
Citation: Li, Z.; Ji, X.; Yuan, S.; Fang,

Z.; Liu, Z.; Gao, J. A Green Wave

Ecological Global Speed Planning

under the Framework of

Vehicle–Road–Cloud Integration.

Electronics 2024, 13, 3516. https://

doi.org/10.3390/electronics13173516

Academic Editor: Salvador Alepuz

Received: 14 August 2024

Revised: 28 August 2024

Accepted: 3 September 2024

Published: 4 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Green Wave Ecological Global Speed Planning under the
Framework of Vehicle–Road–Cloud Integration
Zhe Li 1 , Xiaolei Ji 1 , Shuai Yuan 1, Zengli Fang 2, Zhennan Liu 3 and Jianping Gao 1,*

1 Vehicle and Traffic Engineering College, Henan University of Science and Technology, Luoyang 471003, China;
9906397@haust.edu.cn (Z.L.); 230320030327@stu.haust.edu.cn (X.J.); 230320030379@stu.haust.edu.cn (S.Y.)

2 Zhengzhou Institute of Transportation Co., Ltd., Zhengzhou 450000, China; liuwenju@stu.haust.edu.cn
3 Yutong Bus Co., Ltd., Zhengzhou 450000, China; liuzna@yutong.com
* Correspondence: gaojp@haust.edu.cn

Abstract: In response to energy consumption and traffic efficiency reduction caused by intersection
congestion, a global speed planning that considered both ecological speed and green wave speed was
conducted under the vehicle–road–cloud integration framework. After establishing an instantaneous
energy consumption model for pure electric vehicles, a radial basis neural network model was
used to estimate the queue length of traffic flow, and an isolated-intersection-based eco-approach
and departure (I-EAD) plan was proposed based on a valid traffic signal light model. A two-stage
optimization multi-intersections-based eco-approach and departure (M-EAD) strategy with multiple
objectives and constraints was proposed to solve the optimal green light window and the optimal
speed trajectory. The results of the SUMO/Matlab/Simulink/Python joint simulation platform show
that the M-EAD strategy reduces the average travel energy consumption by 16.65% and 8.31%, and
the average travel time by 26.33% and 12.53%, respectively, compared to the intelligent driver model
(IDM) and I-EAD strategy. The simulation results of the typical traffic scenarios and random traffic
scenarios indicate that the speed optimization strategies in this study have good optimization effects
on energy conservation and traffic efficiency.

Keywords: vehicle–road–cloud integration; ecological green wave speed; energy consumption;
isolated-intersection-based eco-approach and departure (I-EAD); multi-intersections-based
eco-approach and departure (M-EAD)

1. Introduction

Due to the control effect of traffic signals, vehicles may experience frequent starting,
stopping, and idling during the process of passing through signalized intersections. Sig-
nal intersections, as key points in urban road networks, are high-risk areas for vehicle
congestion and environmental pollution. At present, with the rapid increase in house-
hold vehicle ownership, traditional traffic signal control technology is no longer sufficient
to solve transportation problems such as traffic congestion, safety issues, energy waste,
and environmental pollution. Reasonable speed planning can increase the probability
of vehicles passing through signalized intersections without stopping. It can improve
traffic efficiency and reduce unnecessary energy consumption and emissions, which is
an important way to achieve the goals of carbon neutrality and carbon emissions peak.
Related studies have shown that reasonable speed planning at signalized intersections can
improve overall traffic efficiency by 6–18% [1].

Transportation optimization has been given more possibilities with the booming de-
velopment of the intelligent connected vehicle industry [2] and vehicle–road collaboration
technology [3]. Internet of Vehicles (IoV) technology collects and recognizes environmen-
tal and status information on vehicles through devices such as GPS, RFID, sensors, and
cameras [4]. Communication between the onboard unit (OBU) and roadside unit (RSU),
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including vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian
(V2P), and vehicle-to-network (V2N) is achieved through communication methods such as
5G, LTE, PC5, etc. [5,6]. With the help of Internet technology, perceived information can
be gathered and transmitted to the central processor and then be analyzed and processed
through cloud computing technology to provide a variety of services, including optimal
route and speed planning, traffic signal arrangement, real-time road condition reporting,
etc. [7]. Green wave speed guidance, as a new type of intelligent transportation application
function, utilizes vehicle road coordination technology to achieve real-time data interaction
between connected vehicles and roadside units, obtain accurate intersection signal status,
and combine current vehicle position, speed, and other status information to break away
from the limitations of traditional fixed green wave speed belt.

At the same time, with the continuous development of vehicle–road–cloud integration
technology [8], green wave speed guidance has gradually evolved from a technology solu-
tion based on vehicle-road interaction to a technology solution based on vehicle–road–cloud
architecture. The vehicle–road–cloud integration-based speed guidance can simultaneously
optimize the speed of multiple signal intersections and multiple road sections under the
unified monitoring of the control center while avoiding the time delay caused by dedicated
short-range communication between the vehicles and roadside units [9]. The powerful
computing and multi-source information fusion capabilities of the cloud can greatly accel-
erate the computing speed, ensure the real-time provision of green wave speed, and enable
connected vehicles to pass through continuous signal intersections, which can improve
traffic efficiency and reduce energy consumption.

2. Related Works

In terms of improving traffic efficiency, researchers have mainly used two methods to
enable vehicles to pass through intersections without stopping: the first one is adjusting the
signal phase. Adaptive signal control technology (ASCT) is a traffic management strategy
that adjusts signal timing parameters to optimize corridor performance based on actual
traffic demand [10]. Shams, A. et al. [11] compared quantitatively the performance of
11 methods of offset optimization, including several different objectives that make use of
arrival profiles (e.g., maximizing arrivals on the green, minimizing delay, minimizing the
number of stops) and several different methods of bandwidth maximization. The second
is to adjust the vehicle’s operating speed, which is also the direction of improvement in
this study.

2.1. Green Wave Speed Planning

Scholars have conducted extensive research on green wave speed induction strategies
for urban signalized intersections. These strategies can be mainly divided into two types
based on different decision control methods: the rule-based speed induction control method
and the optimization-based speed induction control method [12].

The rule-based speed induction control method is simple with small computational
complexity and fast calculation speed. HomChaudhuri, B. et al. [13,14] used a uniform
speed model to solve the velocity of vehicles passing through intersections. Ala, M.V.
et al. [15,16] used a uniform acceleration model to solve the optimal vehicle speed for
vehicles passing through intersections. Barth, M.J. et al. [17,18] proposed a trigonometric
function model to calculate the target average speed of vehicles by analyzing the timing
of traffic signals and the distance between the vehicle and the stop line at the intersection.
Based on this, they guided the vehicle to perform acceleration and deceleration operations
to ensure passing through the intersection without stopping. Kari, D. et al. [19] developed
a green wave speed control algorithm that considered parameters such as the current
speed, position, signal cycle, phase, and offsets. They divided the situation of vehicles
passing through intersections into acceleration, deceleration, and stopping scenarios, and
determined whether the vehicle can pass through the intersection at a constant speed
during the current or adjacent green light time based on current speed. The rule-based
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speed guidance control method has poor control accuracy and optimization effect, which is
mainly suitable for simple control scenarios at isolated signal intersections.

The optimization-based speed induction control method is based on multi-objective
and multi-constrained optimization models to obtain the optimal vehicle speed trajectory.
Wu, W. et al. [20] proposed a comprehensive traffic control model that optimized both
vehicle speed and traffic signals. They developed speed guidance strategies targeting
vehicle arrival time, delay, and stopping numbers at red and green light conditions, respec-
tively. Some scholars considered vehicle dynamic characteristics and energy consumption
as constraints for green wave speed planning. The optimization-based speed induction
control method is widely used in speed planning for continuous signalized intersections.
Compared to speed planning for isolated signalized intersections, speed planning for
continuous signalized intersections produces better energy-saving effects [21].

In recent years, with the booming development of the intelligent connected vehi-
cle industry and vehicle-road collaboration technology, many scholars have introduced
connected vehicle scenarios into speed optimization. Wang, Q.Z. et al. [22] proposed a
decentralized approach to the optimization CAV trajectories in both longitudinal and lateral
dimensions along a signalized arterial under the mixed traffic environment, where human
vehicles (HVs) and CAVs co-exist. Talukder, M.A.S. et al. [23] developed an approach to
use vehicle trajectory data with traditional traffic signal controllers, even with the lower
penetration rate of CV-enabled vehicles on the road and the limited deployment of vehicle-
to-infrastructure (V2I) communications. Several scholars have proposed collaborative
optimization control methods of intersection signal control and vehicle speed guidance un-
der the vehicle–road–cloud integration framework to improve the efficiency of the mainline
traffic and verify the methods through simulation. The position and speed of arriving vehi-
cles were used to calculate their estimated time of arrival [24]. Dong, H. et al. [25] proposed
a green wave speed induction strategy for connected vehicles considering the queuing
phenomenon at signalized intersections. They assumed that the queue length at intersec-
tions was known and combined it with a vehicle dynamics model to predict the dissipation
time of traffic queues. Zhang, C. et al. [26] proposed a vehicle speed planning method
based on real-time estimation of queue length for connected vehicles on multiple signalized
intersections in dynamic traffic environments. Simulation results showed that this method
could generate smoother vehicle speed curves and reduce energy consumption by more
than 40% compared with traditional speed planning methods, ignoring traffic queues. The
use of V2X wireless communication technology can achieve wide area information sharing
and resource integration, leading speed induction based on vehicle–road–cloud integration
to a new research direction.

2.2. Ecological Speed Planning

Eco-driving is the optimal energy consumption and efficient driving trajectory under
the constraints of the driving environment and vehicle power system [27]. The goal of eco-
approach and departure (EAD) is optimizing vehicle speed to avoid stop-and-go behavior
at signalized intersections, which can be mainly divided into two strategies: isolated-
intersection-based eco-approach and departure (I-EAD) and multi-intersections-based
eco-approach and departure (M-EAD).

Some researchers have tended to focus on vehicle dynamics and kinematics. Bautista-
Montesano, R. et al. [28] proposed rule- and fuzzy-inference system-based strategies for
a coupled eco-approach and departure regenerative braking system through a numerical
simulator and a three-degree-of-freedom connected electric vehicle model. The simulations
aimed to compare both longitudinal navigation strategies utilizing relevant metrics: power,
efficiency, comfort, and usage duty cycle in motor and generator modes. Other researchers
tended to focus on speed planning. Jin, H. et al. [29] calculated the instantaneous fuel
consumption of vehicles at different speeds and used these speed sequences as weights
for the spatiotemporal topology of traffic signals. Simulation results showed that it could
improve fuel economy by 33.6% and reduce travel time by 17.7%. Based on the vehicle’s
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status and the signal phase information of traffic lights, the traffic characteristics of the
vehicle were judged, and the ecological speed trajectory with the minimum average fuel
consumption was solved using a fuel consumption model by Meng, Z. et al. [30]. The
simulation results showed that using this model could reduce fuel consumption by at
least 10%. Most existing EAD studies envision an ideal setting that neglects real-world
operational conditions such as lane changes, multi-movement intersection configuration,
partially automated fleet, and/or limited traffic state awareness [31]. Dong, H.X. et al. [32]
proposed an overtaking-enabled eco-approach control (OEAC) strategy to potentially
mitigate the negative effect on the movement of the following vehicle by the preceding
vehicle. Most studies are based on simulation verification, but there are also a few studies
based on real vehicle verification. Vehicle-level testing of the optimized speed profiles was
carried out at the American Center of Mobility (ACM) on GM-Volt Gen II to demonstrate
an energy-saving of 40–50 kJ per intersection on real road conditions [33].

There is no doubt that a typical application scenario of ecological driving is under
the framework of vehicle–road–cloud integration. The connected vehicles use V2X com-
munication to interact with roadside units or the cloud through communication 4G, 5G,
DSRC, etc., to obtain information such as signal phase and timing (SPaT), speed limits, and
stopping line positions. Adjusting the vehicle speed promptly and smoothly at the green
light phase thereby can reduce frequent acceleration and deceleration behavior, energy loss,
and travel time delays. Yang, J.S. et al. [34] proposed a less-disturbed ecological driving
strategy for connected and automated vehicles combining offline planning and online
tracking. In offline planning, an energy-efficient reference speed is created based on traffic
information (such as the average traffic speed) and characteristics of the vehicle (such as
the engine efficiency map) via dynamic programming. In online tracking, model predictive
control is employed to update the vehicle speed in real-time to track the reference speed.
Some researchers have considered the combination of green wave speed and ecological
speed. Han, J.H. et al. [35] found that a longitudinal fuel-optimal speed trajectory could be
a control sequence of four possible modes: maximum acceleration, constant speed cruising,
coasting, and maximum braking. They presented a fast analytical solver that computes the
longitudinal fuel-optimal speed trajectory for connected and automated vehicles. Virginia
Tech Transportation Institute (VTTI) [36] conducted a study on speed planning for isolated
signal intersections based on a V2I environment. The vehicle’s current speed and the
passable time of the intersection were used to determine the acceleration, deceleration,
and uniform driving states that the vehicle should adopt. Then, the VT-Micro (Virginia
Tech microscopic) model was used to calculate the fuel consumption of different driving
states, and the lowest fuel consumption solution was provided to the driver through a
human-computer interaction interface.

In summary, although scholars have conducted extensive research in the field of speed
guidance, there is still room for improvement: (1) Under the vehicle–road–cloud integra-
tion framework, numerous V2I facilities can perceive more comprehensive environmental
information. The powerful storage and computing capabilities of cloud computing make it
possible to optimize global speed based on historical data. The range of speed guidance
has expanded from short road sections or isolated intersections to continuous multiple
signalized intersections, and factors such as the impact of social vehicle queues should
also be considered. (2) How to achieve the organic integration of green wave speed and
ecological speed goals, taking into account both traffic efficiency and energy consumption,
is an urgent technical problem that needs to be solved (3) The existing research on ecolog-
ical green wave speed planning mostly focuses on fuel vehicles. As entering the era of
electrification, research on speed induction strategies based on the energy consumption
characteristics of pure electric vehicles should be strengthened.
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3. Methodology
3.1. Assumptions

Due to the mutual influence between green wave speed planning and signal phase
coordination, to clarify and highlight the research object, the control object of this study was
set as a single connected vehicle under the framework of vehicle–road–cloud integration
without considering the fleet situation. The following assumptions were proposed:

1. The study only focused on controlling the speed of connected vehicles, and the signal
phases were already in an optimal state. To simplify the calculation, the signal phase
and time cycle at the same intersection were fixed and unchanged;

2. The study only considered the queue length of other social vehicles as influencing
factors, without taking into account the operation influences of other non-connected
vehicles and non-motorized vehicles in the road sections during driving;

3. The study only considered that vehicles pass through the multiple intersections
directly, without considering lane changing and overtaking behaviors;

4. Communication delays were ignored when transmitting information between con-
nected vehicles, roadside units, and cloud control platforms, and there were no
information losses.

3.2. Energy Consumption Model
3.2.1. Instantaneous Energy Consumption Model

When an EV travels at a speed of v (m/s) and an acceleration of a
(
m/s2), the driving

resistance of the vehicle is acceleration resistance Fa, rolling resistance Fr, air resistance
Fk, and slope resistance Fg, respectively. Therefore, the driving force Ft exerted on the
vehicle traveling at speed v and acceleration a can be represented by the total vehicle mass
m (kg), the slope angle θ (◦) of the road, the conversion factor of rotating mass δ, the rolling
resistance constant µ, and the air resistance constant k, that is:

Ft = Fa + Fr + Fk + Fg (1)

Fa = δma (2)

Fr = mgµ (3)

Fk = kv2 (4)

Fg = mgsin θ (5)

An instantaneous energy consumption model for pure electric connected vehicles was
constructed based on the principle of power balance. The energy consumption power of
the vehicle, which is the input power P of the motor, consists of two parts: the output
power p and the power loss Pcopper.

P = p + Pcopper (6)

The first part is the traction power generated for driving the vehicle, which is related
to the current vehicle speed and the instantaneous traction force. Therefore, the output
power p of a vehicle with a speed of v can be established based on the driving force Ft:

p = Ft·v (7)

The second part is the power loss Pcopper generated by the motor’s heat loss, which
is mainly caused by copper heat loss. According to Ohm’s law, copper heat loss can be
calculated using the following formula:

Pcopper = I2·r (8)

where I is the current (A) and r is the impedance (Ω).
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In addition, the relationship of a direct-current (DC) generator between the driving
force Ft, and the current I is as follows:

Ft =
Kaϕi0

R
·I = KI (9)

where K is defined as the formula K = Kaϕi0
R . Ka is the inherent armature constant of the

DC motor; ϕ is the magnetic flux on the armature; R is the rolling radius of the wheel; i0 is
the transmission ratio of the transmission system.

Substituting Formula (9) into Formula (6) yields the following formula:

P =
r

K2 Ft
2 + Ftν (10)

Substituting Formulas (1)–(5) into Formula (10) yields the following formula:

P[ν(t), a(t)] = r
K2 (δma(t) + kv2(t) + mgµ + mgsinθ)2

+ν(t)(δma(t) + kν2(t) + mgµ + mgsinθ)
(11)

Formula (11) is the instantaneous energy consumption model of electric vehicles,
which indicates that the input power P is the function of speed v and acceleration a. When
the acceleration is less than 0, that is, the vehicle is undergoing a deceleration process,
and the energy consumption model can also represent the process of regenerative braking
energy recovery.

3.2.2. Optimal Energy Consumption Model under Different Scenarios

Traditional vehicles often experience urgent acceleration, deceleration, or stopping at
intersections due to the inability to predict traffic lights’ signal phase, resulting in additional
energy consumption. For the convenience of research, the driving trajectory of the vehicle
was simplified into two stages: uniform acceleration/deceleration driving and uniform
driving. The speed optimization trajectory diagram of the optimal energy consumption
model was developed for three scenarios: acceleration, deceleration, and stopping.

As shown in Figure 1a for the acceleration scenario, at a distance d (km) from the
intersection, the vehicle accelerates uniformly at a certain acceleration rate aa to the target
speed vc, and then maintains a constant speed vc to pass through the signalized intersection,
where the acceleration time is ta and the constant speed time is tc. Considering energy
consumption and comfort issues, vehicles should be guided to arrive at the signalized
intersection before the end of the green phase t1. There are two edge situations: when accel-
erating at the minimum acceleration, the vehicle undergoes a longer uniform acceleration
process to the maximized speed while passing through the intersection; when accelerating
at the maximum acceleration, the vehicle experiences a shorter uniform acceleration time
to the minimized, which satisfies safety and comfort. There are countless speed trajectories
between the two edge situations. Different speed trajectories will result in different energy
consumption. The optimal energy consumption model aims to find a speed trajectory
that minimizes energy consumption under the conditions of time constraints, dynamic
constraints, and kinematic constraints. The speed optimization trajectory diagrams under
the deceleration and stopping scenarios are similar to the acceleration scenario, as shown
in Figure 1b,c. In the deceleration scenario, the vehicle decelerates first and then passes
through the intersection at a constant speed. In the stopping scenario, the vehicle first
maintains a constant speed and then decelerates to a speed of 0 at the stopping line.

The green wave speed planning process’s total energy consumption power (kWh)
is calculated using the instantaneous energy consumption model for electric vehicles in
Formula (11). The green wave speed at signalized intersections is optimized to minimize
average energy consumption power per unit distance f (kWh/km). The objective function
for ecological vehicle speed is:



Electronics 2024, 13, 3516 7 of 20

f = min
(

J
d

)
= min

∫
P[a(t), v(t)]dt

d
(12)
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3.3. Isolated-Intersection-Based Eco-Approach and Departure Strategy (I-EAD)

The system framework of I-EAD for an isolated intersection is shown in Figure 2.
When the connected vehicles implement the green wave speed induction strategy, the
onboard unit and roadside unit obtain information and send the relevant information to
the cloud control center through vehicle-to-network (V2N) and infrastructure-to-network
technology, respectively. The cloud control center uses powerful multi-source information
fusion and computing capabilities to process the information, estimate the queue length,
and design optimal speed curves based on energy consumption models for three scenarios.
Green wave speed recommendation schemes are provided and sent to the corresponding
connected vehicles.
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3.3.1. Estimation of Queue Length

Under the framework of vehicle–road–cloud integration, the queue length can be
predicted through historical queue length information. A radial basis function (RBF) neural
network [37] was established to estimate the queue length. The output of the hidden layer
nodes is a linear combination of input vectors and is nonlinearly mapped to the output
layer using an exponential function. The RBF neural network model can be established as:

yk =
n

∑
i=1

wkiewT
i x+bi + θk (13)

where yk is the output of the kth node in the output layer; wki is the weight from the ith

node in the hidden layer to the kth node in the output layer; wi and bi are the weight and
bias of the ith node in the hidden layer; x is the input vector; θk is the threshold of the kth

node in the output layer.
Then, historical datasets, including traffic volume, average vehicle speed, and signal

phase under unstable and dynamic traffic flow conditions and corresponding queue length
data, were utilized to train the RBF neural network. By minimizing the difference between
the predicted queue length and the actual queue length, the weights of the network were
adjusted to optimize the accuracy of the prediction. After training, a parameterized function
was obtained, as shown in Formula (14), which predicted the queue length based on real-
time traffic volume, average speed, and signal phase.

Lq = f (QC, VC, cr) (14)

where Lq is the queue length; QC is the traffic volume; VC is the average vehicle speed; cr is
the duration of the red light time.

Finally, after real-time monitoring of the traffic volume, average speed, and signal
phase, the trained RBF neural network model was used to calculate the queue length at the
intersection.

3.3.2. Valid Traffic Signal Model

When the green light at the intersection turns on, if there is a long queue ahead of the
connected vehicle, the vehicle needs to wait for the social vehicles ahead to pass through
the intersection. That is to say, the connected vehicle can not pass through the intersection
in an orderly manner until the queue dissipates. Thus, the actual time that can be used for
vehicles passing through the intersection is less than the duration of green light time due to
the additional signal spatiotemporal restricted zone, as shown in Figure 3. A valid traffic
signal model was established to unite signal phase and queue length jointly.
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The state of the traffic flow is relatively stable at the queue dissipation stage. The
dissipation speed of the queue can be calculated based on the traffic flow wave theory:

ωi = Qi
c/
(

ρi
c − ρi

d

)
(15)

where i is the ith intersection; ωi is the dissipation speed of the traffic queue; Qi
c is the

maximum traffic capacity; ρi
c is the traffic density at the maximum capacity and ρi

d is the
density of congested traffic flow.

The dissipation time can be obtained from the queue length Lq and the dissipation
speed ωi.

∆t = Li
q/ωi (16)

Define this time as the additional red light time ∆t, which is the time when the main
vehicle is not allowed to pass through the intersection after the green light is on.

The valid duration of the red light qi
r is the total time that the main vehicle can not

pass through the intersection, so qi
r includes the additional red light time ∆t and the actual

red light time cr of the basic signal. The cycle time Ti is the sum of the valid duration of the
red light qi

r and the valid green light duration qi
g.{

qi
r = ci

r + ∆t
qi

r + qi
g = Ti (17)

By jointly modeling the signal phases and traffic queue, the valid traffic signal model
Si(t) can be obtained:

Si(t) =
{

1, Ti
0 + (j − 1)Ti + ci

r + ∆t < t < Ti
0 + jTi

0, otherwisw
(18)

where j is the jth signal cycle at the ith intersection. The time range of (Ti
0 + (j − 1)Ti +

ci
r + ∆t, Ti

0 + jTi) represents the jth green light window. Si(t) = 1 indicates that the ith

intersection is in the jth valid green light window and the main vehicle can pass through
the ith intersection; otherwise Si(t) = 0 indicates that the ith intersection is in a valid red
light window. Ti

0 is the initial signal offset for the ith intersection.
The speed induction strategy for an isolated intersection is to calculate the most

energy-efficient ecological speed based on the three scenarios of acceleration, decelera-
tion, and stopping in the optimal energy consumption model within the next valid green
light window.

3.4. Multi-Intersections-Based Eco-Approach and Departure Strategy (M-EAD)

Due to the spatiotemporal correlation between multiple traffic signals, the coupling
relationship between the spatial position and signal phases needs to be considered at multi-
intersections. However, The effect of speed control at multi-intersections is not “equal”
to that of the “superposition” of I-EAD. Moreover, there is also a problem of balancing
optimal travel time and energy consumption at multi-intersections. Aiming at breaking
through the limitations of speed planning at isolated intersections, a two-stage optimization
multi-intersections-based eco-approach and departure (M-EAD) strategy was proposed
as shown in Figure 4: in the first stage, the efficient green light window was obtained
under the constraints of vehicle dynamics and signal phases from Figure 4a to Figure 4b;
in the second stage, the optimal vehicle speed trajectory satisfying travel time and energy
consumption under the constraint of the efficient green light window was gained from
Figure 4b to Figure 4c.
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3.4.1. Efficient Green Light Window Model

There are multiple feasible green light windows at each intersection and coupling
relationships of green light windows between adjacent intersections. The efficient green
light window model was established based on directed graph theory. The efficient green
light window planning problem was transformed into finding the shortest path in the
directed graph [38].

The time range of a vehicle arriving at the intersection was calculated. The arrival time
is influenced by two factors. The first factor is the dynamic characteristics of the vehicle.
Vehicles can arrive within the maximum and minimum speed limitations. The shortest and
longest arrival times based on the speed limitations are ti

vmin and ti
vmax, respectively. The

second factor is the valid green light time, which can be calculated and corrected based on
Formula (18) due to signal phases, the current traffic conditions, and queue length. The
shortest global travel time ti

min and longest global travel time ti
max of the vehicle at the ith

intersection can be predicted as follows:{
ti
min = ti−1

min + max
(
ti
νmin −

(
Ti

0 + (j − 1)Ti), ci
r + ∆t

)
ti
max = ti−1

max + min
(
ti
νmax −

(
Ti

0 + jTi), ci
r + ∆t

) (19)

Simplify each intersection as a node and define the set Ai as the set of feasible green
window numbers that can be calculated by dividing the travel time by the signal cycle for
the intersection Si.

Ai =

[
ceil

(
ti
min − Ti

0
Ti

)
, ceil

(
ti
max − Ti

0
Ti

)]
(20)
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where ceil is an integer-up function.
The solution of the directed graph is transformed into minimizing the sum of all

feasible valid green window numbers Wi for all nodes.

Minimize{
Wi ∈ Ai}N

i=1

N

∑
i=1

Wi (21)

The efficient green light window model can be transformed into a simple and classic
shortest path problem, which has the characteristics of a dense graph with fewer nodes.
Therefore, Floyd’s algorithm can be utilized to obtain an efficient green light window and
time series in Formula (21). There are two kinds of possible shortest paths for any node m
to n: directly from m to n and passing through several nodes k from m to n. When k = 0,
there are no nodes between m and n, and the shortest path is the weight from m to n; When
k ≥ 1, Floyd’s algorithm is a process of reducing weights by traversing nodes.

dk
mn = min(dk−1

mn , dk−1
mk + dk−1

kn

)
(22)

where dk
mn represents the distance of the shortest path from node m to n.

3.4.2. Optimal Vehicle Speed Trajectory Model

The appropriate speed and acceleration for each moment for the optimal vehicle speed
trajectory can be selected within the efficient green light window. The model integrates
multiple objectives and constraints and requires comprehensive consideration of goals such
as energy conservation and travel time reduction.

The deep reinforcement learning algorithm was proposed to solve the optimal velocity
trajectory after discretization. The state space x(t) = [v(t), T] is composed of the vehicle
speed v(t) and the global travel time T. The action space u(t) = a(t) is the acceleration
a(t) of the vehicle and is the control variable of the optimization problem. The reward
function consists of two parts: the first part is the objective function of reducing energy
consumption, which is achieved by reducing the total input energy consumption of the
electrical motor. According to Formula (11), the instantaneous energy consumption of an
electric vehicle is affected by the speed v(t) and acceleration a(t). The second part is the
objective function of reducing travel time. The weight factors α1 and α2 can balance and
adjust the goals of energy conservation and travel time reduction. The reward function is
shown in the following formula:

Rt = α1

∫ T

0
P[u(t), x(t)]dt + α2T[u(t), x(t)] (23)

where P[u(t), x(t)] is the instantaneous energy consumption of the electric vehicle.
The safe DQN (deep Q network) reinforcement learning algorithm with experience

replay was used to optimize the speed trajectory. The CNN (convolutional neural network)
that can effectively process spatial structure information was adopted to approximate the
Q-learning function, and the ε− greedy strategy was used to achieve “development” and
“exploration” in reinforcement learning [39].

The existing intelligent agent with state xt selects action ut through the ε− greedy
strategy, executes it in the traffic environment, and obtains reward value Rt and new state
xt+1 after observing the environment. Then, the experience matrix (xt, ut, Rt, xt+1) is stored
in the experience pool. During the training process, a small number of experience samples
are randomly selected from the replay buffer, and the greedy factor is updated through the
stochastic gradient descent algorithm. Repeat the process until the training is completed.
The target Q value can be expressed as:

Q(xt+1, ut+1) = Q(xt, ut) + α
[
Rt+1 + γargmaxQ

(
x′t, u′

t
)
− Q(xt, ut)

]
(24)
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where γargmaxQ(x′t, u′
t) represents the process that the state xt changes to the state x′t after

executing the action ut and the cumulative reward value generated by the best action u′
t

after calculating the loss function. The learning rate α can control the convergence rate of the
algorithm. The discount factor γ ∈ [0, 1] is a parameter to measure the relative importance
of future rewards. The larger the value of γ in the learning process, the more emphasis is
placed on long-term rewards, while the smaller the value of γ, the more emphasis is placed
on immediate rewards.

The relevant parameters setting for the study are as follows: learning rate α is 0.001,
discount factor γ is 0.99, the size of experience pool is 20,000, the sampling batch is 64, and
ε− greedy factor is 0.001. When adjusting the priority parameter of the simulation time, it
is calculated each time step, with a total training time of 3600 s and 200 training iterations.

Constraint conditions are shown as Formulas (25)–(29). Formula (25) is a distance
constraint used to solve the global travel time; Formula (26) is the constraint of the efficient
green light window, where ti is the actual arrival time to reach the intersection Si; Formula
(27) represents the maximum and minimum speed constraints of the vehicle; Formula (28)
represents the constraints on vehicle acceleration and deceleration; Formula (24) represents
the initial state of the problem. The safe DQN algorithm [40] was proposed to determine
the optimal speed trajectory, and interventions were adopted in the action output layer to
ensure that they did not violate the constraints.

d =
∫ T

t=0
v(t)dt (25)

max
(

ti
min, Ti

0 +
(

Wi − 1
)

Ti
)
≤ ti ≤ min

(
ti
max, Ti

0 + WiTi
)

(26)

νmin ≤ ν(t) =
∫

a(t)dt ≤ νmax (27)

admax ≤ a(t) ≤ aamax (28)

v(0) = v0, d(0) = 0 (29)

4. Simulation Results

The simulation background was based on the Autonomous Bus Line 1 of Zhengzhou
Financial Island in Henan Province, China. There are four signalized intersections within
the selected study area, as shown in Figure 5. The distance between each intersection
and the starting point (the first bus stop), green light time, cycle time, traffic volume,
and maximum and minimum speed limitations are shown in Table 1. Using Yutong’s
autonomous bus as the main control vehicle, the relevant parameters of the vehicle are
shown in Table 2. During the simulation process, the parameter values are: initial vehicle
speed is 36 km/h; maximum speed is 50 km/h; minimum speed is 20 km/h; maximum
acceleration is 2.5 m/s2; maximum deceleration is 3.0 m/s2.
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Table 1. Multi-intersections-related simulation parameters.

Intersection
Distance

(m)
Greenlight Time

(s)
Cycle Time

(s)
Traffic Volume

(veh/h)
Speed Limitations/km/h

Maximum Minimum

S1 325 45 90 750 60 20

S2 895 30 90 1056 60 20

S3 1300 45 90 978 60 20

S4 2400 38 90 1152 60 20

Table 2. Vehicle-related simulation parameters.

Parameter Value Parameter Value

vehicle length (m) 12 frontal area (m2) 7.55

total weight (kg) 18,000 wind resistance coefficient 0.67

curb weight (kg) 10,650 rolling resistance coefficient 0.02

passengers/seats 79/29 conversion coefficient of rotating mass 1.04

rated power of motor (kW) 120 transmission ratio of the transmission system 6.33

peak power of motor (kW) 240 rolling radius of the wheel (m) 0.54

maximum torque of motor (Nm) 2800 wheelbase (m) 6

energy consumption per additional unit mass Ekg (Wh/km·kg) 0.161

The SUMO/Matlab/Simulink/Python joint simulation platform was built to verify
the feasibility of I-EAD and M-EAD strategies. The software versions used are as follows:
SUMO 1.16.0, Matlab R2021b, and Python 3.11.5. Simulink Automotive Dynamics Toolbox
is integrated into Matlab software. A simulated road network was built using the real
road environment of Autonomous Bus Line 1 in the SUMO traffic simulation software.
The signal phase, traffic volume, and speed limitations at multi-intersections were set
according to survey data in Table 1. I-EAD and M-EAD strategies were designed mainly
in Python software. The traffic volume, the average vehicle speed, the duration of the
red light time, and the queue length were recorded in SUMO as historical data, and then
the RBF model and the valid traffic signal model were established in Python software to
predict real-time queue length and determine the real-time additional signal spatiotemporal
restricted zone by real-time data from SUMO simulation. The directed graph and the deep
reinforcement learning algorithm were calculated in Python as well to solve the efficient
green light window and the optimal vehicle speed trajectory. The energy consumption
model was established in Matlab/Simulink by inputting parameters in Table 2. Moreover,
the energy consumption of each simulation was also calculated in Matlab/Simulink. The
TraCI (Traffic Control Interface) was used to achieve joint simulation of SUMO, Python,
and Matlab/Simulink. The value of vehicle stata and signal information were obtained by
TraCI.object.getvalue function and were assigned by TraCI.object.setvalue function.

4.1. Energy Consumption Model Results under Different Scenarios

According to the energy consumption model, different acceleration/deceleration/
uniform time will result in different speed trajectories and corresponding energy consump-
tion, as shown in Figure 6.

The relationship between energy consumption and acceleration time under the accel-
eration scenario is shown in Figure 6a. As the acceleration time increases, the acceleration
value decreases gradually during the acceleration process, and at the same time, the total
energy consumption corresponding to different speed trajectories shows a trend of first
decreasing and then increasing. The minimum energy consumption is 0.417 kWh, with an
acceleration time of 8 s and a corresponding acceleration value of 0.234 m/s2.
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Figure 6. Energy consumption corresponds to time under different scenarios: (a) acceleration scenario;
(b) deceleration scenario; (c) stopping scenario.

The relationship between energy consumption and deceleration time in the decelera-
tion scenario is shown in Figure 6b. As the deceleration time increases, the deceleration
value increases gradually; at the same time, the total energy consumption shows a decreas-
ing trend, with a minimum energy consumption of 0.107 kWh and a deceleration value of
0.111 m/s2. This case illustrates that under the deceleration scenario, the lowest energy
consumption will be obtained if the vehicle decelerates constantly to the minimum speed
limitation from the current speed and passes through the intersection at the minimum
speed limitation.

The relationship between energy consumption and uniform time in the stopping sce-
nario is shown in Figure 6c. With the continuous increase of uniform time, the deceleration
time decreases, and the deceleration value increases correspondingly. Meanwhile, total
energy consumption shows a gradual increase. The minimum energy consumption is
0.036 kWh, with a uniform travel time of 0 s and a deceleration value of 0.1667 m/s2.
This case illustrates that when not meeting the conditions of acceleration and decelera-
tion scenarios, the lowest energy consumption will be obtained if the vehicle decelerates
at a constant deceleration value from the current speed to the speed of exactly 0 at the
stopping line.

4.2. Estimation Result of Queue Length

A dataset was generated to estimate queue length using SUMO software. 90% of the
data was selected Randomly as the training set, and 10% of the data was selected as the
testing set. The TensorFlow package was used to build an RBF neural network model in
the Python environment. The training set was trained to predict the queue length, and
the predicted results were compared with the actual queue length, as shown in Figure 7,
indicating that the RBF neural network still exhibits excellent performance in queue length
prediction despite unstable traffic flow.
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4.3. Comparison Results of Speed Planning Strategies

Comparative experiments were conducted to verify the effectiveness of the vehicle
speed induction strategies proposed in this study. Travel energy consumption and travel
time were compared under the same scenario and conditions, such as the same approach
and departure time and the same starting point. Three strategies for vehicle speed planning
were adopted:

1. The intelligent driver model (IDM) mentioned in reference [41] was used as the basic
method for simulation in the study. On the SUMO platform, an IDM car-following
model could be used directly, simulating the process of drivers operating based on
their experience without speed planning. By comprehensively considering factors
such as safe distance between vehicles, speed difference, and expected speed, the
corresponding acceleration was calculated to describe the driver’s behavior, thereby
achieving an adaptive cruise control strategy and safe car-following model;

2. The isolated-intersection-based eco-approach and departure (I-EAD) strategy was
used for speed planning, and then the IDM strategy was used for the car-following
process when the main vehicle was influenced by the preceding vehicle;

3. The multi-intersections-based eco-approach and departure (M-EAD) strategy was
used for speed planning, and then the IDM strategy was also used for the car-
following process;

The simulation results of distance, speed, and acceleration/deceleration over time
when using IDM, I-EAD, and M-EAD strategies are shown in Figures 8 and 9.
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From Figure 9a,b, there is a longer acceleration/deceleration duration and a more
significant speed fluctuation due to frequent acceleration and deceleration process when
adopting the IDM strategy; vehicles stop at the third intersection using I-EAD strategy
based on the valid traffic signal light model; there are no stopping phenomenon and intense
acceleration/deceleration movements throughout the entire process when passing through
four consecutive signalized intersections when using the M-EAD strategy. The preceding
vehicle influences the acceleration fluctuations of I-EAD and M-EAD strategies.

As shown in Table 3, the I-EAD speed guidance strategy reduces energy consumption
by 13.79% and travel time by 27.61% compared to the IDM strategy with multiple go-and-
stop behavior. Compared with IDM and I-EAD strategies, the M-EAD strategy considering
efficient green light windows reduces energy consumption by 21.94% and 9.45% and
travel time by 36.51% and 12.29%, respectively. The M-EAD strategy has shown good
optimization effects in energy conservation and efficient transportation.

Table 3. Simulation results comparison between three strategies.

Strategies
Travel Energy
Consumption Travel Time

Energy Consumption Reduction Travel Time Reduction

IDM I-EAD IDM I-EAD

IDM 3.19 kwh 314.7 s - - - -

I-EAD 2.75 kwh 227.8 s 13.79% - 27.61% -

M-EAD 2.49 kwh 199.8 s 21.94% 9.45% 36.51% 12.29%

4.4. Random Traffic Scenario Verification

Although the above simulation results indicated that the M-EAD strategy had excellent
improvement performance, it was the result of a single typical traffic scenario. It was a
special scene chosen by the authors for the sake of visual effects and a better improvement
effect to make the visualization results more obvious, which could not explain its average
performance in random traffic scenarios. Therefore, 500 simulation experiments under
random traffic scenarios were designed and conducted. A fixed signal was still adopted,
and the initial signal phases and offset were generated randomly in these experiments.

The average energy consumption power and average travel time under a random
traffic scenario were obtained, as shown in Figure 10 and Table 4. The I-EAD strategy
reduces average travel energy consumption and average travel time by 9.10% and 15.78%,
respectively, compared to the IDM strategy. Compared to IDM and I-EAD strategies, M-
EAD reduces average travel energy consumption by 16.65% and 8.31%, and average travel
time decreases by 26.33% and 12.53%, respectively. The above results illustrate that the
M-EAD global green wave ecological speed planning strategy designed in this study for
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continuous signalized intersections has universal advantages both in typical and random
traffic scenarios. At the same time, the optimization effect under a random traffic scenario
is not completely consistent with the typical traffic scenario mentioned above, indicating
that the random traffic environment influences the effectiveness of the strategy, but it shows
overall good optimization results.
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Table 4. Average reduction of energy consumption and travel time between the three strategies.

Strategy
Average Reduction

Energy Consumption Travel Time

I-EAD strategy compared to IDM strategy 9.10% 15.78%
M-EAD strategy compared to IDM strategy 16.65% 26.33%

M-EAD strategy compared to I-EAD strategy 8.31% 12.53%

5. Conclusions

With the rapid development of connected vehicle technology, vehicle–road–cloud inte-
gration has become the future development direction of autonomous vehicles. Compared
with the speed guidance of vehicle-road collaboration, the speed guidance system based
on vehicle–road–cloud integration can simultaneously optimize the speed of multiple
signalized intersections and road sections under the unified monitoring of the cloud control
center while avoiding the time delay caused by dedicated short-range communication
between onboard units and roadside unit. The cloud control center’s powerful comput-
ing and multi-source information fusion capabilities can greatly accelerate computing
speed, ensuring the provision of speed planning in real-time. In response to the reduction
of energy consumption and traffic efficiency caused by intersection congestion, a green
wave ecological global speed planning was investigated based on the vehicle–road–cloud
integration system. The main conclusions and innovations are as follows:

1. Previous scholars have mostly researched green wave speed induction strategies
for fuel vehicles, using the fuel consumption model to construct fuel consumption
optimization objective functions. With the development of the automotive vehicle
industry, most connected autonomous vehicles are pure electric vehicles. Therefore,
electric vehicles were selected as the research object. An instantaneous energy con-
sumption model for electric vehicles using power balance equations was established,
and the optimal consumption model was calculated using acceleration, deceleration,
and stopping scenarios.

2. Previous scholars often only considered signal constraints and did not take into
account the impact of the queue length of social vehicles. A radial basis function
neural network model and a valid traffic signal model were proposed to estimate
the effect of queue length of traffic flow during the green light time at signalized
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intersections. The I-EAD strategy reduces average energy consumption by 9.10% and
average travel time by 15.78%, respectively, compared to the IDM model.

3. A two-stage, multi-intersections-based eco-approach and departure strategy was
established to solve the problem of an efficient green light window and the optimal
vehicle speed trajectory. Compared to IDM and I-EAD strategies, the M-EAD strategy
reduces average travel energy consumption by 16.65% and 8.31% and the average
travel time by 26.33% and 12.53%, respectively.

Although strict assumptions have been clearly stated in the study, such as ignoring the
influence of non-connected vehicles and communication delays, these limitations may affect
the generalizability of the findings in more complex traffic scenarios. While theoretically
robust, the proposed strategies may face challenges in real-world implementation due to
the complexities of integrating vehicle–road–cloud systems at a large scale. Future research
should include real-world trials in diverse traffic environments of different urban settings
to validate the simulation results.
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