
Citation: Ilić, S.; Gnjatović, M.; Tot, I.;

Jovanović, B.; Maček, N.; Gavrilović

Božović, M. Going beyond API Calls

in Dynamic Malware Analysis: A

Novel Dataset. Electronics 2024, 13,

3553. https://doi.org/10.3390/

electronics13173553

Academic Editors: Lixin Wang,

Qiang Ye and Jianhua Yang

Received: 6 August 2024

Revised: 4 September 2024

Accepted: 5 September 2024

Published: 6 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Going beyond API Calls in Dynamic Malware Analysis:
A Novel Dataset
Slaviša Ilić 1,2,* , Milan Gnjatović 2 , Ivan Tot 1, Boriša Jovanović 1 , Nemanja Maček 3

and Marijana Gavrilović Božović 4

1 Department of Military Electronic Engineering, University of Defence, Veljka Lukića Kurjaka 1,
11000 Belgrade, Serbia; ivan.tot@va.mod.gov.rs (I.T.); borisa.jovanovic@vs.rs (B.J.)

2 Department of Information Technology, University of Criminal Investigation and Police Studies, Cara Dušana 196,
11080 Beograd, Serbia; milan.gnjatovic@kpu.edu.rs

3 School of Electrical and Computer Engineering, Academy of Technical and Art Applied Studies, Vojvode Stepe 283,
11000 Beograd, Serbia

4 Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia;
marijana.gavrilovic@kg.ac.rs

* Correspondence: ilic.slavisa@gmail.com

Abstract: Automated sandbox-based analysis systems are dominantly focused on sequences of API
calls, which are widely acknowledged as discriminative and easily extracted features. In this paper,
we argue that an extension of the feature set beyond API calls may improve the malware detection
performance. For this purpose, we apply the Cuckoo open-source sandbox system, carefully config-
ured for the production of a novel dataset for dynamic malware analysis containing 22,200 annotated
samples (11,735 benign and 10,465 malware). Each sample represents a full-featured report generated
by the Cuckoo sandbox when a corresponding binary file is submitted for analysis. To support
our position that the discriminative power of the full-featured sandbox reports is greater than the
discriminative power of just API call sequences, we consider samples obtained from binary files
whose execution induced API calls. In addition, we derive an additional dataset from samples in the
full-featured dataset, whose samples contain only information on API calls. In a three-way factorial
design experiment (considering the feature set, the feature representation technique, and the random
forest model hyperparameter settings), we trained and tested a set of random forest models in a
two-class classification task. The obtained results demonstrate that resorting to full-featured sandbox
reports improves malware detection performance. The accuracy of 95.56 percent obtained for API
call sequences was increased to 99.74 percent when full-featured sandbox reports were considered.

Keywords: dynamic malware analysis; classification; cuckoo; sandbox; API; random forest; dataset

1. Introduction

Due to the rise in the number and complexity of cyber threats, dynamic malware
analysis has become an important part of cyber defense. This type of malware analysis
is often performed in a sandbox environment, i.e., a virtual machine (VM) environment
in which suspected binaries are seeded and their dynamic behavior is monitored. The
monitoring result is represented by a report containing evidence of actions performed by a
given seeded binary.

However, the interpretation of those reports may be a challenging task, e.g., a benign
installation package that generates a significant number of files (which are written to the
disk), registry changes, and other modifications to the target system (starting multiple
processes, establishing network communication, etc.), might not be easily distinguished
from a malware which applies evasion techniques (i.e., a malware that changes its behavior
when it detects that it is being run in a sandbox environment) [1]. Thus, the interpretation
of sandbox reports often requires a human expert, which makes it time consuming.

Electronics 2024, 13, 3553. https://doi.org/10.3390/electronics13173553 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13173553
https://doi.org/10.3390/electronics13173553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3314-5794
https://orcid.org/0000-0002-0343-7596
https://orcid.org/0000-0002-9353-724X
https://orcid.org/0000-0002-3465-7524
https://orcid.org/0000-0002-0144-0767
https://doi.org/10.3390/electronics13173553
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13173553?type=check_update&version=1

Electronics 2024, 13, 3553 2 of 15

To address this problem, relevant machine learning approaches to dynamic malware
analysis are dominantly focused on application programming interface (API) calls extracted
by a sandbox system. However, in our study, we show that a significant part of both malware
and benign software samples do not generate API calls when run in a sandbox environment (cf.
Section 3). Thus, we argue that the extension of a feature set beyond API calls may improve
malware detection performance. In line with this, the paper makes the following contributions:

(i) We produce a novel dataset for dynamic malware analysis, which contains 22,200 la-
beled samples (benign and malware). Each sample represents a report generated by the
open-source sandbox system Cuckoo when a corresponding binary file is submitted for
analysis. These reports contain information on API calls but also on other dynamic behavior
features related to file and registry modification, network traffic, etc. It is important to note
that there are no other publicly available datasets containing both malware and benign
samples represented by a more comprehensive set of features extracted by a sandbox sys-
tem (cf. Section 2). In addition, we describe the configuration of the sandbox system used
in the production of the dataset, aimed at addressing the problem of evasion techniques
applied by some malware samples.

(ii) We practically demonstrate that the extension of the feature set beyond API calls
improves the malware detection performance. We report on two groups of random forest
(RF) models (cf. Ho [2]). The models from the first group were trained and tested on
the reported dataset containing full-featured Cuckoo sandbox reports (including, but not
limited to, API call sequences). The models from the second group were trained and tested
on a dataset derived from the reported dataset, in which each sample is represented by the
extracted sequence of API calls. The obtained results show that the models from the first
group display better performance in terms of accuracy and macro average F1 measure.

The paper is structured as follows. Section 2 covers related and background work.
Section 3 describes the production of the dataset and methods used. Section 4 reports on
the experimental settings, results, and optimization. In Section 5, we discuss the results.
Finally, Section 6 concludes the paper.

2. Background and Related Work

With respect to the feature extraction task, the field of machine learning for dynamic
malware analysis tasks includes two main research directions. The first direction is domi-
nant and supported by datasets containing only API call sequences (cf. Section 2.1). The
other direction is significantly less practiced but promising and is based on the assumption
that there are additional significant features beyond the API call sequence (cf. Section 2.2).

2.1. API Call Feature Sets

In the given context, API refers to a part of an operational system which, inter
alia, enables programs to access resources such as system files, processes, services, etc.
(Mira et al. [3]). In the cyber-security community, API call sequences have been acknowl-
edged as indicative of malware detection (Deore et al. [4]). The main idea underlying
these approaches is that API call sequences reflect the malware behavior and that malware
variants display similar API call-based behavior. For an overview of malware detection
using API call sequences, the reader may consult [3].

Düzgün et al. [5] and Alshmarni et al. [6] report on datasets produced by the Cuckoo
sandbox. The dataset presented by Düzgün et al. [5] contains a significant number
(i.e., 24,411) of categorized malware samples but does not include benign samples. The
dataset presented by Alshmarni et al. [6] contains both benign and malware samples, but
their number is somewhat reduced (i.e., 1080 benign and 2576 malware). In addition, both
of these datasets contain a restricted feature set since each sample is represented as only a
sequence of API calls.

Syeda and Asghar [7] report on a dataset containing samples from Windows Portable Exe-
cutable files. This dataset is relatively small (582 malware and 438 benign samples) and contains
API calls only. Six machine learning models were evaluated on this dataset, including inter alia

Electronics 2024, 13, 3553 3 of 15

ensemble methods RF and XGBoost. The RF model displayed the best classification accuracy.
Zhang et al. [8] propose an approach to malware detection based on recurrent neural networks
(including TextRNN and bidirectional long short-term memory network) and self-attention
mechanisms applied to API call sequences. Huang et al. [9] apply a clustering algorithm to
API call sequences to capture a common behavior of malware families and then train a neural
network on the recorded sequences. Other papers also deal with different approaches to API
calls: Huang et al. [10] propose a model based on a sequence-to-sequence neural network and
an attention mechanism and evaluate it on sequences of API calls. Chen et al. [11] propose an
image-based interpretation of API existence, API sequence, and API frequency features and
apply deep transfer learning to generated images.

To further improve malware detection performance, a significant number of re-
searchers have considered additional API call-based features. Alhashmi et al. [12] apply the
TF-IDF transformation to extract features from API calls retrieved by means of the static
analysis of PE files and dynamic analysis of API hooks. Lee et al. [13] report on a sandbox-
like implementation called ARBDroid, designed to analyze obfuscated malware on the
Android platform and extract instructions, string values, and API calls. Chen et al. [14]
extend the set of API calls with indicators of compromise. Yau et al. [15] consider additional
API-based statistical features such as return values and the number of times the API is
called. Xu and Chen [16] model a malware instance as a behavioral tree generated from an
API call sequence, which describes the control structure between the API calls. Li et al. [17]
propose a hybrid feature encoder aimed at extracting semantic features from API names
and arguments and generating an API call graph that captures the relations between the
API calls. Li et al. [18] apply dynamic analysis and embedding techniques to encode an
API sequence, introducing a soft threshold mechanism in a residual network to achieve
active filtering of noise components in API sequences. They resort to a BiLSTM model to
enhance the temporal correlation among API sequence calls and improve the classification
performance. Nunes et al. [19] emphasize the difference between capturing API calls at the
user and kernel levels with respect to the classifier’s ability to detect malware. Li et al. [20]
introduced the PrefixSpan algorithm designed to mine frequent API call sequences from
various threads within an execution trace and capture malware behavior sequences.

2.2. More Comprehensive Feature Sets

In contrast to these API call-focused approaches to dynamic malware analysis, some
recent efforts are based on more comprehensive feature sets. Jindal et al. [21] produced
four datasets containing reports generated by the Cuckoo sandbox and another commercial
sandbox. Two sources have served as input to the sandboxes: a vendor dataset (13,760 be-
nign and 13,760 malware) and a dataset derived by random sample selection from the
publicly available EMBER dataset for static file analysis (cf. Anderson and Rothl [22]). How-
ever, none of these four datasets are publicly available. In the data preprocessing phase,
Jindal et al. [21] tokenize the sandbox reports and keep the top 10,000 most common words.
In addition, they introduce a classification model that integrates a convolutional neural
network, a bidirectional long short-term memory network, and an attention network.

Another commendable approach is introduced by Bosansky et al. [23]. They report on
a malware dataset with a significant number of samples (i.e., 48,976 samples) generated
by the CAPE sandbox. Another advantage of this dataset is that each sample is labeled
with respect to the malware family it belongs to. On the other hand, this dataset does not
contain benign samples and considers only six malware families. For example, ransomware
samples are not included, which explains the fact that the maximum report size of the
considered samples does not exceed 1 GB (the size of the entire unpacked dataset is 563 GB).
Bosansky et al. [23] apply the hierarchical multi-instance learning (HMIL) paradigm to
process the collected sandbox reports.

Herrera-Silva and Hernández-Álvarez [24], Irshad and Dutta [25], and Sraw and Ku-
mar [26] extend the API call feature set with limited sets of hand-selected features derived from
the Cuckoo sandbox reports. These sets contain 50, 5, and 8 additional features, respectively,

Electronics 2024, 13, 3553 4 of 15

relating to, e.g., registry entries, network traffic, etc. They demonstrate that additional features
improve malware detection performance. Finally, Sethi et al. [27] extend the API call feature set
with a set of features automatically extracted from the Cuckoo sandbox reports. The additional
features were extracted by means of the chi-square test and RF algorithms. However, none of
these approaches to feature engineering utilize complete sandbox reports.

2.3. Position of Our Approach

Our approach is in line with the second research direction. In line with Refs. [21,23], we
produce a dataset containing reports generated by the Cuckoo sandbox. However, in contrast to
Ref. [21], we do not consider only a subset of the most common words in the generated reports.
Starting from the expectation that less frequent words may have significant information gain, we
consider entire and unaltered reports generated by the sandbox system. This means that we do
not apply any preprocessing or cleaning technique prior to the feature extraction stage.

In contrast to Ref. [23], we include benign samples and additional malware families,
which increases the size of the generated reports, e.g., over 1 GB for 228 malware samples.
In addition, it should be noted that there are no other publicly available datasets containing
full-featured sandbox reports with such a large number of samples.

Another distinction of our approach is related to the methodology. Recent methodological
approaches are focused on recurrent neural networks and attention mechanisms [8,10,11,21]
or ensemble detectors, taking into account the observation window [1], which reflects the
conceptualization of the underlying features as sequence-like structures. In contrast to them, in
our approach, we step away from this conceptualization and apply the random forest model (as
in Ref. [7]), which is based on the information gain of the underlying features rather than on
their sequentiality.

3. Materials and Methods

One of the aims of this work is to produce a new dataset that meets the desiderata of
representativeness, i.e., a dataset for dynamic malware analysis that contains a sufficient
number of both benign and malware samples, represented by a more comprehensive
set of features generated by the Cuckoo sandbox. The production of this dataset can be
summarized in the following points:

(i) Selection and safe management of malware files. The collection of 450,000 malware file
samples was acquired from the Virus Total database [28], which is considered referential in
the professional community. From this file set, we programmatically selected 10,465 samples
without subjective bias for inclusion in the dataset. Each malware sample taken from this
database is provided in the form of a binary file without extension but with the accompanying
JSON file that describes the given sample. In addition, we took measures to ensure that the
management of the malware files does not compromise the lab environment set for the purpose
of dataset production. The file samples were stored on the disk without extensions. Immediately
before the submission of a sample to the sandbox, its extension was automatically extracted
from a corresponding JSON file and added to the sample, making it suitable for execution. After
collecting sandbox results, the extension was again removed.

(ii) Selection of benign files. We collected 74,000 real-life benign files representing correspon-
dence documents and Windows 10 installation executables and libraries (e.g., .exe, .dll, .com,
etc.), taken with permission from the archive of a technical company located in Serbia. The
company was equipped with cyber-security protection and monitoring tools, and no malware
activities have been detected over several years. From this file set, we programmatically selected
11,739 samples without subjective bias for inclusion in the dataset.

(iii) Dataset comprehensiveness. The dataset comprehensiveness was considered with
respect to two separate but related aspects: diversity of the collected file types and repre-
sentation of a file sample. The reported dataset contains samples (i.e., reports generated by
the sandbox) related to 54 file types. The distribution of the samples with respect to file
type is provided in Table 1 (cf. the “Full rep.” columns). In addition, for each file type, this
table provides the number of samples that include API calls (cf. the “API calls” columns).

Electronics 2024, 13, 3553 5 of 15

Table 1. File type distribution in the dataset.

File Type
Benign Instances # Malware

Instances File Type
Benign
Instances

Malware
Instances

Full rep. API Calls Full rep. API Calls Full rep. API Calls Full rep. API Calls

exe 1395 344 7097 6597 Xlsm 0 0 5 5

dll 6574 3354 238 237 accdb 5 5 0 0

doc 1659 1659 947 947 Cat 5 5 0 0

xls 631 631 477 475 Gdl 5 5 0 0

txt 4 0 803 803 xml 5 5 0 0

fxp 558 558 0 0 Db 4 0 0 0

docx 0 0 269 269 Pptx 0 0 4 4

pdf 118 0 120 0 Sch 3 3 0 0

cdx 223 0 0 0 Ppt 0 0 3 3

dbf 222 222 0 0 Avi 2 2 0 0

xlsx 0 0 190 190 Bin 2 2 0 0

prg 138 138 0 0 bmp 2 0 0 0

html 0 0 128 128 Och 2 2 0 0

none 0 0 60 59 Tbk 2 2 0 0

ppd 52 52 0 0 Msg 0 0 2 2

docm 0 0 45 45 agcoc 1 1 0 0

fpt 35 35 0 0 Bak 1 1 0 0

fpx 0 0 33 33 Fmt 1 1 0 0

zip 7 0 17 0 Ico 1 0 0 0

rar 0 0 24 23 Mem 1 1 0 0

htm 19 19 0 0 Ms 1 1 0 0

crt 12 12 0 0 New 1 1 0 0

inf 10 10 0 0 pr1 1 1 0 0

bat 9 9 0 0 Ses 1 1 0 0

dat 8 0 0 0 Json 0 0 1 1

ini 8 8 0 0 mp3 0 0 1 1

lnk 7 7 0 0 Rtf 0 0 1 1

Total: 11,735 7097 10,465 9823

The rows marked with grey highlight the file type classes containing samples that did not generate API calls,
which is elaborated in more detail in Table 2.

For each file type, Table 1 provides information on:

• Number of benign files belonging to the given file type (cf. column “# Benign
instances”—“Full rep.”).

• Number of benign files belonging to the given file type whose execution generates
API calls (cf. column “# Benign instances”—“API calls”).

• Number of malware files belonging to the given file type (cf. column “# Malware
instances”—“Full rep.”).

• Number of malware files belonging to the given file type whose execution generates
API calls (cf. column “# Malware instances”—“API calls”).

From Table 1, it can be derived that 23.78 percent of the produced sandbox reports
do not include API calls, i.e., there are 5280 such samples: 4638 benign and 642 malware.
The distribution of samples that do not include API calls with respect to file type is shown
in Table 2. It is common that benign files do not induce operating system API calls, e.g.,
in cases when they do not create files or access the registry, etc. On the other hand, it is

Electronics 2024, 13, 3553 6 of 15

common that malware samples induce API calls, as they are designed to be lightweight
(easily downloadable) and access the registry and files, etc. However, it can be observed
from Table 2 that approximately 6 percent of malware samples do not induce API calls. We
assume that these malware samples are intentionally developed not to apply operating
system APIs in order to avoid antivirus behavioral analysis and possible sandbox detection
based on API calls.

In contrast to the existing datasets, which represent file samples as sequences of API
calls, we consider a more comprehensive set of features provided by the Cuckoo sandbox.
Besides the API calls, we collect additional features relevant to dynamic malware analysis
related to the following:

• Static and dynamic analysis based on YARA rules for code packing, obfuscation, etc.;
• Registry editing;
• File creation and modification;
• Network access;
• Checking user activities and other evasion techniques and behaviors of file samples, etc.

Table 2. The distribution of samples that do not include API calls with respect to file type.

File Type Extension Instances Benign Instances Malware Instances

dll 3221 3220 1

exe 1551 1051 500

pdf 238 118 120

cdx 223 223 0

zip 24 7 17

dat 8 8 0

txt 4 4 0

db 4 4 0

xls 2 0 2

bmp 2 2 0

rar 1 0 1

ico 1 1 0

none 1 0 1

5280 4638 642

Without omitting the basic static analysis, which is included in the Cuckoo sandbox,
we do not perform additional analysis of static features (like in Taheri et al. [29,30]) or
compare static and dynamic analyses. We focus our attention on dynamic malware analysis
based on raw full-featured sandbox reports (without giving preferences to a particular
feature subset), which serve as input for automatic feature extraction techniques and
machine learning models.

The produced dataset, which we refer to as the full-featured dataset, is organized in
two folders containing benign and malware samples. The size of the malware sample folder
is 935 GB, and the size of the benign sample folder is 34 GB. Both folders are organized in
subfolders whose names correspond to file type extensions (e.g., “dll”, “exe”, “doc”, etc.).
The malware samples folder is of greater size because the malware files induced more
activities in the sandbox environment than the benign files. Two short segments from JSON
reports are given in Figure 1.

Electronics 2024, 13, 3553 7 of 15

Electronics 2024, 13, x FOR PEER REVIEW 8 of 16

sandbox system. Thus, the generated sandbox analysis reports were of significant size (i.e.,

multiple gigabytes). To process such large inputs during the generation of machine learn-

ing models, it was necessary to adjust the Python runtime environment by increasing the

maximum recursion depth in order to allow for the loading of entire reports from JSON

files. Without this change it would not be possible to deal with reports of significant size.

Figure 1. Example segments of benign (left) and malware (right) JSON reports generated by the

Cuckoo sandbox.

(viii) Generation of the API call dataset for the feature ablation study. One of the aims of

this study is to demonstrate that the discriminative power of the full-featured sandbox

reports discussed in (iii) is greater than the discriminative power of just API call se-

quences. Thus, for the purpose of the ablation study, we derive a subset that we refer to

as the API call dataset. Samples in this dataset contain only information on API calls de-

rived from samples in the full-featured dataset (cf. the “API calls” columns in Table 1). The

generation of the API call dataset was performed automatically by applying a regular ex-

pression-based Python script. The size of the benign and malware portions of the API call

dataset are 848 MB and 18 GB, respectively.

4. Results

4.1. Model and Metrics Selection

In Section 2.3, we briefly discussed the application of random forest models in our

malware analysis system. For this purpose, we resort to the scikit-learn library (cf.

Pedregosa et al. [32]). However, the training and validation of the underlying models have

been performed in experimental settings. We apply a three-way factorial design, i.e., we

consider three independent variables: the feature set, the feature representation technique,

and the random forest model hyperparameter settings.

The first independent variable is related to the feature set and has two levels: we ap-

ply a dataset containing full-featured reports generated by the Cuckoo sandbox and a da-

Figure 1. Example segments of benign (left) and malware (right) JSON reports generated by the
Cuckoo sandbox.

The malware samples are randomly selected from the Virus Total database, which
contains real-world malware examples. The manual inspection of the sandbox reports
showed the following:

• Some reports are very big in size (over 2 GB).
• Some samples apply obfuscation techniques (discovered in the basic static file analysis

conducted by the sandbox system).
• Some samples implement evasion techniques: checking the browser history, checking

whether the running environment is virtual, checking whether a debugger is present, etc.

The benign samples are also real-world files produced over a several-year period by
users who were oblivious to the goals of this research.

Thus, we believe that the reported dataset represents a comprehensive real-world
representation of both malware and benign samples.

(iv) Configuration of the sandbox system. The Cuckoo sandbox version 2.0.7 was used (i.e.,
the latest release at the moment of this study) based on Python version 2. These particular
settings required additional efforts to select correct program dependencies, i.e., adjusting
dependency information among program variables, which is discussed in Ilić et al. [31].
Except for the Cuckoo sandbox system, all other codes used in the conduction of this
research (i.e., codes for sample submission, reports collection, manipulation, training and
validation of machine models, visualization of the results, etc.) were implemented in the
latest Python 3 version.

Electronics 2024, 13, 3553 8 of 15

(v) Selection of the analysis virtual machine operating system. We set a basic configuration
of a Windows 7 virtual machine, which is more vulnerable with respect to malware attacks
than more recent operating systems. Microsoft Office 2013 is installed, which supports a
wide set of document formats present in the dataset.

(vi) Configuration of anti-evasion techniques. We introduced or enabled a set of anti-
evasion techniques in the Cuckoo sandbox:

• We configured a Python agent, which monitors events while file samples are being
executed and runs silently in the background.

• The analysis virtual machine is configured with usage history and data, a custom
username, and software. Special attention was devoted to the browsers’ history since
we previously noticed frequent checks of Internet browser activities conducted by
some malware samples.

• The VMware tools were intentionally omitted, and processing resources of the analysis
virtual machine were unusually abundant for a sandbox in order to prevent sophisti-
cated malware samples from recognizing and evading the sandbox techniques.

• The user action imitation technique (e.g., mouse move, click, etc.) integrated into the
Cuckoo sandbox was enabled, and the execution time was increased to two minutes
per file sample.

• The analysis virtual machine had limited Internet access with the firewall configured
in front of the laboratory environment.

(vii) Configuration of the Python runtime environment. Some malware file samples, e.g.,
ransomware samples, perform a significant number of activities when executed in the
sandbox system. Thus, the generated sandbox analysis reports were of significant size
(i.e., multiple gigabytes). To process such large inputs during the generation of machine
learning models, it was necessary to adjust the Python runtime environment by increasing
the maximum recursion depth in order to allow for the loading of entire reports from JSON
files. Without this change it would not be possible to deal with reports of significant size.

(viii) Generation of the API call dataset for the feature ablation study. One of the aims of
this study is to demonstrate that the discriminative power of the full-featured sandbox
reports discussed in (iii) is greater than the discriminative power of just API call sequences.
Thus, for the purpose of the ablation study, we derive a subset that we refer to as the API
call dataset. Samples in this dataset contain only information on API calls derived from
samples in the full-featured dataset (cf. the “API calls” columns in Table 1). The generation
of the API call dataset was performed automatically by applying a regular expression-based
Python script. The size of the benign and malware portions of the API call dataset are 848
MB and 18 GB, respectively.

4. Results
4.1. Model and Metrics Selection

In Section 2.3, we briefly discussed the application of random forest models in our
malware analysis system. For this purpose, we resort to the scikit-learn library (cf. Pe-
dregosa et al. [32]). However, the training and validation of the underlying models have
been performed in experimental settings. We apply a three-way factorial design, i.e., we
consider three independent variables: the feature set, the feature representation technique,
and the random forest model hyperparameter settings.

The first independent variable is related to the feature set and has two levels: we apply
a dataset containing full-featured reports generated by the Cuckoo sandbox and a dataset
whose samples contain only API call sequences. Both datasets described in the previous
section (i.e., the full-featured and API call datasets) are transformed into pandas data structures
(cf. McKinney et al. [33]) and stored as Python pickle files (i.e., byte streams). In addition, each
sample is annotated: the label “0” is assigned to benign samples and “1” to malware samples.
However, the full feature dataset was further processed. Since the malware part of this dataset
was too big to fit into RAM memory, we divided it into three consecutive Python pickle files
and then performed the subsampling process in the following steps:

Electronics 2024, 13, 3553 9 of 15

• Loading the panda’s data frames and shuffling them.
• Subsampling, i.e., we randomly selected 70 percent of each panda’s data frame, keep-

ing the original textual reports representing the selected samples.
• Storing, i.e., all subsample instances were stored in one data frame, which is addition-

ally shuffled. This data frame was transformed into a pickle file.

After this subsampling phase, the selected part of the full features dataset contained
15,542 randomly selected samples (i.e., 8217 benign and 7325 malware).

The second independent variable is related to the feature representation technique
and has two levels: we apply the count vectorizer (CV) and the term frequency-inverse
document frequency vectorizer (TF-IDF), cf. Pedregosa et al. [32]. Using these techniques,
we wanted to examine whether taking into account the importance of a feature to a sample
(TF-IDF) will improve performance when compared to taking only term frequencies (CV)
into account. For both feature representation techniques, we randomly divided each of
the given datasets into a training set (80 percent) and a validation set (20 percent). After
combining the first two independent variables (i.e., 2 feature sets × 2 feature representation
techniques), we generated four pickle-based datasets:

• Full-featured samples represented by CV;
• Full-featured samples represented by TF-IDF;
• API calls samples represented by CV;
• API calls samples represented by TF-IDF;

which serve as points of departure for model training and validation.
The third independent variable relates to the random forest model hyperparameters. The

first considered hyperparameter is the number of trees in a random forest. This parameter
takes values ranging [1, 100]. Other hyperparameters of an RF model include the following:
max_depth, min_samples_split, min_samples_leaf, and max_features, each of which takes three distinct
values ([None, 100, 1000], [2, 100, 1000], [1, 100, 1000], and [sqrt, 0.1, 0.2], respectively). The
hyperparameter values are discussed in more detail in Section 4.3.

We apply information gain to estimate the discriminative power of an explanatory
feature with respect to the class feature (i.e., the “criterion” hyperparameter was set to the
value “entropy”). Finally, we applied the accuracy measure as the dependent variable.

When the independent variables were combined, we obtained a 2 × 2 × (100 × 9)
factorial design, i.e., we trained and tested 3600 random forest models.

4.2. Experiment

With respect to the underlying dataset (i.e., feature set), these models can be divided into
four groups, each of which contains 900 models. Table 3 provides additional information for
the optimal model among each of the considered groups. For each of these models, a set of
evaluation measure values have been provided (i.e., validation accuracy, precision, and recall for
each class, and macro average precision, recall, and F1-score), and information of the underlying
dataset (i.e., the number and distribution of samples and the number of features).

The first group of models is related to the experimental condition concerning the full-
featured reports represented with CV. Figure 2(left) provides a graphical representation of the
validation accuracy with respect to the number of decision trees in a random forest model. The
maximum validation accuracy of 99.74 percent was obtained for the random forest model with
seven trees. The confusion matrix obtained for this model is given in Figure 2(right), and the
derived evaluation measures are provided in Table 3 (cf. the second column).

Table 3. Results, control mechanisms, and metrics in RF.

CV Full TF-IDF Full CV API Calls TF-IDF API Calls

Num. of trees in the optimal model 7 26 32 66

Validation accuracy (%) 99.74 99.68 95.56 95.4

Precision (benign) 0.997 0.997 0.935 0.933

Electronics 2024, 13, 3553 10 of 15

Table 3. Cont.

CV Full TF-IDF Full CV API Calls TF-IDF API Calls

Precision (malware) 0.998 0.996 0.982 0.982

Macro average precision 0.997 0.998 0.959 0.957

Recall (benign) 0.998 0.997 0.985 0.985

Recall (malware) 0.996 0.998 0.921 0.918

Macro-average recall 0.997 0.995 0.953 0.952

Macro-average F1 0.997 0.997 0.954 0.954

Num. of samples 15,542 0.997 15,542 15,542

Num. of features 25,066,934 25,066,934 294 294

Benign samples 8217 8217 4968 4968

Malware samples 7325 7325 6891 6891

Electronics 2024, 13, x FOR PEER REVIEW 10 of 16

model. The maximum validation accuracy of 99.74 percent was obtained for the random

forest model with seven trees. The confusion matrix obtained for this model is given in

Figure 2(right), and the derived evaluation measures are provided in Table 3 (cf. the sec-

ond column).

Table 3. Results, control mechanisms, and metrics in RF.

 CV Full
TF-IDF

Full

CV API

Calls
TF-IDF API Calls

Num. of trees in the optimal model 7 26 32 66

Validation accuracy (%) 99.74 99.68 95.56 95.4

Precision (benign) 0.997 0.997 0.935 0.933

Precision (malware) 0.998 0.996 0.982 0.982

Macro average precision 0.997 0.998 0.959 0.957

Recall (benign) 0.998 0.997 0.985 0.985

Recall (malware) 0.996 0.998 0.921 0.918

Macro-average recall 0.997 0.995 0.953 0.952

Macro-average F1 0.997 0.997 0.954 0.954

Num. of samples 15,542 0.997 15,542 15,542

Num. of features 25,066,934 25,066,934 294 294

Benign samples 8217 8217 4968 4968

Malware samples 7325 7325 6891 6891

Figure 2. Full-featured reports represented with CV: (left) a graphical representation of the valida-

tion accuracy with respect to the number of decision trees in a random forest model; (right) the

confusion matrix obtained for the optimal random forest model (0—benign, 1—malware).

The second group of models is related to the experimental condition concerning the

full-featured reports represented with TF-IDF. A graphical representation of the evalua-

tion results is provided in Figure 3(left). The maximum validation accuracy of 99.68 per-

cent was obtained for the random forest model with 26 trees. The confusion matrix ob-

tained for this model is given in Figure 3(right), and the derived evaluation measures are

provided in Table 3 (cf. the third column).

Figure 2. Full-featured reports represented with CV: (left) a graphical representation of the validation
accuracy with respect to the number of decision trees in a random forest model; (right) the confusion
matrix obtained for the optimal random forest model (0—benign, 1—malware).

The second group of models is related to the experimental condition concerning the full-
featured reports represented with TF-IDF. A graphical representation of the evaluation results is
provided in Figure 3(left). The maximum validation accuracy of 99.68 percent was obtained for
the random forest model with 26 trees. The confusion matrix obtained for this model is given in
Figure 3(right), and the derived evaluation measures are provided in Table 3 (cf. the third column).

Electronics 2024, 13, x FOR PEER REVIEW 11 of 16

Figure 3. Full-featured reports represented with TF-IDF: (left) a graphical representation of the val-

idation accuracy with respect to the number of decision trees in a random forest model; (right) the

confusion matrix obtained for the optimal random forest model (0—benign, 1—malware).

The third group is related to the experimental condition concerning the API calls se-

quences dataset represented with CV. The evaluation results are provided in Figure 4. The

maximum validation accuracy of 95.56 percent was obtained for the random forest model

with 32 trees (cf. also fourth column of Table 3).

Figure 4. API call sequences represented with CV: (left) a graphical representation of the validation

accuracy with respect to the number of decision trees in a random forest model, (right) the confusion

matrix obtained for the optimal random forest model (0—benign, 1—malware).

Finally, the fourth group is related to the experimental condition concerning the API

calls sequence dataset represented with TF-IDF. The evaluation results are provided in

Figure 5. The maximum validation accuracy of 95.4 percent was obtained for the random

forest model with 66 trees (cf. also the fifth column of Table 3).

Figure 3. Full-featured reports represented with TF-IDF: (left) a graphical representation of the
validation accuracy with respect to the number of decision trees in a random forest model; (right) the
confusion matrix obtained for the optimal random forest model (0—benign, 1—malware).

Electronics 2024, 13, 3553 11 of 15

The third group is related to the experimental condition concerning the API calls
sequences dataset represented with CV. The evaluation results are provided in Figure 4.
The maximum validation accuracy of 95.56 percent was obtained for the random forest
model with 32 trees (cf. also fourth column of Table 3).

Electronics 2024, 13, x FOR PEER REVIEW 11 of 16

Figure 3. Full-featured reports represented with TF-IDF: (left) a graphical representation of the val-

idation accuracy with respect to the number of decision trees in a random forest model; (right) the

confusion matrix obtained for the optimal random forest model (0—benign, 1—malware).

The third group is related to the experimental condition concerning the API calls se-

quences dataset represented with CV. The evaluation results are provided in Figure 4. The

maximum validation accuracy of 95.56 percent was obtained for the random forest model

with 32 trees (cf. also fourth column of Table 3).

Figure 4. API call sequences represented with CV: (left) a graphical representation of the validation

accuracy with respect to the number of decision trees in a random forest model, (right) the confusion

matrix obtained for the optimal random forest model (0—benign, 1—malware).

Finally, the fourth group is related to the experimental condition concerning the API

calls sequence dataset represented with TF-IDF. The evaluation results are provided in

Figure 5. The maximum validation accuracy of 95.4 percent was obtained for the random

forest model with 66 trees (cf. also the fifth column of Table 3).

Figure 4. API call sequences represented with CV: (left) a graphical representation of the validation
accuracy with respect to the number of decision trees in a random forest model, (right) the confusion
matrix obtained for the optimal random forest model (0—benign, 1—malware).

Finally, the fourth group is related to the experimental condition concerning the API
calls sequence dataset represented with TF-IDF. The evaluation results are provided in
Figure 5. The maximum validation accuracy of 95.4 percent was obtained for the random
forest model with 66 trees (cf. also the fifth column of Table 3).

Electronics 2024, 13, x FOR PEER REVIEW 12 of 16

Figure 5. API call sequences represented with TF-IDF: (left) a graphical representation of the vali-

dation accuracy with respect to the number of decision trees in a random forest model; (right) the

confusion matrix obtained for the optimal random forest model (0—benign, 1—malware).

4.3. Computing Resources and Trade‐Offs

The training and testing of the underlying models were performed on a Debian

server VM, with resources of 16 virtual CPUs, approximately 900 GB of DDR5 memory,

and a 2.5 TB virtual hard disk. During the feature extraction process (by applying the CV

and TF-IDF techniques), the entire memory was used, which occasionally caused unex-

pected termination of the Python scripts until we performed the random subsampling of

the malware part of the dataset to 70 percent of its initial size. The value of 70 percent was

determined in a process of iterative subsampling in steps of 5 percent, aimed at determin-

ing the maximum dataset size, which will engage the entire memory but not cause an

unexpected termination of the Python scripts.

The results of the further optimization process are shown in Table 4, where each row

represents the group of 100 RF models, in which the hyperparameter representing the

number of trees (i.e., n_estimators parameter) takes values in the range [1, 100]. The col-

umns are organized as follows:

 Random forest hyperparameters (max_depth, min_samples_split, min_samples_leaf, and

max_features) represent parameter values applied to each RF group of models in the

optimization process.

 Computing resources (Exec. time, Max. RAM cons., Max. CPU cons.) describe the

resources required to load the extracted features from the files stored on the disk

(previously saved to the pickle file for both CV and TF-IDF) and to train and test the

RF models.

 Results provide the maximum validation accuracy in the group and the number of

trees in an RF model at which it was obtained.

The maximum accuracy values (cf. cells marked in blue in the last column) were ob-

tained with the combination of a max_depth value of 100 and max_features of 0.2 but at a

significant cost in terms of execution time (over 70 and 60 h for full reports dataset with

CV and TF-IDF, respectively; cf. cells marked in light red). Additional experimental set-

tings, which obtained slightly lower but still satisfying validation accuracies at signifi-

cantly lower execution times, are marked in green.

Figure 5. API call sequences represented with TF-IDF: (left) a graphical representation of the
validation accuracy with respect to the number of decision trees in a random forest model; (right) the
confusion matrix obtained for the optimal random forest model (0—benign, 1—malware).

4.3. Computing Resources and Trade-Offs

The training and testing of the underlying models were performed on a Debian
server VM, with resources of 16 virtual CPUs, approximately 900 GB of DDR5 memory,
and a 2.5 TB virtual hard disk. During the feature extraction process (by applying the
CV and TF-IDF techniques), the entire memory was used, which occasionally caused
unexpected termination of the Python scripts until we performed the random subsampling
of the malware part of the dataset to 70 percent of its initial size. The value of 70 percent
was determined in a process of iterative subsampling in steps of 5 percent, aimed at
determining the maximum dataset size, which will engage the entire memory but not cause
an unexpected termination of the Python scripts.

The results of the further optimization process are shown in Table 4, where each row
represents the group of 100 RF models, in which the hyperparameter representing the

Electronics 2024, 13, 3553 12 of 15

number of trees (i.e., n_estimators parameter) takes values in the range [1, 100]. The columns
are organized as follows:

• Random forest hyperparameters (max_depth, min_samples_split, min_samples_leaf, and
max_features) represent parameter values applied to each RF group of models in the
optimization process.

• Computing resources (Exec. time, Max. RAM cons., Max. CPU cons.) describe the
resources required to load the extracted features from the files stored on the disk (previously
saved to the pickle file for both CV and TF-IDF) and to train and test the RF models.

• Results provide the maximum validation accuracy in the group and the number of
trees in an RF model at which it was obtained.

Table 4. RF optimization and computing resources.

Random Forest Hyperparameters Computing Resources Results

Datasets Max_depth Min_samples_split Min_samples_leaf Max_features Exec.
Time (h)

Max. RAM
Cons. (GB)

Max. CPU
Cons. (%)

Trees at
Max. Acc.

Max.
Validation

Accuracy (%)
1

Full
reports

CV

None 2 1 sqrt 7.00 19,3 6 89 99.067
2 100 2 1 sqrt 7.80 19.3 6.7 93 99.099
3 None 100 1 sqrt 6.25 17.8 6.78 25 98.874
4 None 2 100 sqrt 5.90 18 6.47 72 89.836
5 None 2 1 0.1 50.21 18.31 6.47 45 99.742
6 1000 2 1 sqrt 7.01 18.34 6.81 87 99.067
7 None 1000 1 sqrt 5.50 18 6.5 33 98.617
8 None 2 1000 sqrt 7.75 18 6.5 69 76.841
9 100 2 1 0.2 70.84 45 22 7 99.743
10

Full
reports
TF-IDF

None 2 1 sqrt 6.11 20 7 86 99.035
11 100 2 1 sqrt 7.50 20 7 86 99.035
12 None 100 1 sqrt 5.34 18.8 7 79 98.617
13 None 2 100 sqrt 5.00 18 6.44 95 92.879
14 None 2 1 0.1 43.33 19 6.38 94 99.614
15 1000 2 1 sqrt 6.00 19.03 6.47 16 98.874
16 None 1000 1 sqrt 5.00 19.99 6.62 51 97.813
17 None 2 1000 sqrt 5.00 18.44 6,7 55 79.607
18 100 2 1 0.2 61.09 20.4 7 26 99.678
19

API
callsCV

None 2 1 sqrt 0.06 18 6 33 95.529
20 100 2 1 sqrt 0.06 18 6 79 95.529
21 None 100 1 sqrt 0.06 18 6 9 94.854
22 None 2 100 sqrt 0.06 18 6 8 92.536
23 None 2 1 0.1 0.06 18 6 21 95.433
24 1000 2 1 sqrt 0.06 18 6 13 95.497
25 None 1000 1 sqrt 0.06 18 6 38 93.921
26 None 2 1000 sqrt 0.06 18 6 16 78.868
27 100 2 1 0.2 0.09 18 6 32 95.561
28

API
callsTF-

IDF

None 2 1 sqrt 0.07 18 6.5 43 95.24
29 100 2 1 sqrt 0.07 18 6.5 43 95.24
30 None 100 1 sqrt 0.05 18 6.5 22 94.757
31 None 2 100 sqrt 0.03 18 6.5 42 93.149
32 None 2 1 0.1 0.08 18 6.5 92 95.368
33 1000 2 1 sqrt 0.06 18 6.5 43 95.24
34 None 1000 1 sqrt 0.03 18 6.5 93 93.599
35 None 2 1000 sqrt 0.02 18 6.5 14 89.643
36 100 2 1 0.2 0.13 18 6.5 66 95.4

The values highlighted in red represent very long computation time, in blue the highest validation accuracy
values, and in green the acceptable validation accuracy values with significantly less computational time.

The maximum accuracy values (cf. cells marked in blue in the last column) were
obtained with the combination of a max_depth value of 100 and max_features of 0.2 but at a
significant cost in terms of execution time (over 70 and 60 h for full reports dataset with CV
and TF-IDF, respectively; cf. cells marked in light red). Additional experimental settings,

Electronics 2024, 13, 3553 13 of 15

which obtained slightly lower but still satisfying validation accuracies at significantly lower
execution times, are marked in green.

It can be observed that increasing the values of the min_samples_split and min_samples_leaf
hyperparameters did not positively affect the validation accuracy. However, setting the hy-
perparameters max_depth to 100 and max_features (i.e., the number of the features considered
at node split) to 0.1 and 0.2 (i.e., 10 and 20 percent of all features, respectively) increased the
validation accuracy and computational time.

With the increase in the value of the max_features hyperparameter, the number of
trees at which the maximum validation accuracy was achieved decreased to only 7 for
CV and 26 for TF-IDF. This indicates that, in practice, the number of trees in an RF model
may be decreased to 30, which would significantly reduce the execution time required
for the development of a model (i.e., from approximately 70 h to 20 h for CV and from
approximately 61 h to 18 h for TF-IDF).

The RF models obtained from the API call dataset were less time demanding but also
achieved lower validation accuracy. Such results are due to the significantly lower number
of features considered in the API call dataset, i.e., 294 API-related features compared to
over 25 million features present in the full report dataset.

5. Discussion

The main result given in Table 3 is that the RF models trained and evaluated on the
full-featured datasets display higher validation accuracy than the RF models trained and
evaluated on the API call dataset. This is in line with the starting assumption that the
discriminative power of the full-featured sandbox reports discussed is greater than the
discriminative power of just API call sequences.

Finally, the validation accuracy achieved on datasets containing CV features is slightly
higher than the validation accuracy achieved on datasets containing TF-IDF features. This
difference is not necessarily significant, but a possible underlying reason may be that the raw
count of occurrences of tokens in CV is more indicative than the normalized values in TF-IDF.

The full-featured dataset contains samples that induce API calls, as well as samples that
do not induce API calls. The validation accuracy obtained on this dataset is 99.74 percent.
On the other hand, the API call dataset contains only samples that induce API calls, and
the validation accuracy obtained on this dataset is 95.56 percent. Thus, we demonstrated
that considering a more comprehensive feature set (i.e., going beyond API calls) improves
the classification accuracy of malware and benign samples (i.e., the samples that do not
induce API calls were classified with high accuracy).

The question that may arise here is why the second dataset contains only samples
that induce API calls. First, if we also considered samples that do not induce API calls in
the second dataset (i.e., if we added 6.13 percent of malware samples and 39.52 percent
of benign samples), the accuracy result in the second case would be lower. However, this
would not affect our conclusion: the validation accuracy obtained in the first case would
still be higher than in the second case. Second, our samples were selected randomly to
avoid subjective bias. Still, we do not claim that the share of samples that do not induce
API calls is representative of a real-life distribution. Thus, if we included all samples in
the second dataset, another question could arise: has the validation accuracy of models
based only on API calls been artificially decreased by increasing the share of samples that
do not induce API calls? To prevent this, we decided to evaluate these models on a dataset
containing only samples that induce API calls, which maximizes the obtained accuracy. It
is important to note that even in this “maximized” condition, the accuracy obtained when
considering API calls is only lower than the accuracy obtained by the more comprehensive
feature set—in line with our starting hypothesis.

6. Conclusions

In the research community, API call sequences are widely acknowledged as discrimi-
native features in the context of dynamic malware analysis. However, a significant number

Electronics 2024, 13, 3553 14 of 15

of benign samples do not use operating system API calls (e.g., reading of documents, etc.),
and some malware instances are implemented in a way that does not leave any trace with
respect to API calls. Only this observation would be enough to justify the extension of a
feature set beyond API calls.

Still, even if we consider only binary files whose execution induces API calls, in this
study, we demonstrated that extending the feature set beyond API calls may improve the
malware detection performance. The accuracy of approximately 95.56 percent obtained
for API call sequences was increased to 99.74 percent when full-featured sandbox reports
were considered. This improvement comes with a cost: the number of features and the
computational time for random forest models are significantly increased (cf. Table 4).

However, we believe that the significance of improvement justifies these costs. As part
of future work, we intend to train and evaluate recurrent neural network-based models on
the reported dataset and perform additional analyses of the features not related to API calls.

Author Contributions: Conceptualization, S.I. and M.G.; methodology, S.I. and M.G.; software, S.I.;
validation, N.M., I.T., B.J. and M.G.B.; formal analysis, S.I. and M.G.; investigation, S.I.; resources, S.I.;
data curation, S.I.; writing—original draft preparation, S.I. and M.G.; writing—review and editing,
M.G., N.M., I.T., B.J. and M.G.B.; visualization, S.I.; supervision, M.G.; project administration, S.I. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors received no specific funding for this study.

Data Availability Statement: The reported dataset is available from authors upon request.

Acknowledgments: The company Tehnika KB doo (Belgrade, Serbia) contributed to this work
with an archive of real-life benign files as a source for sandbox reports. Their support is gratefully
acknowledged and highly appreciated.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the presented work.

References
1. Ficco, M. Malware Analysis by Combining Multiple Detectors and Observation Windows. IEEE Trans. Comput. 2022, 71, 1276–1290.

[CrossRef]
2. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [CrossRef]
3. Mira, F. A Review Paper of Malware Detection Using API Call Sequences. In Proceedings of the 2019 2nd International Conference

on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 1–3 May 2019; pp. 1–6. [CrossRef]
4. Deore, M.; Tarambale, M.; Ratna Raja Kumar, J.; Sakhare, S. GRASE: Granulometry Analysis with Semi Eager Classifier to Detect

Malware. Int. J. Interact. Multimed. Artif. Intell. 2024, 8, 120–134. [CrossRef]
5. Düzgün, B.; Çayır, A.; Demirkıran, F.; Kahya, C.N.; Gençaydın, B.; Dağ, H. Benchmark Static API Call Datasets for Malware

Family Classification. arXiv 2022. [CrossRef]
6. Alshmarni, A.; Alliheedi, M.A. Enhancing Malware Detection by Integrating Machine Learning with Cuckoo Sandbox. arXiv

2023, arXiv:2311.04372. [CrossRef]
7. Syeda, D.; Asghar, M. Dynamic Malware Classification and API Categorization of Windows Portable Executable Files Using

Machine Learning. Appl. Sci. 2024, 14, 1015. [CrossRef]
8. Zhang, S.; Wu, J.; Zhang, M.; Yang, W. Dynamic Malware Analysis Based on API Sequence Semantic Fusion. Applied Sciences 2023,

13, 6526. [CrossRef]
9. Huang, Y.; Chen, T.; Hsiao, S. Learning Dynamic Malware Representation from Common Behavior. J. Inf. Sci. Eng. 2022,

38, 1317–1334. [CrossRef]
10. Huang, Y.; Sun, Y.; Chen, M. TagSeq: Malicious behavior discovery using dynamic analysis. PLoS ONE 2022, 17, e0263644.

[CrossRef]
11. Chen, L.; Yagemann, C.; Downing, E. To believe or not to believe: Validating explanation fidelity for dynamic malware analysis.

arXiv 2019, arXiv:1905.00122. [CrossRef]
12. Alhashmi, A.; Darem, A.; Alanazi, M.; Alashjaee, M.; Aldughayfiq, B.; Ghaleb, A.; Ebad, A.; Alanazi, A. Hybrid Malware Variant

Detection Model with Extreme Gradient Boosting and Artificial Neural Network Classifiers. Comput. Mater. Contin. 2023,
76, 3483–3498. [CrossRef]

13. Lee, D.; Jeon, G.; Lee, S.; Cho, H. Deobfuscating Mobile Malware for Identifying Concealed Behaviors. Comput. Mater. Contin.
2022, 72, 5909–5923. [CrossRef]

https://doi.org/10.1109/TC.2021.3082002
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/CAIS.2019.8769564
https://doi.org/10.9781/ijimai.2023.12.002
https://doi.org/10.48550/ARXIV.2111.15205
https://doi.org/10.26735/WZNG1384
https://doi.org/10.3390/app14031015
https://doi.org/10.3390/app13116526
https://doi.org/10.6688/JISE.202211-38(6).0012
https://doi.org/10.1371/journal.pone.0263644
https://doi.org/10.48550/arXiv.1905.00122
https://doi.org/10.32604/cmc.2023.041038
https://doi.org/10.32604/cmc.2022.026395

Electronics 2024, 13, 3553 15 of 15

14. Chen, T.; Zeng, H.; Lv, M.; Zhu, T. CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with
parameters. Comput. Secur. 2024, 136, 103518. [CrossRef]

15. Yau, L.; Lam, Y.; Lokesh, A.; Gupta, P.; Lim, J.; Singh, I.; Loo, J.; Ngo, M.; Teo, S.; Truong-Huu, T. A Novel Feature Vector for AI-
Assisted Windows Malware Detection. In Proceedings of the 2023 IEEE International Conference on Dependable, Autonomic and
Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big
Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),
Abu Dhabi, United Arab Emirates, 14–17 November 2023; pp. 0355–0361. [CrossRef]

16. Xu, Y.; Chen, Z. Family Classification based on Tree Representations for Malware. In Proceedings of the 14th ACM SIGOPS
Asia-Pacific Workshop on Systems, Seoul, Republic of Korea, 24–25 August 2023; pp. 65–71. [CrossRef]

17. Li, C.; Cheng, C.; Zhu, H.; Wang, L.; Lv, Q.; Wang, Y.; Li, N.; Sun, D. DMalNet: Dynamic malware analysis based on API feature
engineering and graph learning. Comput. Secur. 2022, 122, 102872. [CrossRef]

18. Li, S.; Wen, H.; Deng, L.; Zhouv, Y.; Zhang, W.; Li, Z.; Sun, L. Denoising Network of Dynamic Features for Enhanced Malware
Classification. In Proceedings of the 2023 IEEE International Performance, Computing, and Communications Conference (IPCCC),
Anaheim, CA, USA, 17–19 November 2023; pp. 32–39. [CrossRef]

19. Nunes, M.; Burnap, P.; Rana, O.; Reinecke, P.; Lloyd, K. Getting to the root of the problem: A detailed comparison of kernel and
user level data for dynamic malware analysis. J. Inf. Secur. Appl. 2019, 48, 102365. [CrossRef]

20. Li, N.; Lu, Z.; Ma, Y.; Chen, Y.; Dong, J. A Malicious Program Behavior Detection Model Based on API Call Sequences. Electronics
2024, 13, 1092. [CrossRef]

21. Jindal, C.; Salls, C.; Aghakhani, H.; Long, K.; Kruegel, C.; Vigna, G. Neurlux: Dynamic Malware Analysis Without Feature
Engineering. arXiv 2019, arXiv:1910.11376. [CrossRef]

22. Anderson, H.; Rothl, P. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models. arXiv 2018,
arXiv:1804.04637. [CrossRef]

23. Bosansky, B.; Kouba, D.; Manhal, O.; Sick, T.; Lisy, V.; Kroustek, J.; Somol, P. Avast-CTU Public CAPE Dataset. arXiv 2022,
arXiv:2209.03188. [CrossRef]

24. Herrera-Silva, J.; Hernández-Álvarez, M. Dynamic Feature Dataset for Ransomware Detection Using Machine Learning Algo-
rithms. Sensors 2023, 23, 1053. [CrossRef]

25. Irshad, A.; Dutta, M. Identification of Windows-Based Malware by Dynamic Analysis Using Machine Learning Algorithm. In
Advances in Computational Intelligence and Communication Technology; Gao, X.-Z., Tiwari, S., Trivedi, M.C., Mishra, K.K., Eds.;
Springer: Singapore, 2021; Volume 1086, pp. 207–218. [CrossRef]

26. Sraw, J.; Kumar, K. Using Static and Dynamic Malware features to perform Malware Ascription. ECS Trans. 2022, 107, 3187–3198.
[CrossRef]

27. Sethi, K.; Kumar, R.; Sethi, L.; Bera, P.; Patra, P. A Novel Machine Learning Based Malware Detection and Classification
Framework. In Proceedings of the 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber
Security), Oxford, UK, 3–4 June 2019; pp. 1–4. [CrossRef]

28. Virus Total. Virustotal-Free Online Virus, Malware and Url Scanner. Available online: https://www.virustotal.com/en (accessed
on 9 April 2024).

29. Taheri, R.; Javidan, R.; Shojafar MP, V.; Conti, M. Can Machine Learning Model with Static Features be Fooled: An Adversarial
Machine Learning Approach. arXiv 2020, arXiv:1904.09433. [CrossRef]

30. Taheri, R.; Ghahramani, M.; Javidan, R.; Shojafar, M.; Pooranian, Z.; Conti, M. Similarity-based Android malware detection using
Hamming distance of static binary features. Future Gener. Comput. Syst. 2020, 105, 230–247. [CrossRef]

31. Ilić, S.; Gnjatović, M.; Popović, B.; Maček, N. A pilot comparative analysis of the Cuckoo and Drakvuf sandboxes: An end-user
perspective. Millitary Tech. Cour. 2022, 70, 372–392. [CrossRef]

32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: http://jmlr.org/
papers/v12/pedregosa11a.html (accessed on 3 September 2024).

33. McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin,
TX, USA, 28 June–3 July 2010; PANDAS Conference Paper. Volume 445, pp. 51–56.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cose.2023.103518
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361451
https://doi.org/10.1145/3609510.3609818
https://doi.org/10.1016/j.cose.2022.102872
https://doi.org/10.1109/IPCCC59175.2023.10253838
https://doi.org/10.1016/j.jisa.2019.102365
https://doi.org/10.3390/electronics13061092
https://doi.org/10.48550/ARXIV.1910.11376
https://doi.org/10.48550/arXiv.1804.04637
https://doi.org/10.48550/arXiv.2209.03188
https://doi.org/10.3390/s23031053
https://doi.org/10.1007/978-981-15-1275-9_18
https://doi.org/10.1149/10701.3187ecst
https://doi.org/10.1109/CyberSecPODS.2019.8885196
https://www.virustotal.com/en
https://doi.org/10.1007/s10586-020-03083-5
https://doi.org/10.1016/j.future.2019.11.034
https://doi.org/10.5937/vojtehg70-36196
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html

	Introduction
	Background and Related Work
	API Call Feature Sets
	More Comprehensive Feature Sets
	Position of Our Approach

	Materials and Methods
	Results
	Model and Metrics Selection
	Experiment
	Computing Resources and Trade-Offs

	Discussion
	Conclusions
	References

