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Abstract: Monitoring the psychophysical conditions of drivers is crucial for ensuring road safety.
However, achieving real-time monitoring within a vehicle presents significant challenges due to
factors such as varying lighting conditions, vehicle vibrations, limited computational resources,
data privacy concerns, and the inherent variability in driver behavior. Analyzing driver states
using visible spectrum imaging is particularly challenging under low-light conditions, such as at
night. Additionally, relying on a single behavioral indicator often fails to provide a comprehensive
assessment of the driver’s condition. To address these challenges, we propose a system that operates
exclusively in the far-infrared spectrum, enabling the detection of critical features such as yawning,
head drooping, and head pose estimation regardless of the lighting scenario. It integrates a channel
fusion module to assess the driver’s state more accurately and is underpinned by our custom-
developed and annotated datasets, along with a modified deep neural network designed for facial
feature detection in the thermal spectrum. Furthermore, we introduce two fusion modules for
synthesizing detection events into a coherent assessment of the driver’s state: one based on a simple
state machine and another that combines a modality encoder with a large language model. This latter
approach allows for the generation of responses to queries beyond the system’s explicit training.
Experimental evaluations demonstrate the system’s high accuracy in detecting and responding to
signs of driver fatigue and distraction.

Keywords: driver’s attention; real-time monitoring; YOLOv8; yawning detection; vehicle safety;
driver fatigue detection; infrared imaging; automotive; ADAS; modality encoder; large language
models LLM

1. Introduction

Ensuring the safety of drivers, passengers, and pedestrians remains a paramount
concern in the rapidly advancing field of automotive technology. The development of
Advanced Driver Assistance Systems (ADASs) has significantly contributed to mitigating
risks on the road, yet the issue of driver fatigue and distraction persists as a critical concern.
Driver fatigue, which impairs alertness and reaction times, significantly contributes to road
accidents. Statistical evidence indicates that driver-related errors, including those due to
inattention, accounted for over 29% of accidents in 2022 [1]. This underscores the urgent
need for effective solutions to monitor and mitigate fatigue-related risks.

Although various research efforts have been undertaken, there still exists a critical need
for developing more robust and practical detection systems, especially within naturalistic
driving environments, where current methods often fall short, as emphasized by Koay
et al. [2].

A comprehensive survey of driver facial expression recognition techniques presented
by Saadi et al. [3] points out challenges such as varying illumination conditions, occlusions,
and head poses that significantly hinder the accuracy of detection systems. Lambay et al. [4]
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further expanded on these challenges by exploring the potential of advanced machine
learning techniques in enhancing driver behavior analysis. They also underscore the
considerable obstacles posed by data variability, the necessity for real-time processing, and
the integration of these systems into existing infrastructures, all of which present significant
barriers to widespread adoption and effectiveness.

Current approaches to addressing driver fatigue can be broadly categorized into
physiological, vehicle-based methods, and facial feature-based. Physiological sensors,
while effective at monitoring vital signs, require direct contact with the driver, which
can be intrusive. On the other hand, vehicle-based methods rely on driving inputs like
speed and lane markings, but these signals can be ambiguous and less directly correlated
with the driver’s state, making accurate fatigue detection difficult. Finally, facial feature-
based systems analyze indicators such as yawning and blinking to assess fatigue levels.
However, these systems often struggle with environmental challenges such as variable
lighting conditions, vehicle vibrations, and other interferences.

Recent progress in thermal imaging technology provides a compelling alternative to
the traditional methods. Unlike visible light systems, thermal cameras function effectively
in total darkness and remain unaffected by extreme lighting conditions. This character-
istic makes thermal imaging particularly well-suited for monitoring driver behavior in
a variety of challenging environments, thereby mitigating issues related to lighting and
color discrepancies. Research conducted by Knapik and Cyganek [5] has illustrated the
effectiveness of thermal imaging across both visible and infrared spectra, emphasizing its
benefits for background removal and feature extraction. It is also important to notice the
trend of constant decline in the prices of thermal imaging cameras.

This paper introduces a novel approach toward a complex issue, which is driver’s
fatigue detection. With the use of far-infrared imaging cameras and our improved YOLOv8,
which is the state-of-the-art object detector, to recognize the driver’s condition, facial
keypoints are captured and tracked in real-time. Throughout the detection process, nu-
merous factors are taken into consideration, ranging from the most obvious ones, such as
yawning, to much less straightforward ones, such as atypical head pose. However, for a
comprehensive assessment of the driver’s condition, individual detection signals of various
phenomena must be analyzed together. The signal fusion module is used for this purpose.
We use two of such modules in our system. The first one is constructed as a simple state
machine with pre-defined threshold values. Its advantages include simple implementation
and very fast response. Thanks to this, this module can be easily implemented in a real-time
system. The second fusion module is based on AI. It combines a modality encoder with
a large language model (LLM). Thanks to this, it is possible to ask questions and receive
answers that the system has not been taught before. Therefore, this module can be used for
a deeper analysis of the conditions of fatigue in drivers, e.g., in psychological research.

This paper makes significant contributions in the following areas:

1. Creation of a novel dataset: We present a unique dataset comprising thermal images
of people situated inside a vehicle, captured with a camera positioned beneath the
rear-view mirror. This dataset encompasses six individuals, including variations
such as wearing glasses. Various activities associated with typical driving scenarios,
including looking around, talking, and smiling, as well as signs of mental and physical
fatigue, like yawning and head-drooping, are represented within the dataset. The
data acquisition utilized the cost-effective FLIR E6 camera.

2. Development of a novel face and facial landmark detection model: We introduce an
innovative face and facial landmark detection model optimized for thermal images.
Based on enhancements to the YOLOv8-face model, which utilizes a ShuffleNet
v2 [6] backbone with a simplified detection head, we introduced a convolutional
block attention module [7] and a bi-directional feature pyramid network [8] into the
architecture, resulting in significant performance gains with minimal computational
overhead. Ablation tests were conducted to evaluate the efficacy of the modifications.
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3. Introduction of a novel yawning detection model: Yawning detection, particularly in
thermal imagery, presents unique challenges for deep learning methodologies due
to the scarcity of training data and the temporal nature of such events. We propose
a hybrid approach that combines a classic computer vision technique known as the
histogram of oriented gradients (HOGs) with a long short-term memory (LSTM) recur-
sive deep neural network. Our method demonstrates robust detection performance,
as validated through four-fold cross-validation.

4. In addition to the aforementioned contributions, this paper introduces a novel data
fusion technique for fatigue detection based on the large language model. Our method-
ology involves the integration of data from diverse submodules, including head pose
estimators and event detection, such as head drop and yawning. These sequences are
then fed to the LLM model for further analysis utilizing a specially crafted prompt.
We propose leveraging the LLM model to predict the level of fatigue experienced
by the driver. This approach offers several advantages, such as enabling zero-shot
prediction utilizing general knowledge of large language models as well as facilitating
very easy expansion through the inclusion of additional data or fatigue definition
rules expressed in natural language. Furthermore, it opens avenues for extracting
fatigue detection rules directly from scientific literature authored by researchers.

This paper is organized as follows. Section 2 contains information on important
scientific works in the areas discussed in this article. The general system architecture, as
well as its main modules, are presented in Section 3. These are, respectively, the image
acquisition module, the face and facial landmarks detector, the head pose and event
detection module, the yawning detector, and the two data fusion modules. The datasets
used in our experiments are detailed in Section 4. The experiments and their results are
presented in Section 5. This paper concludes with a discussion in Section 6.

2. Related Works

Addressing the critical issue of road traffic injuries requires innovative approaches
to mitigate the risks associated with driver fatigue and speeding. While existing studies
have explored various methods for fatigue detection and speed enforcement, gaps remain
in achieving high accuracy and real-time applicability [9].

An extensive review of recent achievements in driver fatigue detection systems can
be found in the paper by Sikander and Anwar [9]. As the authors indicate, continuous
research is being conducted, and many promising results in constrained environments
have been proposed. However, they conclude that significant progress is still necessary. In
their review, they categorize driver detection methods into five main groups: subjective
reporting, driver biological features, driver physical features, vehicular features, and hybrid
features. For further details, interested readers are referred to the paper by Sikander and
Anwar [9].

The work by Xiao et al. [10] addresses these challenges by proposing a novel driving
fatigue recognition method leveraging feature parameter images and a residual Swin Trans-
former network. The proposed approach begins with face region detection facilitated by
spatial pyramid pooling and a multi-scale feature output module, followed by the local-
ization of 23 key facial points using a multi-scale facial landmark detector. By computing
the aspect ratios of the eyes and mouth based on these keypoints, a feature parameter
matrix is constructed to represent fatigue driving. Subsequently, this matrix is transformed
into an image format, enabling the utilization of a residual Swin Transformer network for
fatigue-driving recognition.

Another method for distracted driving detection was proposed by Mohammed et al. [11].
It uses a lightweight vision transformer trained with pseudo-label-based semi-supervised
learning. They addressed the challenges of extensive data labeling and large model sizes by
leveraging both labeled and unlabeled data to train the model efficiently. By incorporating
a hybrid lightweight transformer model into a teacher–student network and generating
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pseudo-labels from weakly augmented data, their approach achieved real-time, accurate
detection of distracted drivers while maintaining a compact model size.

In the realm of fatigue detection systems, Ardabili et al. [12] presented a multi-class
driver fatigue detection system based on electroencephalography (EEG) signals using deep
learning networks. By integrating physiological indicators and advanced signal processing
techniques, the study achieves remarkable accuracy in detecting fatigue across multiple
stages, offering promising implications for real-time driving safety applications.

Similarly, Jiang et al. [13] investigated the modulating effects of olfactory stimuli
on alertness within a monotonous driving context. They explored the neural responses
to olfaction-modulated alertness using EEG signals and developed an objective EEG-
based classification algorithm to predict alertness states induced by olfaction. The authors
extended their previous work, which tracked vigilance and fatigue in driving through EEG
markers. To the best of their knowledge, this represents the first effort to develop a wearable
EEG-based method for characterizing olfaction-induced alertness in driving settings.

On the other hand, Abdrakhmanova et al. [14] published the SpeakingFaces dataset,
which represents a significant contribution to the field of multimodal machine learning,
offering researchers a publicly available resource for exploring the integration of visual,
thermal, and audio data streams. With applications spanning human–computer interaction
(HCI), biometric authentication, recognition systems, and speech recognition, the dataset
comprises synchronized high-resolution thermal and visual image streams of fully-framed
faces, accompanied by audio recordings of approximately 100 imperative phrases spoken
by each subject.

In the area of data acquisition, Kuzdeuov et al. [15] introduced a thermal face dataset
with annotated face bounding boxes and facial landmarks. This dataset addresses the
scarcity of research in the area of facial landmark detection. The dataset comprises
2556 images of 142 individuals, each annotated with 54 landmarks across key facial features
such as eyebrows, eyelids, nose, lips, chin, and face outline.

Zeng et al. [16] proposed an intelligent detection method based on a specifically
tailored YOLOv8. They collected images under diverse lighting conditions and enhanced
the data quality using the Laplacian image enhancement algorithm. Additionally, they in-
corporated the CBAM attention mechanism and the EIOU loss function to prioritize crucial
features and refine box regression, respectively, resulting in improved detection accuracy.

In the paper by Cheng et al., an assessment of driver mental fatigue based on facial
landmarks is presented [17]. In their work, a driving simulator-based experiment was con-
ducted, during which 21 videos were recorded. These recordings enabled the computation
of the eye and mouth aspect ratios for detecting facial landmarks. Mental fatigue detection
was then conducted based on several feature candidates. However, their experiments were
conducted exclusively within the visible light spectrum.

In their article, Wang et al. [18] proposed a novel class-level fatigue noise-tolerant
supervised contrastive learning (cFNSCL) method to address the challenges of noise in
fatigue detection caused by inherited fine-grained labels. They introduced a dynamic
noise-tolerant contrastive loss (DNCL) and a class-level confidence assessment mechanism
(CCAM) to select high-confidence samples, significantly enhancing model accuracy and
tolerance to noise. Their approach demonstrated notable improvements in both synthetic
and real-world noisy datasets.

On the other hand, Zhang et al. [19] proposed a novel framework called cross-to-
merge training (C2MT) to enhance the robustness of deep neural networks trained on
noisy labels. Unlike traditional sample selection methods, C2MT introduces a cross-to-
merge strategy that iteratively applies cross-training and merge-training processes to
two networks, effectively reducing the impact of noise and ensuring stable performance
across various noise rates and types. Additionally, they introduce the median balance
strategy (MBS) to further refine sample selection.

Long short-term memory (LSTM) networks, also used in our system, are a type of
recurrent neural network (RNN). Due to their ability to effectively model and learn from
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temporal sequences, they have been extensively studied and utilized in various applications.
LSTM networks, originally introduced by Hochreiter and Schmidhuber in [20], address the
vanishing gradient problem inherent in traditional RNNs, allowing them to maintain and
propagate information over longer sequences.

While deep learning models like CNNs and RNNs have shown promise in facial emo-
tion recognition, their deployment in real-world driving scenarios remains challenging due
to the limitations of existing datasets and the computational demands of in-vehicle systems.
Nabipour et al. [21] emphasized the need for frameworks that utilize the facial action coding
system (FACS) to bridge the gap between lab-based datasets and real-world applications,
ensuring more accurate and efficient emotion detection in automotive environments.

Islam et al. [22] proposed an innovative end-to-end deep learning model to recognize
facial micro-expressions based on apex frames, addressing challenges such as low-intensity
facial movements and the scarcity of publicly available spontaneous datasets. They utilized
a two-stage transfer learning approach and fine-tuned their model on multiple benchmark
datasets, achieving higher accuracy.

Ma et al. [23] introduced a feature-level fusion method, as opposed to decision-level
fusion, leveraging multi-head self-attention (MHSA), which significantly outperforms
conventional methods. Their system, enhanced by a novel supervised contrastive learning
framework (SuMoCo), has demonstrated superior performance in detecting driver actions
and improving robustness against view and modality collapses. It achieved state-of-the-art
results on the DAD dataset.

Our previous publications have significantly contributed to the domains of driver
fatigue recognition and thermal image processing. For instance, Knapik and Cyganek [5]
proposed a system to detect driver fatigue based solely on yawning detection in thermal
images. This method employs background removal using thermal thresholding and tem-
plate matching to identify the facial area. Subsequently, the face is aligned by detecting the
corners of the eyes. The yawning reflex is detected through a novel approach involving
thermal voxel counting and dynamic threshold estimation.

The issue of the lack of large-scale thermal image datasets was addressed by Knapik
and Cyganek in [24]. They proposed a novel method for eye detection in thermal im-
ages, which can also be used to bootstrap the automatic data annotation process. Their
approach involves pre-processing the input thermal image with a virtual high-dynamic
range algorithm, significantly enhancing the thermal image contrast. This enhancement
allows for more reliable computation of sparse image descriptors. They compared the
bag-of-visual-words approach with clustering and YOLOv3 for eye detection in thermal
images, demonstrating the effectiveness of their methods.

In another study, Balon et al. [25] discussed object detection and classification in the
thermal spectrum for automotive systems. Recognizing the limitations of visible spectrum
methods under poor lighting conditions, they presented a thermal video database with
thousands of annotated frames. This database was utilized to train a YOLOv5-based
network optimized for thermal images. The main contributions of the paper include the
thermal dataset, a pre-trained YOLOv5 model for object detection in the thermal spectrum,
and an application for car speed measurement using thermal images. This system highlights
the potential use of thermal imaging in advanced driver-assistance systems (ADASs) and
autonomous driving, showcasing its advantages in various lighting conditions.

In a follow-up paper, Balon et al. [26] extended the Thermal Automotive Dataset
introduced in their previous work by adding over 2000 new images and developing two
new object detection models based on YOLOv5 and YOLOv7 architectures. Emphasizing
the importance of dataset size, they compared the performance of both models to deter-
mine their reliability and effectiveness in detecting small objects in the thermal spectrum.
Additionally, they analyzed the impact of preprocessing techniques on thermal imaging
datasets and the models trained on them. This contribution expands the resources available
for object detection research in automotive settings and provides valuable insights into
optimizing thermal imaging systems for real-world applications.



Electronics 2024, 13, 3502 6 of 29

It is important to note that the aforementioned works address only selected aspects
necessary for a comprehensive assessment of drivers’ conditions. They are often based on
slightly older solutions, which may not be suitable for operation in real conditions in a
moving vehicle [9]. In this paper, we aim to fill this gap by proposing a holistic AI-based
system that operates exclusively with thermal images. Utilizing modern AI detectors and
inference methods, our system allows for advanced situation assessments. We believe that
the appropriate approach to analyzing the condition of drivers in various day and night
conditions can be reliably based on the use of thermal images. This comprehensive system
represents a significant advancement in driver monitoring, offering enhanced reliability
and effectiveness in detecting and responding to signs of fatigue and distraction.

3. System Overview and General Assumptions

In this paper, we propose a novel system for fatigue monitoring based on the multi-
modal analysis of far-infrared images. Utilizing the long-infrared spectrum, our system
operates effectively in both daytime and nighttime conditions without requiring additional
light sources

Figure 1 presents the block diagram of the proposed system. The process begins with
image acquisition, followed by a cascade of specialized modules where each block utilizes
data extracted by its predecessor. The three main components of the system are the face
and facial features detector, the head pose estimator, and the yawning detector. These are
followed by a fusion module for holistic driver behavior analysis. The algorithms, their
modifications, and their performance are discussed in the following sections.

Figure 1. Block diagram of the proposed driver monitoring system.

3.1. Thermal Image Acquisition

Previously proposed methods [5,24] utilized hand-engineered features that leveraged
thermal information to remove background and preprocess images. This approach presents
additional challenges when integrating images from different sensors and environments,
necessitating careful calibration procedures to adapt algorithms to these changes.

To overcome these limitations, our paper proposes normalizing thermal images using
a procedure described below. On the other hand, we increase the augmentation of the
training data to enhance the robustness of the entire processing pipeline. This approach
allows for the combination of datasets from different sources, created with a wide variety
of capturing devices and scenes.

Thermal camera images are captured as raw files, with temperatures represented
as 14-bit linear values. To remove outliers, the images are clipped at the 1st and 99th
percentiles. They are then quantized by rescaling to an 8-bit single-channel image format.
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3.2. Face and Facial Landmark Detection

Accurate face and facial landmark detection is a crucial component of driver fatigue
monitoring. In the long-wave infrared spectrum, previous methods have relied mostly
on hand-engineered features and classical image-processing techniques due to a lack of
sufficiently large datasets. This often leads to struggles with variations in camera position,
occlusion, and facial expressions. Due to advancements in the deep learning field as well as
the recent availability of new thermal image datasets, in this paper, we employ the YOLOv8
deep learning object detector, leveraging its robustness and efficiency in real-time object
detection tasks.

YOLOv8 (You Only Look Once version 8) represents a significant advancement in the
field of deep learning-based object detection. It is designed to detect objects within an image
in a single forward pass, making it exceptionally fast and suitable for real-time applications.
YOLOv8 combines the benefits of previous YOLO versions with improved accuracy and
speed, thanks to its refined architecture and optimization techniques. However, for face
localization, specialized versions employ lightweight backend networks [27,28]. It results
in a very efficient algorithm but comes at a cost of reduced performance. In this work, we
utilize our modified YOLOv8-face network to detect faces and facial landmarks, ensuring
precise detection and localization without increasing computational burden.

The choice of YOLOv8 for face and facial landmark detection is motivated by its
ability to handle complex scenarios, including varying poses, occlusions, and diverse
environmental conditions. Unlike traditional methods that require extensive preprocessing
and calibration, YOLOv8’s end-to-end deep learning approach simplifies the detection
pipeline. By training the model on a comprehensive dataset with extensive augmentation,
we enhance its robustness and generalizability, enabling it to perform consistently well on
real-world data.

In this section, we detail the methodology employed for modifications and training of
the YOLOv8-face model, the dataset preparation, and the specific techniques used to ensure
high detection accuracy. We also discuss the performance metrics used to evaluate the
model and present both quantitative and qualitative results to demonstrate its effectiveness
in detecting faces and facial landmarks under various conditions.

As shown in Figure 2, the proposed model takes the lightweight object detection
model, YOLOv8-face, as the basic model and, consequently, enhances it with convolutional
attention block modules (CBAMs) presented in [7] and a modified feature pyramid network
based on bi-directional feature pyramid network (BiFPN) proposed by Tan et. al in [8].

Due to thermal imaging limitations, the image quality in comparison to visible light
is inferior. Edge details are less distinguishable and often disappear due to thermal noise;
texture features are lost, making the distinction between facial features low and unclear.
Additionally, the temperature distribution in the facial area, especially important for the
research presented in this paper, changes constantly over time due to environmental and
emotional changes.

In this paper, we propose using convolutional attention blocks to enhance the fea-
ture refinement capabilities of the detection network. Specifically, we integrate CBAM,
which employs both channel and spatial attention mechanisms. This dual attention ap-
proach allows the network to focus more effectively on the target of interest during the
detection process.

The channel attention mechanism uses an average pooling method combined with a
fully connected multilayer perceptron and sigmoid activation to determine the significance
of each channel. This is then multiplied with the input feature map to highlight important
channels. Conversely, the spatial attention mechanism combines pixel-wise average and
max pooling, processed by a convolutional layer, to predict and emphasize important
spatial features.

By incorporating CBAM into our detection network, we aim to improve the network’s
ability to focus on relevant features, thereby enhancing the overall detection performance.
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Figure 2. Block diagram and comparison of standard YOLOv8-face architecture and our improved version. Dashed lines show added blocks and connections.
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Due to the inherent reduction of spatial dimensions in convolutional neural networks,
many details are irreversibly lost in the deeper layers of these architectures. This loss
of detail can significantly impact the performance of detection networks, especially in
tasks that require high precision, such as facial feature detection. To address this issue,
we incorporated concepts from the bi-directional feature pyramid network (BiFPN) as
presented in the EfficientDet paper [8], which enhances feature propagation from shallow
layers to deeper ones.

BiFPN is designed to improve the flow of information across different scales in the
network by introducing bi-directional connections. These connections allow features to
be shared more effectively between layers, facilitating better feature fusion and retention
of critical information. BiFPN, in its original version, employs weighted feature fusion,
where each input feature is assigned a learnable weight, enabling the network to prioritize
more informative features dynamically. In our architecture, since most informative features
were already filtered and selected by CBAM blocks, we opted for static, non-learnable
feature concatenation.

To integrate BiFPN into our detection network, we added additional connections
from the backbone network to the feature pyramid. These connections ensure that high-
resolution features from the shallow layers are propagated to deeper layers, which helps
maintain the integrity of spatial details throughout the network. This enhancement is
particularly beneficial for thermal images, where preserving as much detail as possible is
crucial due to their inherently low spatial dimensions.

The synergy between BiFPN and CBAM in our proposed architecture enables the
network to retain more detailed information from the input thermal images, improving
detection accuracy. By enhancing feature propagation and refining feature attention, this
combined approach effectively addresses the challenges posed by low-resolution thermal
images, leading to a more robust and precise detection system.

To evaluate the impact of the proposed modifications on the performance of the fa-
cial feature detector, we conducted a series of experiments using the challenging outdoor
dataset, Thermal Faces in the Wild (TFW) [29]. Multiple models were trained for 300 epochs,
each with an input resolution of 320 × 320 pixels. We also increased the pose loss gain
parameter from its default value of 1.0 to 12.0 to enhance focus on facial keypoint localiza-
tion. Additionally, multiplicative noise augmentation was applied to better align the TFW
dataset with the characteristics of the low-cost thermal camera employed in our system.

To guide the architectural design of the final model, we performed ablation studies,
progressively incorporating key components. Initially, we integrated only the convolu-
tional block attention module (CBAM) into the model, followed by the addition of the
bi-directional feature pyramid network (BiFPN) in a separate experiment. Finally, both
CBAM and BiFPN were combined, resulting in a model that achieved the best performance.
The outcomes of all training experiments are summarized in Section 5.

3.3. Head Pose Estimation and Event Detection

Head pose estimation plays a crucial role in driver fatigue monitoring, as it provides
vital information about the driver’s alertness and attentiveness. The orientation of the head
can indicate signs of drowsiness, distraction, or microsleep, which are critical factors in
preventing accidents and ensuring road safety. By accurately determining the head pose,
systems can detect when a driver’s head nods off, turns away from the road, or shows
other signs of fatigue, enabling timely alerts and interventions.

In our work, we estimate head pose using 3D–2D point correspondences by leveraging
Levenberg–Marquardt optimization provided by the OpenCV library. Facial keypoints
detected by the YOLOv8 model are matched to a 3D face model (presented in Figure 3a)
to calculate yaw, pitch, and roll angles. These angles are critical for understanding the
driver’s head orientation in real time.

Given that input data can be noisy, especially in real-world applications where camera
vibration is present, we analyzed recorded videos of actual driving sessions to refine our
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approach. Through empirical analysis, we defined six head poses commonly observed
during driving: normal (en face), looking left, looking right, head up, head down, and
unknown (head not detected or angles outside of normal range). These predefined poses
help in mitigating the effects of noise and vibrations. The computed angles are then
assigned to the closest predefined pose using the method described in Algorithm 1. Results
can be seen in Figure 3.

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)
Figure 3. Visualization of a 3D face model (a) and examples of head pose estimation (b–j).

3.4. Yawning Detection

In our previous work [5], we presented a yawning detection algorithm based on ther-
mal voxel counting to identify rapid temperature changes in the mouth region. Although
this method is still viable, it has several drawbacks. Measuring small temperature changes
requires a sensitive and linear imaging sensor, both spatially and temporally, which is
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significantly more expensive than simpler thermal imaging sensors. Additionally, it neces-
sitates processing raw sensor data and careful calibration, making it susceptible to ambient
temperature variations and subject-specific differences.

Algorithm 1 Head pose detection.

1: Xkpts: facial landmarks from the current frame
2: M f ace: 3D face model
3: co f f set: camera angle offset
4: Y: a set of pose angles [y1, y2, ..., yp], where yp = [yyaw, ypitch, yroll)] and each ya is a pair

of minimal and maximal angle values for the kth angle in the pth pose.
5: procedure FACEPOSEESTIMATION(Xkpts, Y)
6: P ← [yaw, pitch, roll] - Calculate face pose from 3D–2D point correspondences

using Levenberg–Marquardt optimization [30]
7: Add co f f set angles to P
8: for each pose y in Y do
9: if ∀i ∈ P, ymin

i ≤ Pi ≥ ymax
i then

10: dy ← min(dist(ymin, P), dist(ymax, P)) - minimal Euclidean distance from P to
y

11: end if
12: end for
13: return pose y with minimal distance
14: end procedure

To address these issues and create a more robust yawning detection process, we
propose a novel method based on geometrical features and a recurrent neural network
(RNN). Our proposed algorithm consists of a feature descriptor and a sequence classifier.
For the feature descriptor, we chose the robust and well-known histogram of oriented
gradients (HOG) [31].

The histogram of oriented gradients (HOG) algorithm, introduced by Dalal and Triggs
in [31] for people detection, is a widely utilized feature descriptor in computer vision
and image processing, particularly for object detection. It captures shape and appearance
information by encoding the distribution of gradient orientations within localized regions
of an image.

The image is divided into small, non-overlapping regions known as cells. Within
each cell and for every pixel, a histogram of gradient orientations is computed according
to Equations (1) and (2), which provides information about the local edge directions
and strengths.

Angle = θ =
gx

gy
(1)

Magnitude =
√

g2
x + g2

y (2)

L2(v)→ v/
√
∥v∥2

2 + ϵ2 (3)

where gx and gy denote the two spatial gradients, computed in the x and y directions of an
image, respectively.

To enhance robustness to changes in illumination and contrast, the concatenated
histogram is then normalized to reduce the impact of varying lighting conditions. This
normalization is typically performed using techniques such as L2-norm (Equation (3)) or
L2-Hys (L2-norm with limiting maximum values of v to 0.2) normalization.

The HOG feature descriptor is constructed by concatenating the normalized his-
tograms from all blocks in the image. Each block contributes a feature vector based on its
histogram, and these vectors are combined to form the final HOG feature vector for the
entire image.
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We opted for a non-learnable feature descriptor due to the limited number of yawning
images available in thermal datasets.

To detect yawning, we classify changes in the geometrical features of the same facial
region over multiple frames. For this purpose, we utilize the long short-term memory
recurrent neural network (LSTM) introduced by Hochreiter and Schmidhuber in [20].

As already mentioned, LSTM networks are specialized forms of recurrent neural
networks (RNNs) designed to effectively capture and learn long-term dependencies in
sequential data. Traditional RNNs struggle with learning dependencies over long sequences
due to the vanishing or exploding gradients during backpropagation. This issue hampers
their ability to retain information over extended periods, limiting their effectiveness in
tasks that require understanding long-range temporal dependencies.

The architecture of LSTMs is explicitly designed to address this problem. It uses a
unique structure with three gating mechanisms—input, forget, and output gates—that
control the flow of information, allowing the network to retain or discard information
as needed. The cell state acts as a memory unit, carrying relevant information through
the sequence, while the hidden state provides the output at each time step. This design
enables LSTMs to perform well on tasks requiring the retention of context over extended
sequences, such as natural language processing [32,33] and time-series analysis [34,35] or
healthcare [36,37]. More details on the variants and operations of LSTMs can be found
in [38].

A crucial aspect of our system is the ability of long short-term memory (LSTM)
networks to classify temporal signals with high accuracy even when trained on relatively
small datasets, as evidenced by the work of Drzazga and Cyganek in [37]. Their findings
make LSTM a particularly advantageous choice in scenarios where large-scale annotated
data are not readily available.

A block diagram of the proposed method is presented in Figure 4. The mouth region
(defined as a rectangle bounded by the nose tip, left and right mouth corners, and chin
keypoints) is resized to a rectangle of size 48× 48 pixels; the HOG feature descriptor of
this region is computed for each frame of the sequence. Features are then fed to the RNN
classifier to obtain the final classification result, i.e., the subject is yawning or not.

We empirically defined the length of a yawning sequence to be 48 frames, which
equates to 3.2 s at a frame rate of 15 frames per second (FPS). A sequence is classified as
yawning if the subject is actively yawning during 24 or more of these frames. Training
parameters are shown in Table 1.

Figure 4. Block diagram of the yawning detection module.

Table 1. Training parameters for the LSTM classifier.

Parameter Value

Sequence length 48
Batch size 32

Loss function Cross-Entropy Loss
Epochs 100
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Table 1. Cont.

Parameter Value

Input size 900
Hidden layer size 600

Learning rate 0.001

3.5. Data Fusion Methods

As shown in Figure 1, the specialized detectors provide information on head positions
and dynamic facial features, such as a head drop and detected yawning. Information from
these streams is then fed to the fusion module. In our system, we prepared two versions,
as follows:

1. A base algorithm that relies on empirically collected threshold values for distracting
events. When these thresholds are exceeded, they indicate proper alarm conditions.
This simple algorithm can be easily implemented, for example, on edge devices, and
operates in real-time conditions.

2. A large language-based model that utilizes modality encodings provided by our
system from the information streams. These are used with well-defined prompts for
more advanced situational analysis and even zero-shot question answering. This
advanced fusion module can be used, e.g., by driver psychologists to research more
complex driving conditions.

These two methods are discussed in the following subsections.

3.5.1. State Machine Approach

A pseudo-code for the base solution of a simple inference module is presented in
Algorithm 2. Its main task is to appropriately aggregate the occurrences of each event,
related to various forms of a driver’s distraction, and then trigger an alarm when an
experimentally determined threshold is exceeded.

For the base fusion module, we generate three streams of the driver’s activity signals:

1. PERLOOK.
2. Yawn frequency.
3. Head drop frequency.

These signals provide comprehensive insights into the driver’s state, facilitating
accurate detection of fatigue and distraction.

PERLOOK, a metric similar to PERCLOS [39], measures the percentage of time the
driver’s head is oriented away from its forward-looking normal pose. This metric is
calculated over a time window, which we empirically set to 8 s. Duration and frequency of
the driver’s head turning away from the road indicates the distraction level.

Yawning frequency measures the rate at which yawning reflexes occur. Frequent
yawning is a well-known indicator of drowsiness and fatigue, making this metric crucial
for timely intervention. Similarly, head drop frequency measures the occurrence of sudden
head drops, which are often associated with microsleep and severe fatigue. Both metrics
are essential for a comprehensive assessment of the driver’s tiredness level. In our work,
we measure these metrics in events per minute. To calculate them, we divide the number of
yawning events and head drop events by the length of a selected time window (minutes).
To normalize the length of each event, we divide the number of reported frames for each
event by the typical length of the yawning reflex and head drop event.

These three signals are combined using a weighted sum approach, as shown in
Algorithm 2. The weights are determined based on the relative importance of each signal
in indicating fatigue and distraction. If the combined signal exceeds a specific threshold, a
distraction alert and/or fatigue alert is triggered. These alerts are reported to the control
systems, which can then respond by warning the driver, prompting them to take a break or
perform other safety measures.
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To establish the thresholds and multipliers, several hypotheses were initially for-
mulated regarding the impact of yawning, head drooping, and head pose on indicators
of tiredness and distraction. Then the recorded data were reviewed to assess the typical
durations of these sequences and their relative positions. However, it was observed that
the performance of the system was not notably sensitive to these specific thresholds. This
aspect could be further addressed in future research, potentially involving collaboration
with physicians and psychologists, as well as the collection of additional data to ensure
robust performance in real-world applications.

Additionally, we also propose a novel system based on a large language model (LLM)
that eliminates hard thresholds and allows for the creation of a more sophisticated and
adaptable fatigue alerting system.

Sample plots generated by the base fusion module are presented in Figure 6, while
Figure 5 shows sample images with output data overlaid on the top. Threshold values and
constants were established empirically using data from our dataset presented in Section 4.3
and are presented in Table 2.

Algorithm 2 Base fusion method for alarm detection

1: Xi : I input streams of the driver’s activity signals
2: wd

i , w f
i : I weights for the activity signals of drivers, d—distraction, f —fatigue

3: Ad ∈ {0, 1} : distraction alarm On/Off
4: A f ∈ {0, 1} : fatigue alarm On/Off
5: τd, τf : distraction and fatigue alarms thresholds
6: procedure DISTRACTIONSIGNALSFUSION(Xi, A)
7: Xd = ∑I

1 wd
i Xi ▷ distraction score

8: X f = ∑I
1 w f

i Xi ▷ fatigue score
9: Ad = 0, A f = 0

10: if Xd ≥ τd then
11: Ad = 1 ▷ distraction alarm detected
12: end if
13: if X f ≥ τf then
14: A f = 1 ▷ fatigue alarm detected
15: end if
16: return return (Ad, A f )
17: end procedure

(a) (b) (c)

(d) (e) (f)
Figure 5. Sample output frames from the base fusion module. Frames with different driver actions
and at various viewing angles (a–f).
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Figure 6. Output of the base fusion module.



Electronics 2024, 13, 3502 16 of 29

Table 2. Basic fusion module parameters.

Parameter Value

Yawning Reflex Length (frames) 25
Head Drop Length (frames) 2
Distraction Score Equation 1.0 · PERLOOK + 0.1 · Yawn. Freq. + 0.2 · Head Drop Freq.

Fatigue Score Equation 0.1 · PERLOOK + 1.5 · Yawn. Freq. + 1.0 · Head Drop Freq.
Distraction Alert Threshold 0.7

Fatigue Alert Threshold 1.1

On the other hand, the LLM version—presented in the next section—takes the Xi
streams and the prompts as input to detect alarm conditions. This approach allows for
various interpretations of the Xi signals and inference based on user-defined prompts.

3.5.2. Modality Encoder and Large Language Model

Deep neural networks represent a significant breakthrough in the field of data clas-
sification. However, they require large datasets and tedious task-specific labeling, such
as recognizing yawns. We use this type of network in the lower-level part of our system.
Their outputs provide low-level information about the occurrence of a given event, such
as a head drop or a yawn. In our system, lower-level information from the previously
described detectors comes in the form of data frames that can be analyzed by the large
language model. An exemplary data frame is shown in Table 3.

Thanks to this approach, it will be possible to formulate various questions and rules
for the LLM, including those not previously considered, enabling a more extensive process
of reasoning about the driver’s condition. For instance, new prompts might be generated
in the future based on more in-depth psychological interviews with drivers, etc. However,
LLMs operate using text embeddings, while our system provides information in the form
of the aforementioned data frames. Therefore, it is necessary to establish proper interfaces
for the two modules to cooperate effectively. In the pattern recognition community, we
can observe rapidly advancing research on vision-language models for vision tasks [40],
their personalization for user-specific queries [41], and efforts to enable more general
mathematical reasoning using open language models, which is by far the most difficult
task [42]. Our research also follows these directions. However, we provide LLM with
pre-processed data frames containing information on certain driver distraction events, such
as yawning or distraction, rather than embeddings associated with bare images. Hence,
this level can be seen as a modality encoder (ME). This approach provides a more domain-
driven approach, which can result in more accurate and relevant responses from the upper
level driven by the text LLM. As our ME provides data frames with distilled values of event
detection and its frequency, we can directly use platforms already designed to interface
with pre-trained LLMs, such as PandasAI [43] or LangChain [44].

In our experiments, we used the latter approach. It can be configured to use different
types of LLM; in this choice, we used ChatGPT3.5-turbo, which is a reasonable compromise
between the task complexity and the costs of the services. This framework uses a generative
AI model for understanding and interpretation of natural language queries. These are then
translated into a specific Python code. This is then used to deal with the data and return
the results to the users. A block diagram of our LLM-based fusion module is shown in
Figure 7. A special software agent has been developed that facilitates human control and
communication through a set of so-called prompts. These include text information and
questions, as well as guides that the agent encodes into a format that can be understood
and processed by the LLM. An exemplary session is shown in Appendix A.
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Table 3. A data frame built by the modality encoder based on information coming from event decoders.

Timestamp Face id Yaw Pitch Roll pose_state pose_stable_state head_drop_event distracted_event is_yawning head_drops PERLOOK yawn_freq head_drop_freq distraction_score distraction_alert fatigue_score fatigue_alert

150 0 195.854 −10.348 −4.906 looking_left looking_left 0 1 0 0 0.200 0.000 0.000 0.200 False 0.020 False
151 0 195.216 −10.432 −5.944 looking_left looking_left 0 1 0 0 0.208 0.000 0.000 0.208 False 0.021 False
152 0 194.537 −10.205 −6.486 looking_left looking_left 0 1 0 0 0.217 0.000 0.000 0.217 False 0.022 False
153 0 196.795 −9.995 −7.426 looking_left looking_left 0 1 0 0 0.225 0.000 0.000 0.225 False 0.023 False
154 0 197.035 −10.334 −4.970 looking_left looking_left 0 1 0 0 0.233 0.000 0.000 0.233 False 0.023 False
155 0 197.317 −10.270 −4.008 looking_left looking_left 0 1 0 0 0.242 0.000 0.000 0.242 False 0.024 False
156 0 196.466 −11.638 −5.592 looking_left looking_left 0 1 0 0 0.250 0.000 0.000 0.250 False 0.025 False
157 0 194.868 −8.738 −6.429 looking_left looking_left 0 1 0 0 0.258 0.000 0.000 0.258 False 0.026 False
158 0 193.109 −9.717 −5.529 looking_left looking_left 0 1 0 0 0.267 0.000 0.000 0.267 False 0.027 False
159 0 191.302 −9.910 −4.640 looking_left looking_left 0 1 0 0 0.275 0.000 0.000 0.275 False 0.028 False
160 0 194.913 −10.140 −5.609 looking_left looking_left 0 1 0 0 0.283 0.000 0.000 0.283 False 0.028 False
161 0 195.849 −9.790 −7.949 looking_left looking_left 0 1 0 0 0.292 0.000 0.000 0.292 False 0.029 False
162 0 196.564 −10.252 −8.326 looking_left looking_left 0 1 0 0 0.300 0.000 0.000 0.300 False 0.030 False
163 0 196.022 −9.023 −9.845 looking_left looking_left 0 1 0 0 0.308 0.000 0.000 0.308 False 0.031 False
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Figure 7. A fusion module built with the modality encodings coming from event decoders and LLM.

Figure A1 depicts an exemplary session in the form of a Python code that calls the
LangChain agent. This is a software object that can then be provided with a number
of prompts.

Apart from asking simple questions, such as how many yawning events are detected,
we can also provide more elaborate prompts to fully exploit the abilities of LLM as, for
example, the last prompt in Figure A1. First, it introduces a rule defining under what
conditions we consider a driver to be distracted. Then, based on this rule, we ask LLM
if a given driver is distracted. The answer to this question is shown in Figure A2. First,
LLM correctly translated the word “distraction” into the “distracted_event” column name
from the input frame shown in Table 3. Then, the LLM correctly interpreted our distraction
rule, first identifying that there are 2153 distraction events, which, in accordance with the
provided criteria, means that the driver is indeed distracted. This is just one example of the
open questions that can be input into the LLM-based system.

4. Datasets

In this section, we provide detailed information on the datasets used in our experi-
ments. It is important to note that while numerous datasets with visible light images are
publicly available, the datasets specifically containing thermal images are significantly
limited. This scarcity presents a unique challenge in the development and evaluation of
driver monitoring systems that rely on thermal imaging.

4.1. TFW

The TFW dataset [29] encompasses thermal images collected from both indoor and
outdoor environments, facilitating research in facial detection and recognition. Exemplary
images from this dataset are shown in Figure 8. The dataset contains both controlled
and semi-controlled indoor environments, along with an uncontrolled outdoor setting.
For the indoor dataset, thermal–visual image pairs of 142 individuals were captured from
9 different positions. This dataset contains a total of 5112 thermal images, each featuring one
labeled face. On the other hand, a semi-controlled indoor dataset involves subjects walking
and performing predefined commands before free movement. It includes 780 thermal–
visual pairs of 9 subjects, with 1748 labeled faces in each domain. Finally, the outdoor
setting comprises unconstrained outdoor locations on different days during the summer.
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With a total of 4090 thermal images, this dataset provides insights into thermal imaging
under real-world conditions. With 9982 images and 16,509 labeled faces, the TFW dataset
offers a comprehensive resource for advancing thermal-based facial detection models.

In our research, we utilized the outdoor part of the Thermal Faces in the Wild (TFW)
dataset to evaluate and compare various versions and modifications of the YOLOv8 archi-
tecture, as this dataset provided a robust foundation for assessing the effectiveness of our
proposed modifications in real-world scenarios.

Figure 8. Exemplary pictures from the TFW dataset.

4.2. SF-TL54

The SF-TL54 dataset consists of 2556 thermal phase images of 142 individuals, paired
with corresponding visual images, and annotated with 54 landmarks, following the Eibach
landmark configuration. This dataset was utilized for landmark detection experiments,
aiming to address challenges such as limited textural information and occlusion of eyes in
thermal images due to glasses.

We utilized the SF-TL54 dataset to train a final version of the YOLOv8 detector for
facial landmark localization, leveraging its relatively high number of images paired with
extensive annotations. Examples are shown in Figure 9.

Figure 9. Exemplary pictures from the SF-TL54 dataset.



Electronics 2024, 13, 3502 20 of 29

4.3. Extended ThermalYawningInCar Dataset

The original ThermalImagesInCar dataset [5] was developed in response to the lack
of publicly available thermal image datasets capturing individuals in a driving scenario
within a car, featuring various events such as diverse head poses, head drops, and yawning.
One notable aspect of this dataset is its incorporation of video sequences, facilitating the
training of models to detect temporal events such as yawning.

In this paper, we present an expanded iteration of our previous dataset. This updated
version includes additional sequences and annotations featuring two new individuals
previously not published, as well as fresh recording sessions with different scenarios and
equipment. Sample images are presented in Figure 10.

The acquisition of new data was performed using the FLIR E6 thermal camera, which
has a resolution of 240 × 180 pixels and captures 9 frames per second (FPS). This choice of
equipment was dictated by its affordability and is more aligned with commercial automo-
tive solutions than with research-focused thermal imaging cameras. All sequences were
recorded within a prepared test scenario, comprising activities typical of a car environment,
such as speaking, yawning, and typical body movements. The dataset is available online
for further research and comparison with alternative methodologies.

Recordings were conducted inside a stationary vehicle during springtime, with the
internal car temperature maintained at approximately 20 °C, reflective of typical modern
vehicles equipped with climate control systems. A thermal imaging setup was installed
under the rear-view mirror. Drivers were instructed to behave as naturally as possible,
simulating a routine drive. Throughout the recording, they were asked to either remove or
wear glasses.

The presence of research equipment and the awareness of participating in a scientific
experiment may influence subjects’ behavior, though the extent of this effect is difficult
to quantify. This potential for altered behavior is a common challenge in experiments
involving human subjects, as the awareness of being observed can alter natural responses.
We have taken measures to minimize this impact, but it remains an inherent limitation in
studies of this nature.

To address this limitation, we plan to revisit this experiment in the future with a larger
number of subjects and on a broader scale. This approach will help us better understand
and mitigate any potential biases introduced by the data collection process.

The annotation process for the images followed a semi-automated procedure outlined
as follows:

1. Faces and facial landmarks were detected using a detection model described in
Section 3.2, pre-trained on the SF-TL54 dataset.

2. Any missing or incorrect labels were manually corrected.
3. The start and end of each event, such as yawning or head drop, were manually

annotated.
4. The camera angle offset was computed to compensate for head pose detection.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 10. Sample images from an extended dataset (a–c) and a newly acquired dataset (d–l).

5. Experimental Results

In this section, the conditions of the conducted experiments, as well as their results,
are presented and discussed.

5.1. Results of Face and Facial Landmark Detection

The results of the performance evaluation of our detection model are presented in
Table 4, where we compare our modified YOLOv8-face architecture with its default version,
as well as with standard YOLOv7 and YOLOv8 models, on the pose estimation task. The
plot in Figure 11 illustrates the performance of various models as a function of the FLOPs
required. As shown, our modified architecture achieves a 1.0% to 2.5% improvement in
mAP@0.5 for the keypoint detection task, while requiring only 7% more GFLOPs compared
to its original version. This enhancement in accuracy underscores the effectiveness of
our modifications in improving the network’s ability to detect facial features with greater
precision. The slight increase in computational complexity is justified by the significant
gains in performance, making our approach highly efficient and particularly beneficial for
applications that require real-time performance on consumer-grade hardware.
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Figure 11. Model detection performance in the function of FLOPs used.

The ablation studies conducted allowed us to systematically evaluate the impact of
integrating the CBAM and BiFPN modules individually.

The results demonstrated that both the CBAM-only and BiFPN-only variants resulted
in performance improvements over the baseline model with minimal additional compu-
tational overhead. Specifically, the CBAM-only model achieved a 0.7 percentage point
increase in mAP@0.5 for bounding box regression and a 0.4 percentage point increase in
mAP@0.5 for keypoint regression, while the BiFPN-only variant improved performance by
nearly 1 percentage point over the baseline in both metrics.

Moreover, when these modifications were applied in combination, the model exhibited
an even greater enhancement in performance, scoring almost 2.5 percentage points in both
mAP@0.5 for bounding box and keypoint regression. The results of the intermediary
models are also presented in Table 4.

Furthermore, our model achieves results that are comparable to the original YOLOv7
and YOLOv8 models. Despite the similarities in detection accuracy, our modified architec-
ture requires nearly three times less computational power. This efficiency not only facilitates
real-time operation but also extends the potential use cases of our system, enabling its
application in a wider range of devices and scenarios. The presented architecture stands
out as a robust solution for facial feature detection in low-resolution thermal images.

However, due to differences in the training dataset (SF-TL54) and target image acquisi-
tion system, like resolution, imaging device, and head pose range, detecting facial features
is not always perfect. In Figure 12, we present examples where the proposed detection
model fails to correctly detect and/or align facial features.

(a) (b) (c)
Figure 12. Examples of detection model failures. (a) Face detection contains too much background.
(b) Facial feature keypoints not aligned with the actual face. (c) False positive detection when the
head pose is outside of the training dataset distribution.
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Table 4. Comparison of real-time state-of-the-art facial landmark detection architectures with our modified YOLOv8-face model, including ablation study results
that guided the final architecture’s design.

Model Family Size Backbone Params [M] FLOPs [B] Box mAP@0.5 (%) Box mAP@0.5–0.95 (%) Keypoint mAP@0.5 (%) Keypoints mAP@0.5–0.95 (%)

YOLOv7 tiny CBL. MCB. MP modules 8.4 22.3 0.9532 0.6383 0.9488 0.8771

YOLOv8
nano

CSPDarkNet
3.1 8.4 0.9409 0.6251 0.9330 0.8527

small 11.4 29.6 0.9447 0.6435 0.9463 0.8803

YOLOv8-face
tiny

ShuffleNet v2
0.6 2.8 0.9024 0.5737 0.9016 0.7861

small 1.9 7.8 0.9342 0.6309 0.9348 0.8632

Ours Attention Only tiny ShuffleNet v2 + CBAM 0.7 2.9 0.9095 0.5820 0.9057 0.7960

Ours BiFPN Only tiny ShuffleNet v2 + BiFPN 0.6 2.9 0.9123 0.5762 0.9125 0.8040

Ours

tiny

ShuffleNet v2 + CBAM + BiFPN

0.8 3.0 0.9271 0.6011 0.9268 0.8222

small 1.5 5.3 0.9331 0.6244 0.9389 0.8634

large 2.5 8.4 0.9439 0.6406 0.9444 0.8757
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5.2. Results of Yawning Detection

For the yawning detection evaluation, we employed four-fold cross-validation. In
each fold, 25% of the test subjects were selected for the validation set, ensuring that the
training data did not contain any images of individuals from the validation set (yawning
or not). This approach eliminates data validation data leakage into the training phase.

On average, our model achieves an F1 score of 85%, with precision and recall values
of 98% and 87%, respectively. These metrics indicate that the model is highly precise at
identifying yawning events and has a strong ability to recall actual yawning instances. It is
important to note that there is some ambiguity in the labeled data regarding the exact start
and end points of a yawning reflex, which could affect the precision of our measurements.

Additionally, validation was conducted using a fixed time window length and a
fixed stride (the number of frames skipped between each window in the sequence). This
methodology ensures consistency in evaluation but may not fully capture the variability of
yawning durations in real-world scenarios. However, in practical applications, the exact
duration of a detected yawning reflex is less critical than the accurate detection of the
event itself.

Moreover, there is an inherent delay in the response of the recurrent neural network,
as it requires sufficient data to accurately distinguish between true yawning events and
false positives. This delay represents a necessary trade-off for achieving higher accuracy in
event detection. Despite this, our proposed novel detection method demonstrates excellent
performance, making it suitable for real-time driver fatigue monitoring systems.

Results for each fold as well as average classification performance are presented in
Table 5.

Table 5. Results of the yawning classification model.

Fold Number F1 Score Precision Recall

1 0.8943 0.9880 0.9001
2 0.9569 0.9684 0.9667
3 0.8381 0.9566 0.8102
4 0.7240 0.9881 0.7935

Average Value 0.8533 0.9753 0.8676
Standard Deviation 0.0989 0.0155 0.0810

5.3. Results of Distraction and Fatigue Detection

In our work, we propose two distinct approaches for data fusion to enhance the
detection and analysis of driver fatigue and distraction. The first approach is a basic
fusion model that leverages empirically selected multipliers and thresholds to combine
various driver activity signals. This model integrates metrics such as PERLOOK, yawning
frequency, and head drop frequency using predefined weights to generate alerts when
specific conditions are met. The empirical nature of this model ensures that it is tuned to
respond to the most critical indicators of driver fatigue and distraction.

The second approach is a novel data analysis method based on large language models
(LLMs). This advanced method allows for the formulation of meta-rules and more sophis-
ticated reasoning about the driver’s condition. By utilizing LLMs, we can incorporate a
broader range of contextual information and more nuanced interpretations of the driver’s
behavior, leading to a more comprehensive assessment of their state. This method not
only detects fatigue and distraction events but also provides insights into the underlying
patterns and trends that may indicate emerging risks.
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To evaluate the effectiveness of these approaches, we selected two of the longest
sequences recorded during real-world driving sessions. These sequences provided a
diverse set of scenarios and behaviors for testing. Both methods successfully recognized
events of distracted driving, such as prolonged head turns and lack of focus on the road.
Additionally, they raised appropriate alarms when fatigue symptoms, such as yawning
and sudden head drops, began to escalate.

The basic fusion model demonstrated its reliability in identifying critical events
through its straightforward yet effective use of empirically derived thresholds. Mean-
while, the LLM-based data analysis approach showcased its ability to offer deeper insights
and more adaptive responses by interpreting complex patterns in the driver’s behavior. To-
gether, these approaches represent a significant advancement in driver monitoring systems,
providing robust and adaptable solutions for enhancing road safety.

Overall, our proposed methods highlight the potential of combining empirical models
with advanced machine learning techniques to create more effective and intelligent driver
fatigue and distraction detection systems. By addressing both immediate and long-term
indicators of driver state, these approaches can help mitigate risks and improve overall
driving safety.

6. Conclusions

In this study, we present a comprehensive system for driver fatigue and distraction
monitoring that integrates advanced methods for facial feature detection, head pose estima-
tion, and yawning detection using thermal imaging. Our approach leverages the YOLOv8
model enhanced with convolutional attention blocks (CABs) and the bi-directional feature
pyramid network (BiFPN) to improve accuracy and efficiency, addressing the challenges
posed by the low resolution of thermal images.

For yawning detection, we propose a method that computes histograms of oriented
gradients (HOG) in thermal images, which are then classified using a long short-term
memory (LSTM) recurrent neural network (RNN). Despite the limited number of yawning
images in the available datasets, this approach demonstrated high precision and recall. Our
assessment, conducted using four-fold cross-validation on a challenging dataset, indicates
that our models achieved high detection performance.

The integration of head pose estimation and yawning detection into our system
enhances its robustness and reliability, making it a practical solution for real-time driver
monitoring. The use of thermal imaging ensures operation in various lighting conditions,
further increasing the system’s applicability in real conditions.

Furthermore, we introduce two approaches for data fusion: a basic model using
empirically selected multipliers and thresholds, as well as an advanced method based on
large language models (LLMs). Both methods effectively recognized distracted driving
events and raised appropriate alarms for fatigue symptoms, validating their effectiveness in
real-world scenarios. However, the LLM method enables the asking of open questions and
facilitates a holistic analysis of system operations. Undoubtedly, the ongoing development
of LLMs will drive further progress in systems that integrate low-level detection modules
with high-level rule systems and user dialogue systems.

The proposed system offers several advantages over systems employing other modalities:

• Thermal imaging: Allows the system to operate in pitch-black darkness without any
source of light, as well as in challenging lighting scenarios like sunset, sunrise, and
reflections. It is also immune to variations in skin color.

• Computational efficiency: The use of a highly computationally efficient detection
model makes the system well-suited for edge devices, enabling real-time performance.

• Flexibility with LLM: The integration of a large language model enhances the system’s
flexibility, allowing for open-ended analysis. This flexibility means the system can be
improved and evolved by the end user through prompt engineering.
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However, thermal imaging also introduces certain limitations that affect the system:

• Eye state detection: The system cannot reliably detect whether the human eyes are
open or closed, as eyes are not well visible in thermal imaging. If the subject is
wearing glasses, even corrective ones, the eyes are completely obstructed because
glass is opaque in the LWIR spectrum.

• Head pose estimation: The system relies on facial feature detection to estimate head
pose. Due to the limited amount of publicly available training data, the system
currently only supports typical driver behavior.

Our work underscores the importance of advanced machine learning techniques
in developing intelligent and adaptive driver monitoring systems. These systems can
significantly contribute to road safety by providing timely alerts and interventions to
prevent accidents caused by driver fatigue and distraction.

Future work will focus on further refining the models and exploring additional fea-
tures to enhance detection accuracy. An interesting direction involves computing sparse
features from a CNN or ViT, operating with thermal images, which are highly efficient in
classification while maintaining very small sizes [45]. We also aim to conduct extensive
field trials to validate the system’s performance under diverse driving conditions and
environments. It will be particularly interesting to further explore the possibilities for
cooperation with the next generations of LLMs. The ultimate goal is to integrate this system
into commercial driver assistance systems, thereby contributing to safer and more reliable
transportation.

Author Contributions: Conceptualization, M.K. and B.C.; methodology, M.K. and B.C.; software,
M.K. and B.C.; validation, M.K., B.C. and T.B.; data curation, M.K. and T.B.; writing, M.K., B.C. and
T.B.; visualization, M.K.; supervision, B.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Both the dataset and code used in the presented experiments are
available on our GitHub repository: https://github.com/mat02/ThermalImagesDataset (accessed 29
August 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Example of the LLM Application Code

Figure A1 shows an exemplary session in the form of Python code that calls the
LangChain agent. This is a software object that can communicate via a number of prompts.

Figure A2 displays the answers output by the LLM agent in response to several
rules and questions provided by the user. The rule defines conditions corresponding to
a distracted driver. Endowed with this definition, the LLM is asked to assess the state of
a given driver. In the displayed answer, the LLM correctly identified the measurements
corresponding to the word “distraction”, then correctly counted the number of such events,
and ultimately confirmed that the driver was indeed distracted.

https://github.com/mat02/ThermalImagesDataset
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Figure A1. Exemplary code with LLM prompts.

Figure A2. LLM answer to the last prompt that contains a rule to evaluate a driver’s fatigue condition.
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