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Abstract: A system-level implementation of a parallel-path hybrid switched-capacitor amplifier is
presented in this paper. The proposed parallel-path amplifier incorporates a gain and slew rate-
boosting switching path in parallel with an embedded assisted SAR path, aiming for IoT applications.
As an alternative concept to the conventional analog topologies, the proposed amplifier combines
nonlinear and linear paths to provide coarse and fine amplifications. In the coarse amplification, a
high current is provided through a switching path for a fraction of time, which improves the slew
rate and open-loop DC gain without adding significant static current. Moreover, high accuracy
is achieved through the embedded assisted SAR path, which provides a resolution of 1/2N. In
addition, each extra bit of the embedded SAR path improves the total open-loop DC gain by 6 dB.
The theory of operation is performed to study how the switching and assisted SAR paths can enhance
the amplifier’s settling error. In addition, an existence trade-off between the coarse amplification
error and the capacitive digital-to-analog converter’s number of bits is investigated. The theory and
system-level simulation show that the gain and slewing restrictions of the conventional topologies,
especially in advanced CMOS technology, can be handled much easier by this parallel combination,
where the switching path and assisted SAR path combination provides a high slewing capability and
high DC open-loop gain.

Keywords: parallel-path amplifier; switched-capacitor amplifier; hybrid amplifier

1. Introduction

Nowadays, Internet-of-Thing (IoT) applications are widely used in different areas of
life such as smart home automation, energy harvesting devices, edge computing, wearable
devices, etc. In IoT applications, the captured data are processed by local processors
and (or) by sending them to a central system through a wired or wireless interface. In
these systems, analog-to-digital converters (ADCs) as a key block, play a significant role
in the analog-front-end (AFE). The ADCs are responsible for converting analog signals
obtained by the sensors to digital signals that can be analyzed and processed in local and
central processors [1–3]. It means that physical attributes, e.g., temperature, light, motion,
heart rate, etc., are monitored by sensors of IoT devices and then ADCs, as the essential
bridge, convert sensors’ analog outputs into digital data to enable the analysis of this
captured information.

For different IoT applications, a spectrum of requirements is engendered on ADCs in
terms of power consumption, accuracy, sampling rate, size, etc., which makes a specific
type of ADC, e.g., successive approximation register (SAR), pipelined SAR, pipeline, or
delta-sigma modulator (∆Σ) ADCs, to fulfil the prerequisites of the applications. Among
them, pipeline SAR, pipeline, and ∆Σ ADCs are commonly utilized topologies for a wide
range of continuous-time analog signal processing applications. However, these types of
ADCs are dependent on switched-capacitor (SC) amplifiers/integrators that have become
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a design bottleneck for ADC designers due to the voltage headroom and intrinsic gain
limitations in advanced CMOS technologies. This imposes significant challenges to obtain
a large open-loop gain and high output swing, required to reach a high signal-to-noise-
and-distortion ratio (SNDR). As a result, the need for a replacement for conventional SC
amplifiers is serious. Several solutions have been proposed to overcome these challenges.
A open-loop amplifier is one alternative [4], which can achieve a high bandwidth apart
from the unity-gain-bandwidth (UGB) restriction of closed-loop amplifiers. However,
linearity and stability issues may still exist, which make the amplifier sensitive to tran-
sient voltage variations and integrated noise. Comparator-based and zero-crossing-based
amplifiers [5–8] provide efficient and fast amplification. However, overshoots, settling
errors, and offset issues may become troublesome. The correlated level shifting (CLS)
technique [9,10] through a two-step amplification improves the opamp gain by a factor of
two. However, due to the low intrinsic gain of the opamp in the scaled CMOS process, this
gain improvement may not be sufficient. A digital amplifier [11] improves the opamp gain
by its embedded asynchronous SAR in a two-step amplification. However, the optimization
of the number of bits in the SAR capacitive digital-to-analog converter (CDAC) is highly
dependent on the linear amplifier UGB and slew rate in the first step of amplification. An
adaptively biased amplifier with two nested positive and negative feedback loops has
been proposed in [12] for slew rate and GBW enhancement. However, the embedded
voltage followers limit the signal swing range, which can cause slew rate limitation. In
addition, slew rate enhancement techniques are provided in [13] for reducing the slewing
time by providing dynamic output current. However, the used auxiliary analog amplifier is
always enabled, which may cause higher static current and noise performance. Ultimately,
ring amplifiers [14,15] are efficient amplifiers with a simple structure. However, in scaled
CMOS technology and by aggravated inverter intrinsic gain, achieving high gain may
become challenging.

In this paper, a parallel-path hybrid (PPH) amplifier has been proposed, in which a
charge-based slew rate and gain-boosting switching path and an embedded SAR path are
working in parallel, Figure 1a. The switching path provides a high nonlinear open-loop
gain and a high slewing capability, while high accuracy is achieved by the assisted SAR
path. The system level of the proposed PPH amplifier is implemented in Cadence Virtuoso,
using standard Verilog-A blocks and ideal logic gates. The paper is organized as follows.
Section 2 discusses the theory of the proposed PPH amplifier. Details of the system-level
implementation are described in Section 3. Section 4 shows the simulation results of an
SC amplifier exploiting the proposed PPH amplifier. Finally, the conclusion is given in
Section 5.
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Figure 1. Proposed parallel-path amplifier (a) block diagram. Waveforms (b) VFB and (c) VOUT in the
amplification phase.

2. Theory of Operation

SC amplifiers require sufficient high open-loop DC gain (A) to mitigate imperfection
of the virtual ground in the feedback node and final voltage settling error in the output
node, which is a challenge in the advanced CMOS technology because of the low intrinsic
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DC gain and limited voltage headroom of transistors. For the amplifier shown in Figure 1a,
the closed-loop voltage gain and the amplification error due to the finite open-loop DC
gain of the amplifier can be expressed as Equations (1) and (2), respectively [16].

VOUT
VIN

=

(
1 +

CS
CF

)(
T

1 + T

)
(1)

Verror = VOUT − VOUTideal =

(
1 +

CS
CF

)
T

1 + T
−

(
1 +

CS
CF

)
=

1
1 + T

T≫1→ Verror ≈
1
T

(2)

where T is ACF/(CF + CS) and Verror is the settling error (accuracy of amplification). Ac-
cording to Equation (2), the open-loop DC gain of the amplifier has a reverse relation with
a prerequisite settling error, i.e., an A > 66 dB is required for a 10-bit resolution with a
closed-loop gain of 2, which is challenging to achieve in advanced CMOS technologies. In
the proposed PPH amplifier, the switching and assisted SAR paths boost the total open-loop
DC gain of the amplifier to (Aff + Asar) in the amplification mode (Figure 1b), where Aff
and Asar are the effective open-loop DC gain of the switching and assisted SAR paths,
respectively. This relaxes the gain requirement of each path individually.

The main concept of the proposed PPH amplifier’s switching path is shown in
Figure 1a, i.e., working as a nonlinear coarse amplifier and aiming to reduce Verror to
the (1 + CS/CF)VDZ at the start of the conversion mode (φC), where VDZ is defined as the
hysteresis voltage level of the dead-zone detector, and it is a portion of the feedback node
voltage (VFB) and common mode voltage (VCM) difference. For coarse amplification, the
dead-zone detector generates UP and DN control signals in a way that VFB and output
voltage (VOUT) move from their initial values and reach VDZ/AP and (1 + CS/CF)(VIN −
VDZ/AP), respectively, (Figure 1b,c), where AP is the gain of the pre-amp, with sinking
(sourcing) current In (Ip) from (to) output nodes to discharge (charge) CL, thus yielding an
open-loop gain of [17]:

A f f ≈ ACMP ICSRCS (3)

where ACMP is the effective gain of the pre-amp and hysteresis detector (in V−1), ICS
represents the current sources, and RCS is the output resistance of the current sources. The
error gain through the switching path at the end of coarse amplification (TF), Figure 1c can
be expressed as:

Verror− f f = VOUT − VOUT|@TF
=

(
1 +

CS
CF

)
VIN −

(
1 +

CS
CF

)(
VIN − VDZ

AP

)
Verror− f f ≈ (1 + CS/CF)(VDZ/AP) (4)

By reaching Verror to Verror_ff, the switching path is deactivated, and the assisted SAR
path will be activated. The initial amplification part performed by the switching path
has been sampled on the CDAC’s capacitors, which are in parallel with CL (Figure 1a).
Accordingly, the assisted SAR path provides binary step voltages at the output node
to decrease the settling error from Verror-ff to VLSB, given by Equation (5), as the fine
amplification process (Figure 1b,c). The LSB voltage, VLSB, of the SAR-assisted path can
be halved by increasing the resolution of CDAC by 1-bit, which means the provided
open-loop DC gain of the assisted SAR path is increased by 6 dB for an additional bit of
CDAC. The total DC open-loop gain of the proposed PPH amplifier can be calculated as
Equation (6) [18].

Verror−sar = VLSB =
VFS

2N & VFS|@TF
= Verror− f f → VLSB =

(1 + CS/CF)(VDZ/AP)

2N (5)

A f f + Asar ≈ 20log(ACMP ICSRCS) + 6 × N (6)

where N is the CDAC resolution. Equations (5) and (6) imply that the DC open-loop gain
of the PPH amplifier, and hence the closed-loop amplification accuracy, can be configured
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easier by dynamic parameters of the switching path, e.g., ICS, ACMP, RCS, and number
of bits of CDAC, N, compared to intrinsic gain challenges of conventional amplifiers.
Furthermore, because each path works intermittently, they do not need to be on all the
time and they are active only for a portion of the amplification period, meaning that this
approach does not increase the power consumption dramatically.

3. System-Level Implementation of the Proposed PPH Amplifier
3.1. Switching Path

Figure 2a shows the PPH-based SC amplifier, where the switching path consists of
a pre-amplifier, a dead-zone detector, and current sources. The dead-zone detector is
implemented using a pre-charged level shifter and chains of inverters. The input voltage is
sampled on both CS and CF capacitors in the sampling mode (φS) and then CF is flipped to
be connected to the output node at the start of the conversion mode (φC). During the coarse
amplification, Figure 2b, the feedback voltage, VFB, is amplified by the pre-amplifier (AP),
and then VX is level shifted by the pre-charged capacitors C1 and C2 to generate three-state
control signals for UP and DN as Equation (7), by comparing the level-shifted VX and
common mode voltage (VCM) through the inverter chains.

state I UP = 0 & DN = 1 VX > VH
state I I UP = 0 & DN = 0 VL < VX < VH
state I I I UP = 1 & DN = 0 VX < VL

(7)

where VH − VL = VDZ. The generated control signals are fed to the current sources (Ip
and In) to enable sinking (sourcing) current from (to) the load. Based on Equation (7), the
current sources are activated outside of the dead-zone region (VL < VDZ < VH) to reduce
the error and deactivated as the error falls in the dead-zone region, and then the assisted
SAR path is enabled to take care of the rest of amplification.
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3.2. Embedded Asynchronous Assisted SAR Path

In Figure 2, implementation of the embedded assisted SAR path is shown, which
consists of a comparator, an asynchronous SAR logic (clock generation loop and SAR logic),
and a CDAC. By finalizing the coarse amplification (described in Section 3.1) and reducing
the VFB in the dead-zone region, VDZ, the switching path’s current sources are deactivated
(state II in Equation (7)) (Figure 2c) and the clock generation loop of the asynchronous SAR
logic is enabled, i.e., the EN signal becomes high. The clock signals for the comparator
(CCLK) and SAR logic (R) are generated by the clock generation loop of the asynchronous
SAR logic. The CCLK is fed to the comparator to perform the quantization and generate the
CP signal. Depending on the CP signal, in each cycle of the clock signal R, the statuses of
CDAC switches (S1, S2, . . ., SN) are defined by the D-flip flop (D-FF) outputs, i.e., either
connected to VREFH or VREFL. Then, CDAC provides the binary step voltage at the output
node, which reduces the settling error to VLSB through the rest of the amplification period,
Figure 2b,c.

Based on Equation (5), VDZ and the number of CDAC capacitors define the possible
VLSB that is achievable at the end of the fine amplification process. It is required for the SAR
logic cycles to be completed within the amplification mode, meaning that the generated
asynchronous CCLK includes at least N cycles that all CDAC capacitors can be involved
in the error reduction process of the embedded SAR path. The effective time allocated to
perform fine amplification by the embedded assisted SAR path is derived as Equation (8).

N × tSAR_logic = TC − TF = TC − (CCDAC + CL)
(1 + CS/CF)(V in − VDZ/AP)

ICS
(8)

where tsar_logic is the time for a single SAR cycle, TC is the amplification time, TF is the
switching path activation time, and Vin is the input signal amplitude. Additionally, the com-
parator needs to perform the quantization by following the CCLK, which has a frequency
of N/TF. It depends on how the amplification time is divided between the switching and
SAR-assisted paths. By increasing the size of the current sources (higher slew rate), the
time allocated to the switching path decreases, and more time will be left for the assisted
SAR path, making CCLK more relaxed. It should be noticed that since the switching path
current sources are active for a fraction of time, increasing the slew rate does not increase
the power consumption dramatically.

4. Results and Discussions

In this section, simulation results for the PPH-based SC amplifier are explored. Figure 3
shows VFB, UP and DN, and φC waveforms for different VIN, VDZ, and slew rates (SRs) of
the switching path, while the assisted SAR path is deactivated (only the switching path
is performing). Depending on the input voltage amplitude VIN, the defined VDZ, and the
provided slew rate by current sources, the activating time of the switching path is different,
as shown in Figure 3a–c. Figure 3a shows the performance of the switching path when VDZ
and the slew rate are set to 20 mV and 1 V/ms, respectively, while Vin amplitude changes
from 100 mV to 400 mV. It shows that for higher amplitudes, the UP&DN control signals
are required to keep the switching path active for a longer period to reduce the VFB error
from its initial value to VDZ. Figure 2b shows that higher VDZ will result in more settling
error left for the SAR-assisted path to handle. Additionally, Figure 2c shows the effect of
the slew rate on the performance of the switching path, where a higher slew rate makes the
reduction in the initial VFB error faster and, subsequently, makes the coarse amplification
time shorter. The switching path relaxes the strict gain bandwidth and slewing restrictions
of the conventional SC amplifier, and also its switching concept makes the design much
easier than the conventional analog topologies.
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The performance of the assisted SAR path is explored in Figure 4, by illustrating the
VFB error and CCLK signals for different VDZ and CDAC’s number of bits. Figure 4a shows
the VFB error for different VDZ with a 4-bit CDAC and a 1.5 V/ms slew rate, where VDZ
defines the errors left for the assisted SAR path, larger VDZ results in a larger error being
left in a fixed 4-bit CDAC, i.e., VDZ/24. Figure 4b,c show the VFB error for VDZ = 20 mV and
a 1.5 V/ms slew rate, and two different CDAC’s number of bits, 4 and 5 bits, respectively.
As is shown, adding an extra bit yields a half VLSB, from 1.25 mV to 0.625 mV, while an
extra SAR cycle is needed due to an additional bit. In addition, since CCDAC is doubled, the
coarse amplification takes around ×2 more time.
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Figure 4. VFB and CCLK signals for (a) different VDZ, (b) 4-bit CDAC with VDZ = 20 mV, and (c) 5-bit
CDAC with VDZ = 20 mV.

Figure 5a shows the step response of the PPH amplifier with a 2 V/ms slew rate for
4-bit and 5-bit CDACs. For the amplification time of 1 ns, in the case of a 4-bit CDAC, it
takes 0.3 ns to reach the dead-zone voltage of 20 mV, while it takes almost double that in
a 5-bit CDAC, around 0.6 ns. Then, the assisted SAR starts to perform with 4 and 5 step
voltages and reduces the error to around 1 mV and 0.5 mV, respectively. The VFB error
versus the input voltage for 4-bit and 5-bit CDACs is shown in Figure 5b, where the error
is kept to less than 1.25 mV and 0.625 mV for a range of input voltages between 300 mV
and 900 mV.
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5. Conclusions

A switched-capacitor parallel-path hybrid amplifier is presented in this work, which
consists of a gain and slew rate-boosting switching path in parallel with an embedded
assisted SAR path. The proposed amplifier boosts the slew rate significantly through the
provided large dynamic current sources of its switching path, which is activated for a
fraction of amplification time for coarse amplification. Moreover, fine amplification to
reach high accuracy is aimed to be performed through an embedded assisted SAR path,
handling a small error which is left after coarse amplification to reach an accuracy of 1/2N.
In addition, the switching path provides a high nonlinear open-loop gain that improves the
total open-loop DC gain. Furthermore, an additional bit of the CDAC in the embedded
SAR path increases the open-loop gain by 6 dB and halves the settling error. The potential
limitation could be the trade-off between the voltage sensitivity of the switching path and
the CDAC’s number of bits. A smaller VDZ in the switching path means there is a lower
gain error left for the SAR-assisted path to handle, which means a lower number of bits
for CDAC is required. Then, the SAR-assisted path implementation will be more relaxed
in terms of operation frequency. The theory and simulation show that the conventional
gain and slewing restrictions of the traditional topologies, especially in advanced CMOS
technologies, can be handled much easier by this proposed combination.
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