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Abstract: Traditional recommendation models grapple with challenges such as the scarcity of similar
user or item references and data sparsity, rendering the cold-start problem particularly formidable.
Meta-learning has emerged as a promising avenue to address these issues, particularly in solving the
item cold-start problem by generating meta-embeddings for new items as their initial ID embeddings.
This approach has shown notable success in enhancing the accuracy of click-through rate predictions.
However, prevalent meta-embedding models often focus solely on the attribute features of the item,
neglecting crucial user information associated with it during the generation of initial ID embeddings
for new items. This oversight hinders the exploitation of valuable user-related information to enhance
the quality and accuracy of the initial ID embedding. To tackle this limitation, we introduce the
residual graph meta-embedding model (RGMeta). RGMeta adopts a comprehensive approach by
considering both the attribute features and target users of both old and new items. Through the
integration of residual connections, the model effectively combines the representation information of
the old neighbor items with the intrinsic features of the new item, resulting in an improved initial ID
embedding generation. Experimental results demonstrate that RGMeta significantly enhances the
performance of the cold-start phase, showcasing its effectiveness in overcoming challenges associated
with sparse data and limited reference points. Our proposed model presents a promising step forward
in leveraging both item attributes and user-related information to address cold-start problems in
recommendation systems.

Keywords: cold-start; ID embedding; meta-learning; residual connection

1. Introduction

Driven by the booming development of the internet, massive amounts of data and
information are generated every day. For individuals with limited information processing
ability, it is difficult for individuals to find valuable content from the vast amount of
information. In order to solve the problem of information overload, recommendation
systems [1] have emerged. These recommendation systems provide personalized services
to users and quickly recommend items that meet the characteristics of users from massive
amounts of data, thus reducing the search costs of users. Personalized services require
accurately identifying user preferences, and click behavior is often seen as an indication
of users expressing their preferences. Therefore, click-through rate (CTR) prediction has
attracted widespread attention from both academia and industry [2–4].

Utilizing the latest advances in deep learning has become a dominant direction for
CTR prediction [5–7]. In recent years, research based on deep learning has identified several
models for CTR prediction, such as the deep neural network (DNN) [5], product-based
neural network (PNN) [6], DeepFM [7], Wide&Deep [5], and Deep&Cross [8]. These deep
models can usually be decomposed into two parts, namely, an embedding layer and multi-
layer perceptron (MLP) [9,10]. The embedding layer is used to convert the original input
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features into a dense real-valued vector representation, thereby capturing richer semantic
information and overcoming the limitations of one-hot encoding [11]. The embedding
vectors are then input into complex models that can be viewed as different MLP types.

In addition, the application of self-supervised learning and comparative learning in
recommendation systems has also made great progress. Traditional self-supervised recom-
mendation systems are limited by manual data augmentation methods and cannot adapt
to different data and scenarios to generate high-quality self-supervised learning signals.
To fill this gap, AutoCF [12] has adopted a unified method to automatically generate data
augmentation. By introducing the masked graph autoencoder architecture, this framework
can effectively extract self-supervised signals and perform data augmentation without man-
ually specifying contrast views. Most graph-contrastive learning frameworks use heuristic
data augmentation strategies to construct contrastive pairs, which can easily lead to the loss
of important information. Recently, a candidate-aware graph-contrastive learning (CGCL)
framework [13] was proposed to explore the relationship between users and candidate
items in different layers of representation, using similar semantic representations to con-
struct contrastive pairs. Specifically, constructing structural-neighbor contrastive learning
objectives, candidate-contrastive learning objectives, and candidate structural-neighbor
contrastive learning objectives can help obtain high-quality node representations.

These recent advances provide more effective self-supervised signal extraction and
data augmentation methods for recommendation systems. These methods are generally
applicable to scenarios with rich data, aiming to improve the overall performance of recom-
mendation systems in these scenarios. However, in practical applications, recommendation
systems still face some challenges, especially when dealing with new items, known as the
cold-start problem [14,15]. In recommendation systems, CTR prediction is a critical task,
typically represented by embedding item IDs into dense vectors. But when a new item is
added to the candidate pool, due to its ID feature not appearing in the training data, the
new item often lacks available embedding vectors, resulting in a decrease in prediction
accuracy. This issue further highlights the necessity of effectively generating and utilizing
embedding vectors in cold-start scenarios. Well-learned ID embeddings can greatly im-
prove the prediction accuracy of cold-start items compared to methods that do not use ID
inputs [16–18]. In this respect, the application of meta-learning is relatively successful.

DropoutNet [16] uses dropout in model training to improve the robustness of the
recommendation model and the effectiveness of item ID embedding; MetaEmb [17] gen-
erates an ideal initial ID embedding vector for each new item by training the embedding
generator; GME [18] constructs an item graph that utilizes the attribute features of new
items and neighboring items to learn the initial ID embeddings required for each new item.
However, these methods have some limitations. DropoutNet does not leverage collabora-
tive information and cannot fully train item ID embedding. MetaEmb only considers the
new item itself and ignores the information that can help improve predictive performance
in existing old items. Although GME considers both new and old items, it ignores the
target user information of the item and only focuses on the attribute features, which means
the initial ID embedding of the item needs to be improved.

To enhance the initial ID embedding of the new item, we propose a residual graph
meta-embedding model (RGMeta). For a new item, RGMeta utilizes the inherent attributes
of items to associate old items related to its attributes with the item, calculates the similarity
score of attributes and target users of the neighbor items, which in turn calculates the
weighted sum of attributes and target user at-tributes of neighbor items. Then, RGMeta
processes the attribute-weighted sum matrix and the target user attribute-weighted sum
matrix of neighbor items through residual operation to obtain a residual matrix that differs
significantly from the original matrix. The residual matrix is overlaid with the original
attribute matrix to obtain a more refined attribute embedding representation and target
user’s attribute embedding for the new item, thereby generating the initial ID embedding
for the item. The major contributions of this paper are as follows:
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• A meta-learning-based method, RGMeta, is proposed to solve the item cold-start
problem by generating initial ID embeddings for new items. RGMeta serves as a
meta-embedding model for generating initial ID embeddings and can be applied as a
separate module to recommendation models that use ID embeddings.

• RGMeta further strengthens the connection between items by considering both the
attribute features and target user attributes of the new and old items. The initial ID
embedding of the new item is enhanced by introducing the residual operation to
obtain a modified attribute embedding representation and target user embedding
representation for the new item.

• Experiments were conducted on public datasets. The experimental results show that
compared to the main meta-learning methods on the MovieLens-1M datasets, the AUC
values of RGMeta have increased by averages of 1.5%, 1.1%, and 0.26%, respectively,
thereby improving the prediction performances of cold-start problems.

2. Related Work

CTR prediction is a binary classification task. For users and products, their charac-
teristics are generally composed of ID features and attribute features (such as the user’s
age and gender, the product’s price and category, etc.). Each instance (x, y) represents an
interaction between a user and an item, with x representing item and user features, and
y representing user feedback, i.e., whether the user clicked on the item. A typical deep
learning recommendation model follows the framework shown in Figure 1 [19].

Figure 1. A typical deep learning recommendation model.

In the input layer, the model input samples can be divided into three parts, as follows:

xinput = (ID, zi, ui) (1)

where ID is the unique identifier of the item; zi represents the attribute features of item i
and can have multiple fields; ui represents the target user attribute features of the item,
which can also have multiple fields.

In the embedding layer, embedding techniques can convert the original features into
dense vectors, as follows:

xemb =
(
iemb, ziemb , uiemb

)
(2)

The concatenation operation then concatenates the embeddings of all the input features
into a long embedding vector, as follows:

e =
[
iemb

∥∥ziemb

∥∥uiemb

]
(3)

where || is a connection operator. In the hidden layer that captures nonlinear high-order
interactions, typically in multi-layer perceptron (MLP), the long embedding vector e is
transformed into a high-level representation vector, s, through multiple fully connected
(FC) layers to utilize nonlinear and high-order data interactions.
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s = fl(· · · f2( f1(e))) (4)

where l is the number of FC layers, and f j is the jth layer’s FC layer. Finally, the prediction
layer consists of a linear layer and an active layer, and the prediction result is as follows:

p̂ = σ(Ws + b) (5)

where p̂ ∈ [0, 1] denotes the final prediction result, with 0 denoting that the user did not
click on the item, 1 denoting that the user clicked on the item, σ(·) denoting the sigmoid
activation function; and W and b representing the learnable parameters in the linear layer,
namely weights and biases.

For model training, this paper learns model parameters through cross-entropy loss on
the training datasets. The loss function is as follows:

loss = − 1
M

Σy∈M[y log ŷ + (1− y) log(1− ŷ)] (6)

where M is the number of training samples, y is the true label, and ŷ is a prediction label.

3. Residual Graph Meta-Embedding Model
3.1. Overview

RGMeta only generates initial ID embeddings for new items, so the ID embeddings for
new and old items are different. Figure 2 shows the differences between them. When the ID
of the item is given, the first step involves searching for the presence of this ID embedding
in the trained embedding matrix. If it can be found, the item is considered an old item, and
the found ID embedding is directly used in subsequent training. Otherwise, it is a new
item, and RGMeta is used to generate the initial ID embedding for the item.

Figure 2. Example of ID embeddings for new and old items.

RGMeta constructs the high-level attribute embedding representation of the new item
and the target user’s attribute embedding representation by using the weighted sums of
the attribute features and the target user attribute features of the new item and neighboring
items. Then, it generates the initial ID embedding for the new item based on this foundation.

3.2. Model Design

The structure of RGMeta is shown in Figure 3, which consists of three modules: the first
module, which refines the embedding of item attributes, is represented by a black dotted
box; the second module, which refines the target user’s attribute embedding, is represented
by the green dotted box; the third module, which generates the initial embedding of the
item ID, is represented by the red dashed box.

The item attribute embedding module calculates the attribute similarity between
the new item and neighboring items using the graph attention network (GAT) [20], and
generates an improved item attribute embedding. The target user’s attribute embedding
module integrates the target user’s attribute features and generates a weighted summation
user attribute embedding by calculating the similarity with the target user attributes of
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neighboring items. A residual operation then processes a weighted summation matrix to
generate a residual matrix, which is overlaid with the original matrix to obtain a more
stable and accurate attribute embedding. Finally, the refined attribute embedding is used
by the embedding generator to generate ID embedding for the new item. The following is
an analysis of each module separately:

Figure 3. The framework of RGMeta.

3.2.1. Refine Item Attribute Embedding

The input features of the example in this paper are represented as [ID,s,t], where
ID is the identification of the item, s denotes the attribute features of the item, such as
price, category, etc., and t denotes the target user attribute features of the item, such as age,
gender, etc. It is usually possible to observe the associated item attributes (s) and the user
attributes (t) in the training data, then find the embedding corresponding to s and obtain
a long-connected embedding vector (z). Based on z, the similarity between the attribute
features of the new item and neighbor items is calculated.

We use graph attention networks (GATs) [20] to calculate the similarity between
the attribute features of new and adjacent items. The attention coefficient between the
new item’s attribute embedding z0 and the neighboring item’s attribute embedding zk is
calculated as follows:

pz0k = φ(Wzz0, Wzzk) (7)

where Wz is a shared weight parameter corresponding to the item attributes, which is used
to transform the input into higher-level features and obtain sufficient expressiveness. φ is an
attention mechanism function implemented by a single-layer feed-forward neural network,
parameterized by the weight vector az corresponding to the item attribute, and utilizes
the LeakyReLU nonlinear activation function [21]. In order to facilitate the comparison
of coefficients between the new item and neighboring item nodes, we use the softmax
function to normalize these values and obtain the normalized attention coefficient:

αz0k =
exp

(
LeakyRelu

(
a⊤z [Wzz0∥Wzzk]

))
∑k∈N exp

(
LeakyRelu

(
a⊤z [Wzz0∥Wzzk]

)) (8)

where N is the number of neighbor items and || is the connection operation. Then, the
weighted sum of the attribute embedded z0 of the new item and the attribute embedded zk
of neighbor items is calculated as follows:

z̄′0 = σ
(
Σk∈Nαz0k Wzzk

)
(9)

where σ is the activation function; here, we use the exponential linear unit activation
function ELU [22], which allows for encoding positive and small negative signals. After
obtaining the weighted sum representation of neighbor items, we perform a residual
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operation on it and then add to the original weighted sum as a refined attribute embedding
representation of the new item:

z̄0 = F
(
z̄′0
)
+ z̄′0 (10)

where F(·) represents residual operation. The residual operation uses a residual module to
process the attribute-weighted sum matrix of neighbor items, resulting in a residual matrix
that differs significantly from the original matrix. Fusion F(z̄′0) can take into account the
similarities or differences between the features of neighbor items and the new item, and
emphasize or suppress certain aspects of the features of the neighbor items to accommodate
the individual characteristics of the new item, resulting in a more refined representation of
the attribute embedding.

3.2.2. Refine the Target User’s Attribute Embedding

Finding the embedding corresponding to the target user attribute and obtaining a
long-connected embedding vector, u. We calculate the attention coefficient between the new
item’s target user’s attribute embedding u0 and the neighbor item’s target user’s attribute
embedding uk as follows:

pu0k = φ(Wuu0, Wuuk) (11)

where Wu is the shared weight parameter corresponding to the target user attribute. Then
the weight vector au of the target user attribute is parameterized to obtain the normalized
attention coefficient of the target user attribute between the new item and neighbor items:

αu0k =
exp

(
LeakyRelu

(
a⊤u [Wuu0∥Wuuk]

))
∑k∈N exp

(
LeakyRelu

(
a⊤u [Wuu0∥Wuuk]

)) (12)

We calculate the weighted sum representation of the target user’s attribute embedding
of the new item u0 and the target user’s attribute embedding of neighbor items uk based on
the normalized attention coefficient, as follows:

ū′0 = σ
(
Σk∈Nαu0k Wuuk

)
(13)

We perform the residual operation on it, and then add it to the original weighted sum,
as follows:

ū0 = F
(
ū′0

)
+ ū′0 (14)

F(ū′0) performs feature enhancement on the original target user attribute weight-
ing and representation to obtain more refined target user attribute embeddings for the
new item.

3.2.3. Generate Initial ID Embedding

The above two steps yield the refined attribute embedding and the refined target user
attribute embedding for the new item. Next, we generate the initial ID embedding for the
new item by using the embedding generator (EG):

r0 = tanh(V[z̄0∥ū0]) (15)

where V is the parameter of the fully connected layer and tanh is the activation function.
The resulting initial ID embedding is generated by using item attributes and target user
attributes. The combination of attribute features and target user attribute features provides
more information about items and users so that the generated embedding can capture key
attribute features and demonstrate better predictive ability in the model.

3.3. Model Training

We use the main prediction model to pre-train old items and obtain embedding vectors
of the item and user features as well as model parameters θ. Since θ is trained using a large
amount of data, its effectiveness can be fully guaranteed. We view CTR prediction as an
example of meta-learning, the learning problem for each item ID is considered a unique task
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and uses gradient-based meta-learning methods [19], which generalize model-independent
meta-learning (MAML) [23]. Each task shares the same set of parameters θ in the prediction
model. Therefore, when training the RGMeta model, we freeze θ, and only learn specific

parameters, ω ∆
= (W,a,V), in the model to reduce the cost of repetitive training.

We use pre-trained old items to simulate the cold-start process, randomly selecting
two disjoint mini-batches of labeled data, D1 and D2, from the given training set of old
items. Each data type has K samples. The initial embedding r0 of the item ID is generated
on the first mini-batch D1 using the RGMeta model. For the ith sample in D1, the prediction
result is ŷ1i, and the average loss of the sample is calculated as follows:

l1 = − 1
K

Σy1i∈K[y1i log ŷ1i + (1− y1i) log(1− ŷ1i)] (16)

We simulate the learning process during the warm-up phase on the second mini-batch
D2. A new adaptive ID embedding is obtained by updating the meta-parameter ω in the
mini-batch through random gradient descent, as follows:

r′0 = r0 − ε
∂l1
∂r0

(17)

where ε > 0 is the step size of gradient descent. The average loss is then calculated as follows:

l2 = − 1
K

Σy2i∈K[y2i log ŷ2i + (1− y2i) log(1− ŷ2i)] (18)

In the first mini-batch D1, l1 is a natural metric used to evaluate the generator during
the cold-start phase since using the generated initial embeddings for prediction. For the
second mini-batch D2, as the embedding has been updated once, l2 can directly evaluate
the sample efficiency in the warm-up phase. In order to unify these two losses, the average
losses of l1 and l2 are selected as the final loss function:

loss = γl1 + (1− γ)l2 (19)

where γ ∈ [0, 1] is the equilibrium coefficient. Since the warm-up phase usually takes more
time than the cold-start phase, the model needs to pay more attention to the warm-up
phase to achieve rapid adaptation.

The training algorithm in this paper updates meta-parameters in mini-batches by ran-
dom gradient descent. The pseudo-code of the algorithm is demonstrated in Algorithm 1.

Algorithm 1: Train RGMeta by SGD.
Input: fθ : the pre-trained base model.
Input: N: the set of old item IDs.
Input: γ: hyperparameter, the coefficient for meta-loss.
Input: ε, τ: step sizes.
1: Randomly initialize ω
2: while not done do
3: Randomly sample m items from N
4: for i in range(0,m) do
5: Use RGMeta to generate the initial ID embedding: ri
6: Sample mini-batches D1 and D2 each with K samples
7: Evaluate loss l1 on D1
8: Compute the adapted embedding: r

′
0 = r0 − ε ∂l1

∂r0
9: Evaluate loss l2 on D2
10: Compute the final loss: loss = γ l1 + (1 − γ) l2
11: Update ω ← ω− τ ∑m

i=1
∂loss
∂ω
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4. Experiments
4.1. Datasets

We evaluate the performance of the proposed RGMeta models on two real-world
datasets, whose statistics are listed in Table 1.

The MovieLens-1M dataset (http://www.grouplens.org/datasets/movielens/) (ac-
cessed on 6 May 2023): This dataset contains 1 million movie rating instances; each movie
has a unique ID and can be seen as an item. The relevant attribute features include the
release year, title, and genre, while user features include user ID, gender, age, and occu-
pation. In order to verify the predictive performance of the proposed method at different
phases, we preprocess the datasets. The movies are rated from 1 to 5; we convert the ratings
of at least 4 to label 1, which means that the item was clicked, and the other ratings are
converted to label 0, which means that the item was not clicked.

The Taobao Ad dataset (https://tianchi.aliyun.com/dataset/dataDetail?dataId=408)
(accessed on 2 November 2023): It is collected from the traffic logs in Taobao and contains
26 million click records from 1.14 million users within 8 days. Each ad can be considered
an item, with features such as ad ID, campaign ID, category ID, brand ID, and price. Each
user has 9 features: user ID, CMS group ID, micro group ID, gender, age, shopping depth,
consumption level, occupation, and city level.

Table 1. Statistics of experimental datasets.

Dataset #Fields #Old Item
IDs

#Samples to
Train the

Main
Prediction

Model

#Samples to
Train the

Cold-Start
ID

Embedding
Model

#New Item
IDs

# Samples
for Warm-Up

Training

#Samples for
Testing

MovieLens-1M 8 1058 765,669 43,320 1127 67,620 123,787

Taobao Ad 23 62,209 3,592,047 1,784,000 531,593 810,000 109,712

4.2. Backbone and Baseline
4.2.1. Backbone

The main prediction models of deep learning can handle high-dimensional and sparse
features, which are suitable for recommendation applications in CTR prediction tasks. We
conducted experiments on the following backbones:

• DNN: This is a deep neural network that includes an embedding layer, multiple FC
layers, and an output layer [5]. Unlike traditional shallow neural networks, DNNs
have multiple hidden layers, each of which can learn different levels of abstract
features, thus solving some complex tasks better.

• DeepFM: This consists of a factorization machine (FM) and deep neural network
(DNN) [7]. The FM part is used to model the second-order interaction between features.
It is based on a Factorizer model and can effectively capture sparse interactions
between features. The deep part is similar to traditional deep neural networks and is
used to learn higher-order representations of features.

• Wide&Deep: This model consists of logistic regression (LR) and DNN, which can
model low-order and high-order feature interactions [5]. The wide part is used to learn
generalized cross-terms between features, and it can capture the linear relationship
between features well. The deep part is used to learn higher-order representations of
features, capturing nonlinear relationships between features.

• Deep&Cross: This model is divided into two parts: deep and cross [8]. The deep
part is similar to traditional deep neural networks and is used to learn higher-order
representations of features. In the cross part, the interactive information between
features is mined through the calculation of cross features. It is a combination of deep

http://www.grouplens.org/datasets/movielens/
https://tianchi.aliyun.com/dataset/dataDetail?dataId=408
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learning and generalized linear models, aiming to solve the problem of traditional
models when dealing with high-dimensional sparse features.

• PNN: Different from the traditional model based on feature crossing, it introduces a
production layer into DNN [6]. The PNN model models the second-order interaction
between features by introducing product vectors, and learns the higher-order repre-
sentation of features through the deep layer, to better capture the relationship between
features and further improve the accuracy of prediction.

4.2.2. Baseline

We select four models that generate initial ID embeddings for new items to solve the
cold-start problem as baselines.

• NgbEmb [18]: For each selected neighbor item, its pre-trained ID embedding is
already available. These embeddings, derived from historical data and model training
on old items, effectively capture item features. NgbEmb utilizes the embedding
information from these adjacent old items to generate the initial ID embedding for
the new item. This generation process typically involves techniques such as weighted
averaging, clustering, or other synthesis methods to effectively transfer the embedded
features from old items to the new item. NgbEmb is used as a baseline method to
evaluate the effectiveness of generating new item embeddings based solely on the old
item’s information.

• MetaEmb [17]: Before generating ID embeddings for new items, it is necessary to
first clarify the attribute characteristics of the new project. These features can include
various types of information such as project category, description, price, etc. These
attribute features provide rich information for the context of new items, enabling
embeddings to better reflect their uniqueness. Using the attribute features of the
new item, MetaEmb generates initial embeddings through specific algorithms. This
process aims to transform different attribute features into a unified embedding vector,
providing a more comprehensive representation of the new item. MetaEmb serves as
a baseline for only considering new items.

• GME-A [18]. The GME-A model not only relies on the independent features of new
items but also correlates the attribute information of old items, to comprehensively
consider more data when generating ID embeddings. The core of this method lies in
combining the features of new and old items to provide a more representative and
robust initial embedding for new items. This enables subsequent recommendation or
classification tasks to be based on richer information. GME-A is therefore regarded
as a baseline model that focuses exclusively on item attribute features. It generates
preliminary embedding representations by deeply mining the attribute relationships
between items, without relying on user behavior data.

• CoMeta [24]: The CoMeta model consists of two submodules, namely B-EG and S-EG,
which utilize collaborative information to enhance the generated meta-embeddings.
Specifically, for a new item, B-EG computes a base embedding by calculating the
weighted sum of the ID embeddings of similar old items. Meanwhile, S-EG generates
a shift embedding that incorporates the item’s attribute features as well as the average
ID embedding of users who have interacted with it. The final meta-embedding is
obtained by summing the base embedding and the shift embedding.

4.3. Evaluation Metrics

AUC: The area under the ROC curve is a widely used metric to evaluate the perfor-
mance of binary classification models. It reflects the probability that the model ranks the
randomly selected positive examples higher than the randomly selected negative examples.
The larger the AUC, the better the prediction performance; its slight improvement is likely
to lead to a significant increase in online CTR [25].
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We follow [10] to introduce the RelaImpr metric to measure relative improvement
over models. For a random guesser, the value of AUC is 0.5. Hence, RelaImpr is defined
as follows:

RelaImpr =

(
AUC (measured model) )− 0.5

AUC (base mode) − 0.5
− 1

)
× 100% (20)

Cross-entropy loss: This is a commonly used loss function [26] that is particularly
suitable for classification tasks. Cross-entropy loss calculates the difference between the
predicted result and the real result by comparing the predicted click probability of the
model with the actual click probability of the label. The smaller the cross-entropy loss, the
smaller the difference between the probability distribution predicted by the model and the
distribution of the real label.

4.4. Experimental Results

We conducted experiments during the cold-start phase and two rounds of warm-up
phases. The results for various ID embedding models based on different CTR prediction
models at the cold-start phase are shown in Table 2.

Table 2. Test AUC and loss. Backbone: prediction model. Method: ID embedding generation model.
AUC is the larger the better. RelaImpr is the larger the better. Loss is the smaller the better.

Backbone Method MovieLens_lM
AUC RelaImpr Loss

Taobao Ad
AUC RelaImpr Loss

DNN

NgbEmb
MetaEmb
GME-A
CoMeta
RGMeta

0.7132
0.7138
0.7235
0.7217
0.7253

1.19%
1.47%
6.07%
5.22%
6.93%

0.6436
0.6436
0.6321
0.6330
0.6176

0.6081
0.6103
0.6198
0.6144
0.6256

0.93%
2.99%
11.86%
6.82%
17.27%

0.2053
0.2017
0.1967
0.1984
0.1953

DeepFm

NgbEmb
MetaEmb
GME-A
CoMeta
RGMeta

0.7133
0.7136
0.7233
0.7220
0.7242

1.23%
1.38%
5.98%
5.36%
6.41%

0.6435
0.6433
0.6326
0.6320
0.6108

0.6161
0.6185
0.6232
0.6219
0.6280

0.87%
2.95%
7.04%
5.91%
11.21%

0.2066
0.2013
0.1967
0.2016
0.1959

Wide&Deep

NgbEmb
MetaEmb
GME-A
CoMeta
RGMeta

0.7166
0.7132
0.7207
0.7187
0.7219

2.8%
1.19%
4.75%
3.80%
5.32%

0.6521
0.6457
0.6382
0.6399
0.6235

0.6166
0.6173
0.6236
0.6215
0.6266

0.78%
1.38%
6.83%
5.01%
9.42%

0.4042
0.2292
0.2012
0.1985
0.1962

Deep&Cross

NgbEmb
MetaEmb
GME-A
CoMeta
RGMeta

0.7102
0.7146
0.7171
0.7146
0.7212

0.96%
3.07%
4.27%
3.07%
6.24%

0.6431
0.6476
0.6534
0.6313
0.6258

0.6081
0.6081
0.6122
0.6120
0.6217

0.75%
0.75%
4.57%
4.38%
13.42%

0.2309
0.2005
0.1976
0.1956
0.1952

PNN

NgbEmb
MetaEmb
GME-A
CoMeta
RGMeta

0.7061
0.7131
0.7154
0.7152
0.7166

1.32%
4.77%
5.90%
5.80%
6.49%

0.6404
0.6475
0.6248
0.6455
0.6222

0.6025
0.6051
0.6080
0.6072
0.6214

0.69%
3.24%
6.09

5.30%
19.25%

0.2112
0.2088
0.2042
0.2051
0.2027

In the first round of the warm-up phase, we provide some training examples related to
new items for the main CTR models, but different embedding generation models provide
different initial ID embeddings. In the second round of the warm-up phase, additional
training examples related to new items are provided for the main CTR model. This training
example is different from the first warm-up training because they are trained based on
different ID embeddings learned after the first warm-up training.
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In Table 1, in the case of MovieLens-1M, it can be observed that MetaEmb increases
the AUC value over NgbEmb by an average of 0.39%, which indicates that using attribute
features of the new item can alleviate cold-start problems, whereas simply considering the
pre-training of neighboring ID embeddings is not effective. GME-A increases the AUC
value by an average of 0.89% over MetaEmb as GME-A aggregates useful information from
its neighbors directly at the attribute level, which can better capture associations between
similar items and, thus, improve the performance in the cold-start phase. CoMeta performs
slightly worse than GME-A but better than the other two methods.

Compared to the AUC values of NgbEmb, MetaEmb, GME-A, and CoMeta, RGMeta
increases by averages of 1.5%, 1.1%, 0.26%, and 0.47%, respectively. In addition, RGMeta
also has the best RelaImpr and loss values. These results indicate that the performance of
RGMeta is significantly better than the other three baseline models and can help alleviate
the cold-start problem.

Figure 4 presents the performances of various embedding models in the warm-up
phase on the DNN prediction model. MetaEmb performs better than Ngb in the warm-up
phase although it performs poorly in the cold-start phase, this is because in the warm-
up phase, the new item already has some click-through and display rate data, at which
time the use of pre-trained neighbor ID embeddings can better establish the embedding
representation of the new item, the data of the neighbor items can provide more contextual
information. New items in the warm-up phase may still face the challenge of representation
learning because they still have relatively few behavioral characteristics. In this case, GME-
A can still help new items obtain richer initial embedding representations by aggregating
attribute information from their neighbors, thus showing good performance in the warm-
up phase. CoMeta performs better than GME-A in the warm-up phases because CoMeta
utilizes the collaborative information of the interaction items and does not only consider
the attribute information.

(a) (b)

Figure 4. Performance in the warm-up phase on the DNN prediction model. (a) MovieLens-1M
(b) Taobao Ad.

RGMeta not only shows better performance in the cold-start phase but also performs
better than other baseline models in the warm-up phase. It has been observed that models
that produce good performance in the cold-start phase usually produce good performance
in the warm-up phase.

4.5. Ablation Studies
4.5.1. Effect of Equilibrium Coefficient

The equilibrium coefficient γ is used to balance the cold-start loss and the warm-up
loss. We perform experiments with values of γ between 0.1 and 0.9 on the MovieLens-
1M dataset and the result is shown in Figure 5. It was observed that Ngb was relatively
insensitive; CoMeta, GME-A, and RGMeta were relatively sensitive; and the AUC values
decreased gradually with increasing values. At a value of 0.1, the AUC of RGMeta reached
a maximum of 0.7253, which in turn indicated that the RGMeta had a better performance.
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Figure 5. Effect of the equilibrium coefficient (the main prediction model is DNN).

4.5.2. Effect of the Number of Neighborhood Items

We consider the effects of the number of neighboring items on the model. Figure 6
shows the results of the experiments on the MovieLens-1M dataset. The number of neigh-
bors increases from 2 to 10, the value of AUC is also relatively small when the number is
small. The number is 10, the value of AUC increases by 1.2% compared to number 2, and
RGMeta achieves better performance. This indicates that it is difficult to obtain enough
useful information from too few similar items and the performance of the model improves
when more neighbors are available.

Figure 6. Effect of the number of neighborhood items (main prediction model is DNN).

4.5.3. Effect of Model Components

In order to study the effects of different components in RGMeta, we performed ablation
studies on different prediction models: (1) GME-A: baseline. (2) RGMeta/UF: without
target user information. (3) RGMeta/Res: without residual operation. (4) RGMeta: general
framework. The experimental results of the cold-start phase are shown in Table 3.
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Table 3. Results of ablation studies.

Backbone Emb.Model MovieLens_lM
AUC Loss

Taobao Ad
AUC Loss

DNN

GME-A
RGMeta/UF
RGMeta/Res

RGMeta

0.7235
0.7245
0.7250
0.7253

0.6321
0.6320
0.6227
0.6176

0.6198
0.6215
0.6224
0.6256

0.1967
0.1916
0.1985
0.1953

DeepFm

GME-A
RGMeta/UF
RGMeta/Res

RGMeta

0.7233
0.7234
0.7237
0.7242

0.6326
0.6242
0.6252
0.6108

0.6232
0.6250
0.6257
0.6280

0.1967
0.1971
0.1968
0.1959

Wide&Deep

GME-A
RGMeta/UF
RGMeta/Res

RGMeta

0.7207
0.7217
0.7214
0.7219

0.6382
0.6246
0.6279
0.6235

0.6236
0.6248
0.6252
0.6266

0.2012
0.1982
0.1980
0.1962

Deep&Cross

GME-A
RGMeta/UF
RGMeta/Res

RGMeta

0.7171
0.7188
0.7198
0.7212

0.6534
0.6347
0.6408
0.6258

0.6122
0.6136
0.6139
0.6217

0.1976
0.2035
0.2003
0.1952

PNN

GME-A
RGMeta/UF
RGMeta/Res

RGMeta

0.7154
0.7157
0.7164
0.7166

0.6248
0.6247
0.6294
0.6222

0.6080
0.6111
0.6106
0.6214

0.2042
0.2060
0.2054
0.2027

Using the MovieLens-1M dataset as an example, the AUC value of RGMeta/UF increases
by 0.11% on average compared to GME-A, which indicates that the residual operation makes
full use of the attribute features of neighboring items to generate ID embeddings for new
items, which improves the quality and effectiveness of ID embeddings. The AUC value of
RGMeta/Res increased by an average of 0.18% compared to that of GME-A, indicating that
simultaneously considering target user information can generate better initial ID embeddings
for new items than solely considering item attribute features. This improvement is due to a
deeper connection between items at the level of target user information, which better utilizes
the data from old items. The AUC value of RGMeta increased by 0.26% compared to GME-A,
which in turn improved the performance of the RGMeta.

5. Conclusions

In this paper, we propose a residual graph meta-embedding model. Unlike traditional
methods, RGMeta introduces the target user attributes when calculating the weighted
sum of attributes of neighboring items. Through this process, RGMeta not only takes into
account the similarity between neighboring items but also incorporates more contextual
features through the target user’s information to more accurately predict the characteristics
of new items. In addition, RGMeta introduces residual operations. The residual operation
uses a residual module to process the weighted sum matrix of attributes and the weighted
sum matrix of target user attributes of neighboring items to obtain a residual matrix that
differs significantly from the original matrix. By summing the residual matrix with the
original feature matrix, information from neighboring items is used, and weighting of
different nodes is achieved to distinguish differences between nodes. This allows RGMeta
to effectively learn the similarities and differences between different items and generate
more distinguishable initial ID embeddings. The experimental results on two datasets
demonstrate that our proposed RGMeta has good performance and compatibility.

In the future, we will explore how to extract more representative information from
neighbors to further improve prediction performance. In addition, the interpretability of
the RGMeta model still needs to be strengthened. We will consider using methods such
as SHAP (Shapley additive explanation) and LIME (local interpretable model agnostic
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explanations) to analyze which attribute features and target user features have the greatest
impact on initial ID embedding, and how these features affect the final prediction results of
the model.
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