
Citation: Yang, X.; Ni, P.; Li, Z.; Liu, G.

Dense Feature Pyramid Deep

Completion Network. Electronics 2024,

13, 3490. https://doi.org/10.3390/

electronics13173490

Academic Editors: Chih-Lung Lin and

Chi-hung Chuang

Received: 24 June 2024

Revised: 23 August 2024

Accepted: 27 August 2024

Published: 2 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dense Feature Pyramid Deep Completion Network
Xiaoping Yang 1,2,3,*,†, Ping Ni 2,3, Zhenhua Li 1,*,† and Guanghui Liu 4

1 Department of Information Physics and Engineering, School of Physics, Nanjing University of Science and
Technology, Nanjing 210094, China

2 College of Physics and Electronic Information Engineering, Guilin University of Technology,
Guilin 541006, China; nip5077110@126.com

3 Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology,
Guilin 541004, China

4 Guilin Saipu Electronic Technology Limited Company, Guilin 541004, China; lgh9166@163.com
* Correspondence: gutyxp@126.com (X.Y.); lizhenhua@njust.edu.cn (Z.L.)
† These authors contributed equally to this work.

Abstract: Most current point cloud super-resolution reconstruction requires huge calculations and
has low accuracy when facing large outdoor scenes; a Dense Feature Pyramid Network (DenseFPNet)
is proposed for the feature-level fusion of images with low-resolution point clouds to generate
higher-resolution point clouds, which can be utilized to solve the problem of the super-resolution
reconstruction of 3D point clouds by turning it into a 2D depth map complementation problem,
which can reduce the time and complexity of obtaining high-resolution point clouds only by LiDAR.
The network first utilizes an image-guided feature extraction network based on RGBD-DenseNet as
an encoder to extract multi-scale features, followed by an upsampling block as a decoder to gradually
recover the size and details of the feature map. Additionally, the network connects the corresponding
layers of the encoder and decoder through pyramid connections. Finally, experiments are conducted
on the KITTI deep complementation dataset, and the network performs well in various metrics
compared to other networks. It improves the RMSE by 17.71%, 16.60%, 7.11%, and 4.68% compared
to the CSPD, Spade-RGBsD, Sparse-to-Dense, and GAENET.

Keywords: deep learning; depth complementation

1. Introduction

With the advancement of technologies such as computer vision and 3D reconstruc-
tion [1], 3D data has experienced rapid development in fields such as virtual reality [2] and
autonomous driving [3]. A point cloud, a common form of 3D data, constitutes a dataset
composed of discrete points in 3D space, each carrying positional and other attribute
information. It is the preferred choice for applications in scenarios such as autonomous
driving and robotics analysis. The density of LiDAR point clouds involves the entire
chain of LiDAR technology, including hardware manufacturing, data acquisition, and data
processing and application, and is a key indicator of LiDAR technology. However, due to
limitations of LiDAR sensors themselves, sampling intervals, or other factors, the acquired
point cloud data may suffer from issues such as low resolution, loss of detail, or noise.

To address this issue, point cloud super-resolution techniques have been proposed,
aiming to enhance the resolution and level of detail in point cloud data through algorithms
and technologies. Traditional methods for point cloud super-resolution reconstruction
primarily involve approaches such as bilateral filters [4,5], second-order generalized to-
tal variation [6,7], Markov random fields [8,9], and point cloud upsampling [10,11]. In
recent years, with the advancement of deep learning, efforts towards super-resolution
reconstruction based on deep learning [12–15] have also made significant progress.
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In point cloud super-resolution reconstruction, low-resolution point clouds can be
regarded as partially incomplete point clouds. Point cloud completion methods are then em-
ployed to fill in missing details and structures, thus achieving the goal of super-resolution
reconstruction. In recent years, several outstanding deep learning-based sparse depth
completion frameworks [16] have been proposed.

The convolutional spatial propagation network (CSPN) [17] is a deep learning archi-
tecture proposed in 2019 for the task of image inpainting, aiming to address the challenges
of structural awareness and contextual consistency in image completion tasks. The network
fills in missing regions in input images using convolutional and spatial propagation opera-
tions, making them appear more natural and coherent. The design objective of the CSPN
is to integrate global and local contextual information in completion tasks to obtain more
accurate and coherent completion results. Through spatial propagation and feature fusion
mechanisms, the CSPN effectively utilizes contextual information in images to improve the
quality of completion results. However, due to the localized nature of spatial propagation,
it may not efficiently capture information from distant regions, leading to suboptimal
performance when filling in large-scale missing areas.

Spade-RGBsD [18] is a jointly trained network architecture designed to integrate sparse
depth (sD) data and dense RGB images for depth completion and semantic segmentation. It
utilizes convolutional neural networks to process sparse depth data and dense RGB images,
achieving depth completion and semantic segmentation tasks through joint training. By
combining feature extraction, a depth completion module, and a semantic segmentation
module, the network effectively integrates and processes sparse and dense data, thereby
improving the accuracy of depth completion and semantic segmentation. However, in this
network, only CNNs are used for the feature extraction and completion of sparse depth
data, which may result in suboptimal performance when dealing with large-scale depth
completion and semantic segmentation tasks.

Sparse-to-Dense [19] is a network architecture designed for depth completion, notable
for its ability to generate dense depth maps from sparse depth data, thereby providing
richer scene geometry information. By integrating features from sparse depth data and
RGB images, it employs CNNs for feature extraction and fusion, generating high-resolution
depth maps through upsampling and convolution operations. The network’s training
process enables it to learn from a large amount of annotated depth data, utilizing the
difference between annotated dense depth maps and network-generated depth maps to
train the network. Supervised learning is employed using the backpropagation algorithm
to optimize depth prediction accuracy. The approach to the loss function is noteworthy, but
the model exhibits relatively weak learning capabilities and slow convergence speeds.

The Geometry-Aware Embedding Network (GAENet) [20] is a simple yet effective
depth completion method that integrates 3D geometry representations into a 2D learning
architecture, achieving a better balance between performance and efficiency. This paper
proposes an efficient geometry-aware embedding learning approach that encodes local
and global geometric structural information about 3D points such as scene layout, object
sizes, and shapes to guide dense depth estimation. Combining this embedding with
corresponding RGB appearance information allows for the inference of missing depths
while preserving well-structured details of the scene. The key of this method lies in
integrating an implicit 3D geometry representation into a 2D learning architecture, thus
achieving a better balance between performance and efficiency. However, this network
requires mapping the depth map to a 3D point cloud for edge convolution to extract object
edge information, which increases the computational complexity of the network and may
add to the training time cost.

This paper proposes a dense feature pyramid depth completion network for generating
higher-resolution point clouds by fusing features from images and low-resolution point
clouds at the feature level. The network is an improvement upon a feature pyramid-based
architecture, utilizing an image-guided feature extraction network, RGBD-DenseNet, as
the encoder to extract multi-scale features. Subsequently, an upsampling block formed by
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operations such as transpose convolution serves as the decoder to gradually restore the size
and details of the feature maps. Additionally, pyramid connections are employed to connect
corresponding levels of the encoder and decoder. To further enhance network performance,
a joint loss function comprising smoothness loss and Laplacian pyramid loss is proposed.
By utilizing this network framework and joint loss function, image information serves as
guidance, enabling sparse depth maps to undergo multi-scale feature extraction and fusion
to output dense depth maps. This network presents a novel end-to-end solution for depth
completion tasks.

The following outlines our upcoming work: In Section 2, we describe further details
of DenseFPNet, including the specific network architecture and parameters. Section 3
primarily presents the experimental results, including dataset processing, loss function,
environment configuration, and detailed analysis. Finally, Section 4 provides an overview
of the work completed and the results achieved.

2. Methodology
2.1. Dense Networks DenseNet and Its Variants

ResNet (Residual Neural Network) [21] is a deep convolutional neural network model
proposed by the Microsoft Research team in 2015. The main idea is to address issues such
as gradient vanishing and model degradation during the training process by introducing
residual connections and constructing residual blocks. This connection method helps the
network more effectively learn and capture features from the input data. DenseNet (densely
connected convolutional network) is a further development based on ResNet, proposed
by Huang et al. in 2017 [22]; it introduces dense connections to construct dense blocks,
connecting all preceding layers with subsequent layers densely. This connection method
achieves feature reuse across channels, enabling DenseNet to outperform ResNet with
fewer parameters and lower computational costs.

In DenseNet, each layer’s output is concatenated with the inputs of all subsequent
layers, forming dense blocks. Each dense block consists of several bottleneck convolu-
tional layers, arranged as follows: BN (batch normalization), ReLU (activation function),
1 × 1 convolution, BN, and ReLU, 3 × 3 convolution. This structure fully utilizes the feature
information from preceding layers and performs feature transformation and integration
through activation functions and convolutional layers. Additionally, transition layers are
included between adjacent dense blocks, composed of BN, ReLU, 1 × 1 convolution, and
2 × 2 average pooling operations. The 1 × 1 convolution is used to reduce feature dimen-
sions, thereby decreasing the model’s parameter count, while average pooling halves the
size of the feature maps. Through transition layers, DenseNet can control the number and
size of feature maps, further reducing the parameter count and improving network effi-
ciency. This design enables DenseNet to achieve higher parameter efficiency, computational
efficiency, and better utilization of feature information, leading to improved performance.

DenseNet has four variants, DenseNet-121, DenseNet-169, DenseNet-201, and
DenseNet-264, differing mainly in network depth and parameter count.

DenseNet-121: DenseNet-121 is the most basic variant of DenseNet, consisting of
121 layers. It has a relatively shallow network structure and fewer parameters, making it
suitable for small-scale datasets or scenarios with limited computational resources.

DenseNet-169: DenseNet-169 contains more layers than DenseNet-121, totaling
169 layers. Compared to DenseNet-121, DenseNet-169 has a deeper network structure
and more parameters, allowing it to more effectively capture details and complex features
in images. It is suitable for medium-scale datasets and tasks.

DenseNet-201: DenseNet-201 further increases the depth and parameter count of
the network, comprising 201 layers. Compared to DenseNet-169, DenseNet-201 deepens
the network structure further, providing stronger feature extraction and representation
capabilities. It is applicable to larger-scale datasets and more complex tasks, but may
require more training samples, a longer training time, and more sophisticated optimization
strategies to achieve optimal performance.
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DenseNet-264: DenseNet-264 is the deepest variant in the DenseNet series, containing
264 layers. It has the maximum network depth and the highest number of parameters, but
also requires more computational resources and a longer training time.

Overall, DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-264 differ in
network depth and parameter count. With increasing network depth, these variants can
provide more powerful feature representation capabilities but also increase computational
and storage requirements.

2.2. Network Architecture

By analyzing the shortcomings of existing depth completion network frameworks, this
paper proposes an improvement based on the pyramid network architecture, introducing a
novel Dense Feature Pyramid Network (DenseFPNet) derived from an enhanced DenseNet.
DenseFPNet integrates RGB image data and sparse depth maps, and through multi-scale
feature extraction and fusion, it outputs dense depth maps. The architecture of DenseFPNet
consists of three main components, an encoder, a decoder, and pyramid connections, as
illustrated in Figure 1.
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Figure 1. DenseFPNet.

The encoder section consists of multiple convolutional and pooling layers, responsible
for processing the input RGB image data and sparse depth maps. It conducts feature fusion
and multi-scale feature extraction to abstract both low-level and high-level features from
the input data, encoding them into higher-level representations for decoder utilization. The
decoder section comprises multiple upsampling blocks and operations for feature fusion,
gradually restoring the size and feature details of the feature maps. It decodes the feature
maps extracted by the encoder into outputs of the same size as the original input data,
ultimately generating predictions or reconstructions matching the original input data.

Pyramid connections exist between the encoder and decoder for feature propagation
and information fusion. Pyramid connections represent a hierarchical connectivity ap-
proach, linking corresponding levels of the encoder and decoder to form a pyramid-like
connectivity pattern. Features from each level are utilized in the corresponding level of the
decoder to fuse information from different scales. In this network framework, the purpose
of pyramid connections is to introduce multi-scale information into the decoder, thereby
enhancing its modeling capabilities for features of varying scales.
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2.2.1. Encoder

Among the four variants of DenseNet introduced, DenseNet-169, compared to Dense-
Net-121, features more parameters and a more complex structure. It can handle more
images and provide stronger expressive capabilities while conserving computational re-
sources and training time compared to other variants. Therefore, this paper focuses on
improving the task of depth map completion through the fusion of images and sparse
depth maps, building upon DenseNet-169. It proposes a feature extraction network named
RGBD-DenseNet, which serves as the encoder part of DenseFPNet for multi-scale feature
extraction and abstraction.

RGBD-DenseNet similarly employs four dense blocks and transition layers for fea-
ture extraction and downsampling operations, retaining the dense connectivity architec-
ture within dense blocks to address gradient vanishing issues. The improvements over
DenseNet-169 are as follows:

1. Before conducting various convolution operations, the feature extraction and fusion
of the input RGB image and depth map information are required. This paper utilizes
3 × 3 convolutional layers to map them into 16-channel and 48-channel feature maps,
which are then merged into a 64-channel joint feature map.

2. The joint feature map is merely a consolidation of channel numbers; thus, before
conducting multi-scale feature extraction, further convolution operations are required
for feature extraction. In this study, we employ 3 × 3 dilated convolutions to extract
features from the joint feature map, with a dilation rate of 3, a stride of 1, and the
channel number remaining unchanged. As illustrated in Figure 2, compared to regular
convolutions, the dilated convolutions utilized in this study offer a larger receptive
field, enabling the extraction of more features. While maintaining the size of the
feature map, they gather a broader range of contextual information, facilitating more
accurate feature extraction and prediction.

3. The average pooling in the transition layers is removed, retaining only batch normal-
ization, ReLU, and 1 × 1 convolution. Pooling operations lead to information loss
and the compression of feature map size, and their removal ensures the size of the
feature map remains unchanged while preserving more details.

4. A dense block is combined with its subsequent transition layer into a dense convolu-
tional block. Additionally, the channel numbers of the feature maps obtained after
four dense convolutional blocks are changed to 128, 256, 512, and 1024, respectively,
and the feature map sizes are reduced to 1/2, 1/4, 1/8, and 1/16 of the original data.
Through four-fold downsampling operations, features from each scale can be obtained
as much as possible, while outliers and noise can also be removed.

5. The global average pooling layer, final fully connected layer, and softmax function
are removed, and the feature maps obtained from the fourth dense block are directly
connected to the decoder.
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2.2.2. Decoder

The decoder of DenseFPNet comprises four upsampling blocks and one 1 × 1 con-
volution. As illustrated in Figure 3, each upsampling block consists of a 3 × 3 transpose
convolution, a batch normalization layer, and an LReLU activation function layer, where
the slope of each LReLU is set to −0.2. Additionally, pyramid connections are utilized to
merge the features from corresponding levels of the encoder with the features obtained
from the upsampling blocks, before being inputted together into the next upsampling
block. This prevents the loss of original details from the sparse depth map during the
upsampling process.
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Figure 3. Schematic of the upsampling block in the decoder.

The 3 × 3 transpose convolution operates by convolving the input feature map with
a transpose convolution kernel, allowing for the enlargement of low-resolution feature
maps to higher resolutions, thus restoring spatial details lost during downsampling. Batch
normalization, employed in the upsampling blocks, primarily normalizes the feature maps
across each batch, standardizing the numerical range of the feature maps and enhancing
the model’s generalization capability. LReLU (Leaky ReLU) serves as a rectified linear
unit activation function, introducing non-linearity to enable the network to learn more
complex feature representations while maintaining computational efficiency. Compared
to traditional ReLU, LReLU introduces a small negative slope in the negative region to
mitigate the “dying neuron” phenomenon.

Each upsampling block outputs feature maps with 64 channels. Except for the first
upsampling block, all subsequent modules require merging the number of channels from
the output of the previous upsampling block with the corresponding output channels from
the encoder. Thus, the input channels for each upsampling block are 1024, 576, 320, 192,
and 128. Following each upsampling block, the size of the obtained feature maps is restored
to twice their original size.

3. Results and Discussion
3.1. Datasets and Their Processing

To benchmark state-of-the-art methods, we utilized the KITTI Depth dataset [23] for
training and testing. This dataset aggregates 11 consecutive LiDAR scans to generate
approximately 30% annotated pixels of semi-dense ground truth. We employed the en-
tire dataset comprising 85,898 training samples, 1000 selected validation samples, and
1000 test samples lacking ground truth, as shown in the example image in Figure 4.

To increase the diversity of the data and enhance the robustness and generalization
capability of the model, random geometric and color transformations were applied to the
input data during the training process. The operations used for training data in this paper
are as follows:

1. Rotation: RGB images and depth images are rotated by a random rotation angle r
within the range of [−5, 5] degrees.

2. Horizontal flipping: RGB images and depth images are horizontally flipped with
a probability p = 0.5.

3. Color distortion: Brightness, contrast, and saturation values are increased or decreased
by multiplying them by a distortion factor k within the range of [0.5, 1.5].
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These operations aim to introduce variations in the training data, helping the model
to learn features that are invariant to such transformations and improving its ability to
generalize to unseen data.

3.2. Loss Function

Huber Loss is a regression loss function, also known as Smooth L1 Loss. It is called
“smooth” because it uses mean squared error loss when the difference is small and absolute
error loss when the difference is large, thereby achieving a smooth transition.

The formula for Huber Loss is as follows:

X =

{
1
2 (y − f (x))2 i f |y − f (x)| ≤ σ

σ|y − f (x)| − 1
2 σ i f |y − f (x)| > σ

(1)

In the equation, y represents the target value, f (x) denotes the predicted value, and
σ serves as a hyperparameter that controls the smoothness of the loss function between
squared loss and absolute loss. A smaller σ value makes the loss function closer to squared
loss, thus being more sensitive to outliers. Conversely, a larger σ value makes the loss
function closer to absolute loss, rendering it more robust to outliers.

Laplacian Pyramid Loss is a loss function used for image generation and image style
transfer tasks. It is based on the concept of Laplacian pyramids, measuring the difference
between generated images and target images through multi-scale decomposition and
reconstruction of images. Its mathematical expression is defined as follows:

Lap = ∑ 2i−1
∣∣∣∣∣∣Li(α̂)− Li(α)

∣∣∣∣∣∣
1

(2)
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where Li(α̂) represents the result of the predicted α at the i-th level of the Laplacian pyramid.
A single loss function may not fully capture all crucial objectives or metrics, and in

some cases, it may lead to training difficulties or susceptibility to overfitting. To address
these issues, a joint loss function can integrate multiple objectives or metrics, enabling the
model to optimize across multiple aspects. Additionally, it can provide more information
and constraints, guiding the model towards better learning directions and effectively
exploring the parameter space. The joint loss function proposed in this paper is depicted as
follows in Equation (1):

L = LH + Lap (3)

The proposed joint loss function in this paper enables the comprehensive consideration
of multiple objectives, enhancing the model’s robustness without sacrificing depth map
details. It helps alleviate training difficulties and overfitting, while providing stronger
optimization signals.

3.3. Environment Configuration and Parameter Setting

The network proposed in this paper is based on the fusion of image and sparse depth
map data and utilizes deep learning techniques. Due to the high computational complexity
of the required algorithms, a combination of CPU and GPU processing is employed in
the experiments conducted in this chapter. The specific computing environment used is
detailed in Table 1.

Table 1. Experimental environment.

System/Platform Configuration/Version

CPU (Intel Corporation, Santa Clara, CA, USA) 12th GenIntel(R) Core(TM) i5-12400F
Memory 64G

GPU (NVIDIA Corporation, Santa Clara, CA, USA) NVIDIA GeForce RTX3060 (16G)
OS Ubuntu16.04

Programming Language Python3.7
Deep Learning Framework Pytorch1.13.1

In the experiments conducted in this paper, the network architectures were trained for
11 epochs. The initial learning rate was set to 0.001, and every five epochs, the learning rate
was decayed by a factor of 0.1. To optimize the adjustment of the learning rate, the Adam
optimizer was employed. This setup allowed the network to adaptively adjust the learning
rate based on the training progress. The variation in the learning rate during the training
of the proposed network architecture is depicted in Figure 5, which was automatically
generated by the Tensorboard tool. In the graph, the horizontal axis represents the number
of training data samples, while the vertical axis represents the learning rate.
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3.4. Analysis of Experimental Results

In summary, DenseFPNet modifies the DenseNet backbone network, including the
corresponding layers of the encoder for multi-scale feature extraction and the pyramid
architecture for the decoder. The encoder allows the network to capture information at
various levels of detail, ranging from fine-grained features to broader contextual cues.
The pyramid connections introduce these multi-scale features into the decoder, which is
crucial for accurately representing object edges. Edges in images can vary significantly
in size and prominence, and by analyzing features at different scales, DenseFPNet can
better detect and delineate edges, ensuring that both small and large-scale features are
accurately represented.

To evaluate the performance of the proposed network architecture DenseFPNet, exten-
sive experiments were conducted in this study, including comparisons with other depth
completion networks and ablation studies. To validate the effectiveness of the experiments,
the same dataset was used for all experiments. As the proposed depth completion network
architecture is primarily applied to the task of the super-resolution reconstruction of vehi-
cle LiDAR point clouds in autonomous driving, the experiments were conducted on the
outdoor depth completion dataset of KITTI.

The evaluation metrics for depth completion algorithms typically compare the valid
depth values from the ground truth dgt

v with the corresponding predicted depth values dpred
v .

Based on different distance measurement standards, these metrics can be categorized into
four types: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), inverse RMSE
(iRMSE), and inverse MAE (iMAE). RMSE is sensitive to large errors, thus giving more
weight to larger prediction errors. MAE provides a direct measure of the error magnitude
without considering the squared error, making it less sensitive to outliers. iRMSE assesses
the error in the inverse depth values, emphasizing errors at small depth values, making
it more sensitive to small depth errors. iMAE also focuses on the inverse depth errors,
making it suitable for evaluating the prediction accuracy at smaller depth values. The
formulas for these four evaluation metrics are as follows:

RMSE =

√
1
|V| ∑

v∈V

∣∣∣dgt
v − dpred

v

∣∣∣2 (4)

MAE =
1
|V| ∑

v∈V

∣∣∣dgt
v − dpred

v

∣∣∣ (5)

iRMSE =

√√√√ 1
|V| ∑

v∈V

∣∣∣∣∣ 1

dgt
v

− 1

dpred
v

∣∣∣∣∣
2

(6)

iMAE =
1
|V| ∑

v∈V

∣∣∣∣∣ 1

dgt
v

− 1

dpred
v

∣∣∣∣∣ (7)

3.4.1. Comparison with Other Networks on KITTI Dataset

The study compares the proposed DenseFPNet architecture for depth completion with
four existing state-of-the-art depth completion networks to validate the effectiveness of
the proposed model. Similar to the proposed model, these four models are also trained
end-to-end in an autoencoder manner.

As shown in Table 2, the proposed network architecture reduces the RMSE, a key
metric, to 756.75, improving by 17.71%, 16.60%, 7.11%, and 4.68% compared to the other
four networks. The MAE is reduced to 223.15, achieving significant improvements over the
other four methods. The primary reason for this might be that the compared networks did
not discuss their performance under noisy or disturbed data conditions in their original
papers, which may indicate they did not consider the ability to handle noise and disturbed
data, resulting in poorer performance in such scenarios. On the other hand, DenseFPNet,
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which employs a pyramid architecture, is able to minimize noise through multi-scale
feature extraction, thereby reducing error accumulation caused by noise. However, the
proposed network architecture only reduces the iRMSE to 2.21 and the iMAE to 1.13,
with performance in these two metrics falling short of Spade-RGBsD. This may be due to
the use of a smoothness loss function in our model, leading to over-smoothing in some
areas. Nonetheless, it still outperforms other methods. Overall, the network architecture
proposed in this paper demonstrates better and more stable performance compared to the
other four networks.

As shown in Figure 6, three examples are selected for comparison with each network,
with distinct differences highlighted by yellow dashed boxes. The CSPN and Spade-RGBsD
methods fail to adequately display details of objects slightly further away. Particularly
evident in the third example, the edges of the car approaching from a distance are blurred in
the depth maps generated by these two networks, making it difficult to discern the outline
of the car. In contrast, the proposed network architecture renders the edges and contours of
the car clearer, indicating better handling of details of distant objects. Sparse-to-Dense and
GAENET excessively smooth the edges and details of objects. This is particularly noticeable
in the second example, where the truck’s edges blend into the surrounding scene, obscuring
the boundaries between the truck and the environment. In contrast, the proposed network
architecture exhibits clearer delineation of the truck’s edges.
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In summary, the proposed network architecture demonstrates superior performance
in qualitative comparison experiments, clearly displaying object edges both near and far.
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Table 2. Quantitative evaluation of upsampled networks. Table of quantitative experimental results.

Network RMSE MAE iRMSE iMAE

CSPN 919.64 279.46 2.63 1.25
Spade-RGBsD 907.34 234.81 2.17 0.95

Sparse-to-Dense 814.73 249.95 2.8 1.2.1
GAENET 793.90 231.29 2.27 1.08

Ours 756.75 223.15 2.21 1.13

As shown in Figure 7, detailed comparisons were conducted between the proposed
method and CSPN and Sparse-to-Dense on the same example. For each sample, the input
RGB image, the input sparse depth map, the depth map completed by each network, and
some details of the completed depth maps after magnification are presented. A comparison
of the magnified details reveals that the proposed method produces depth maps with
clearer object edges and higher discernibility.
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Overall, the proposed method generates denser depth maps that are more accurate
and exhibit better details.

3.4.2. Ablation Experiment

The loss functions used in this study consist of two components: LH and Lap. To verify
the impact of these two loss functions on the final completed depth maps, two separate
depth completion models were trained: one using only LH loss and the other using only Lap
loss. Both models were based on the proposed DenseFPNet architecture. The comparison
of the loss function values during training for these two models and the proposed model is
shown in Figure 8. This figure, automatically generated by the Tensorboard tool during
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training, illustrates the training data quantity on the x-axis and the values of the respective
loss functions on the y-axis.

As shown in Table 3, this study conducted a comparison of four evaluation metrics
in the ablation experiments. The results indicate that removing any single loss function
leads to inferior performance in each evaluation metric compared to the joint loss. This
observation suggests that using both loss functions together in the network architecture
yields the best results.

Table 3. Quantitative evaluation of upsampled networks. Table of quantitative comparison of
ablation experiments.

Loss Function RMSE MAE iRMSE iMAE

LH 808.63 263.98 2.74 1.2.5
Lap 786.50 254.69 2.59 1.18

Ours (LH + Lap) 756.75 223.15 2.27 1.13
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As shown in Figure 9, this study conducted a qualitative visualization comparison
with LH and Lap in a single sample, highlighting the differences in more detail with yellow
dashed-line boxes. Compared to the depth map obtained with the joint loss, the depth
map trained solely with LH loss exhibited excessive smoothing effects in areas such as car
windows and overlapping vehicles. On the other hand, the depth map trained solely with
Lap loss showed severe ghosting issues in the overlapping parts of vehicles. Therefore,
in the proposed model of this study, removing either loss function did not lead to better
depth completion, highlighting the superiority of the proposed joint loss function.
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4. Conclusions

This paper addresses issues present in existing depth completion network frameworks,
including filling large-scale depth gaps, weak learning capacity, and insufficient detail
representation. To tackle these challenges, the paper proposes DenseFPNet, a dense feature
pyramid depth completion network. Comparative experiments with other depth comple-
tion networks demonstrate that DenseFPNet achieves superior performance, reducing the
RMSE metric to 756.75. Compared to the other four networks, this represents improve-
ments of 17.71%, 16.60%, 7.11%, and 4.68%, respectively. Furthermore, to further enhance
network performance, a joint loss function is proposed, comprising smoothness loss and
Laplacian pyramid loss, with ablation experiments confirming the superiority of this joint
loss function.
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