorithm
proposed in this paper was optimized to cope with speed fluctuation in the PMSM control
system in response to a sudden torque increase situation, by 26% compared to the conven-
tional PSO algorithm, by 20% compared to the APSO algorithm, and by 16% compared to
the CPSO algorithm.

5.3. Experiment Verification

In order to test the PMSM control system’s performance and anti-interference per-
formance, the PMSM experimental platform was built, as shown in Figure 14 below, the
rotational speed-tracking as well as external load tests were carried out, respectively, and
the experimental data were obtained and plotted by connecting with the host computer.
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The PMSM experimental platform in Figure 14 communicates wirelessly with the host
computer via a Bluetooth module to enable remote commands to be given to control the
PMSM.

(1) Speed-tracking test

Firstly, the PMSM control system carried out speed-tracking experiments. Starting
the motor under no-load condition, the horizontal coordinate in the following Figure 15
indicates the number of sampling points, the interval time of each sampling point is 0.1 s,
and the vertical coordinate indicates the rotational speed. The initial speed of the motor
was set to 1250 r/min, the speed was changed to reduce it to 800 r/min at 20 s, and the
speed-tracking effect of PMSM was obtained, as shown in Figure 15. From the figure, it can
be seen that the maximum fluctuation amplitude of rotational speed reached 100 r/min
when the PMSM system adopted the ADRC controller for the rotational speed loop, but
when the rotational speed loop adopted the ADRC controller of the IPSO algorithm, the
maximum fluctuation amplitude decreased to 49 r/min, and the amplitude of fluctuation
of rotational speed was still relatively small, even when the rotational speed was changed
and could reach the given rotational speed quickly.
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(2) Anti-turbulence test

In the PMSM control system anti-disturbance experiment, the motor was started under
the no-load condition, the initial speed of the motor was set to 1250 r/min, and 20 N ·m load
was applied to the motor at 17 s. The PMSM speed graph is shown in Figure 16 below, from
which we can see that the speed ring reached 1250 r/min very quickly when the two control
methods were used, respectively, but its maximum overshoot was 221 r/min when the
ADRC controller was used. After applying perturbation, its overshooting amount reached
221 r/min at maximum, while its overshooting amount was 165 r/min at maximum when
using the self-oscillation controller optimized by the IPSO algorithm. It can be seen that its
anti-perturbation ability was obviously better than the former, and the recovery time of the
ADRC controller optimized by the IPSO algorithm was faster compared with that of the
traditional self-oscillation controller.
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Through the above test experiments on the PMSM control system, the optimized
ADRC controller of the IPSO algorithm proved that the speed loop control of the IPSO
algorithm had a better speed-tracking ability as well as anti-jamming ability in the PMSM
control system, and this verified the feasibility of the ADRC controller based on the im-
proved PSO algorithm proposed in this paper in the PMSM control system.

6. Conclusions

To improve the control performance of the ADRC, this paper addressed the issues
of limited search range and susceptibility to local optima in the PSO algorithm. An im-
proved algorithm was proposed based on chaotic initialization, adaptive inertia coefficients,
dynamic cognitive factors, and crossover mutation methods. This study introduced an
intelligent optimization method based on the improved PSO algorithm for tuning the
parameters of the ADRC. A model of the ADRC system for a PMSM was established, and
the parameters of the ADRC were optimized. To validate the parameter tuning effect of the
proposed optimization algorithm on the ADRC, simulations were conducted using MAT-
LAB2022. The experimental results showed that this method significantly enhanced the
performance of the PMSM ADRC system, and compared to the PI control, speed fluctuation
was optimized by 26%, improving both stability and robustness.

In the IPSO algorithm, chaotic initialization broadens the search range and prevents
local optima, while adaptive inertia coefficients and dynamic cognitive factors effectively
accelerate the convergence speed of the particle swarm. The introduction of crossover
mutation methods further optimized the local optima issues, enhancing accuracy. Com-
pared to the PSO, APSO, and CPSO optimization algorithms, the IPSO-based ADRC for the
PMSM proposed in this paper demonstrated superior tracking and control performance.
In the future, the ADRC controller can be further applied and optimized on the PMSM
current loop to improve the performance of the entire PMSM control system
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