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Abstract: Due to the deformation of ships, it becomes difficult to ensure the accuracy of attitude mea-
surement in typical areas on the deck, which seriously impacts the safety and operational efficiency of
shipborne equipment. To address this issue, this paper presents a parameter identification method for
dynamic deformation models based on angle increment differences and introduces the related vector
machine (RVM) algorithm for online estimation of dynamic deformation model parameters. In view
of the truncation error and non-Gaussian noise of the model, this article proposes a dynamic attitude
measurement method based on model predictive filtering (MPF), constructs a dynamic measurement
model using Rodrigues parameters in an inertial frame, and designs a maximum correlation entropy
(MCE) robust filter to achieve robust estimation of deck dynamic deformation. The performance of
the method is verified through simulation analysis and shipborne experiments. The comparative
results indicate that, compared with existing methods, the proposed improved deck dynamic attitude
measurement algorithm based on model prediction (IDAM) can substantially enhance the accuracy
of attitude measurement in the presence of deck dynamic deformations.

Keywords: dynamic deformation; related vector machine; parameter identification; attitude measure-
ment; model predictive filtering

1. Introduction

To measure the attitude in the area equipped with shipborne equipment on the deck, a
sub-inertial measurement unit (IMU) can be installed, and the attitude information can be
derived from the inertial measurement information [1,2]. But the sub-optimal performance
of the sub-IMU fails to meet the accuracy requirement for attitude, and it is necessary
to use the ship’s main inertial navigation information for auxiliary measurement [3–5].
However, due to the fact that the ship is not an ideal rigid body, it may undergo deformation
under external influences such as sunlight and wave impact [6,7]. The deformation of the
ship manifests as static and dynamic types [8]. The static deformation of the ship can be
estimated and regarded as the installation error angle between the main and sub-inertial
navigation systems. The dynamic deformation of the ship will directly affect the gyroscope
output of the inertial measurement unit and result in additional errors caused by changes
of the dynamic lever arm, thereby affecting the attitude calculation accuracy. In order to
achieve accurate measurement of the dynamic attitude in typical deck areas, it is necessary
to consider the influence of ship deck deformation.

The method based on inertia matching is easy to implement and can calculate and mea-
sure the deformation angle of ships with high accuracy. However, to obtain high-precision
measurements, it is necessary to identify the parameters of the dynamic deformation model.
The original method of parameter identification for dynamic flexural deformation mod-
els involves processing historical data of deformation measurements. However, due to
the influence of environmental factors, the parameters of dynamic models are constantly
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changing, so the parameters obtained from prior data analysis may not meet the actual
needs [9]. Zheng et al. [10] proposed an online receding horizon identification method for
nonlinear ship motion systems. The Tufts–Kumaresan method was introduced to compute
unknown parameters of the dynamic flexure model using the angular increment correlation
function [11]. Yu et al. [12] employed the particle swarm optimization (PSO) algorithm to
form a complete online identification for ship deformation angle measurement model. The
support vector regression (SVR) algorithm-based identification method was presented for
the estimation of parameters in the ship dynamic model [13]. Wang et al. [14] designed
an improved whale optimization algorithm (WOA) based on logic mapping to perform
parameter identification.

The dynamic deformation of the deck can be described by a second-order Markov
process. However, the model inevitably has a truncation error, and the dynamic deforma-
tion estimated by the filter will also be subject to estimation errors due to the truncation
error. In addition, the model is not driven by ideal Gaussian white noise due to the impact
interference of the wave environment. Therefore, based on the above analysis, in the pro-
cess of measuring the dynamic attitude of the deck, it is necessary to consider the effects of
model truncation error and non-Gaussian noise. A multi-model adaptive hull deformation
estimation algorithm was proposed to address the uncertainty of system parameters and
the statistical characteristics of measurement noise [15]. Ren et al. [16] proposed a dynamic
filter algorithm combining wavelet and a Kalman filter for dynamic inertial measurement,
in which the wavelet method is used to remove the outliers in the acquired data, and the
Kalman filter effectively reduces the influence of white noise. An adaptive dynamic parti-
cle swarm optimization (ADPSO) algorithm and a bidirectional long short-term memory
(BiLSTM) neural network-based prediction model were proposed and applied to accurately
predicting ship motion attitude [17]. The neural network Kalman filter (NNKF) was in-
troduced for real-time hull deformation calculation to further reduce the nonlinear error
of the system. This method can accurately measure the hull deformation in real time and
effectively suppress the nonlinear error caused by the large misalignment angle [18]. Tradi-
tional Kalman filtering regards model errors as process noise, which has limitations in its
application. To circumvent this problem, the filtering estimator based on MPF was derived
and treated as a suitable estimator for random measurement processes [19]. MPF realizes
the error estimation of the system model with good robust stability [20,21]. In [22], model
predictive filter technology was applied in the transfer alignment, which can estimate
deformation and compensate alignment errors. A novel model predictive-based unscented
Kalman filter (MP-UKF) was proposed to predict the dynamic model error persistently and
correct the filtering procedure of UKF online [23].

However, traditional inertial measurement methods from our previous work cannot be
directly applied to the dynamic attitude measurement of a deck with deformation because
of the following reasons: (1) The method based on inertia matching can accurately calculate
and measure the deformation angle of ships, and the most crucial aspect is how to accurately
identify the parameters of the dynamic deformation model. The existing methods cannot
meet practical needs. (2) The traditional Kalman filter considers the model error as process
noise, and models that approximate dynamic deformation using second-order Markov
processes inevitably have truncation errors. In addition, due to the impact interference
of the wave environment, the model is not driven by ideal Gaussian white noise, and the
criterion of minimum mean square error based on Gaussian noise cannot provide robust
estimation performance. (3) The traditional linear error model for small misalignment
angles cannot be applied to situations with large misalignment angles. However, nonlinear
models based on large misalignment angles also involve excessive redundant calculations
in the nonlinear filtering process. Therefore, it is necessary to study the system error model
that is insensitive to the magnitude of misalignment angles.

The remaining structure of this paper is organized as follows: The dynamic defor-
mation model of the deck is established in Section 2. The online parameter identification
for the dynamic deformation model based on angle increment difference is described in
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Section 3. The dynamic attitude measurement method for the deck based on model predic-
tive filtering is presented in Section 4. The simulation analysis and shipborne experiment
verification of the proposed method are carried out in Sections 5 and 6, respectively. Finally,
Section 7 summarizes the main conclusions.

The contributions of this paper can be summarized as follows: (1) The related vector
machine algorithm was applied to the parameter identification of the dynamic deformation
model based on angle increment difference. (2) Considering the truncation error of the
model and the influence of non-Gaussian noise, this paper designed a maximum correlation
entropy robust filter based on MPF. In order to estimate and compensate for filtering model
errors, the maximum correlation entropy was introduced as an optimization criterion to
achieve robust estimation of deck dynamic deformation angle. (3) This method constructed
the filter model based on Rodrigues parameters in an inertial frame, which is suitable for
any misalignment angle situation, eliminating the calculation error of the sub-inertial navi-
gation system. (4) All experimental data were obtained from the navigation experimental
platform. Both simulation analysis and online verification were conducted to validate the
effectiveness of the proposed method.

2. Dynamic Deformation Analysis and Modeling of the Deck

The deck undergoes deformation under the influence of the external environment.
The deformation angle of deck can generally be divided into static deformation angle and
dynamic deformation angle as follows:

φ = Φ + θ(t), (1)

where Φ is the static deformation angle of the deck and θ(t) is the dynamic deformation
angle of the deck over time. The static deformation angle is considered to be constant or
to slowly change, and the model construction of such deformation is relatively simple.
In contrast, dynamic deformation shows higher frequency and greater complexity. The
following models were used to describe the static and dynamic deformation angles.

(1) The static deformation of the deck

Under the combined action of multiple external forces, the deck undergoes bending
deformation, resulting in static deformation angles. In fact, the deck deformation mea-
surement system measures the real-time relative misalignment angle between the IMU in
the deck area and the ship’s main inertial navigation IMU, which includes the static and
dynamic deformation of the ship and the system installation error angle. The installation
error angle between two sets of IMUs can be considered a constant value, and its statistical
characteristics are similar to the static deformation angle of the deck. Consequently, the
static deformation angle and the system installation error angle were combined into the
static deformation angle. Generally, the static deformation angle changes slowly and can
be approximated as a constant value as described in Equation (2).

.
Φ = 0. (2)

(2) The dynamic deformation of the deck

Compared with the static deformation, the dynamic deformation changes more rapidly.
The dynamic deformation is primarily caused by the wind and waves, which can be
regarded as a random variable under random external disturbances, akin to the Markov
process for white noise. Therefore, using second-order Markov process models as the
ship’s dynamic deformation model is usually suitable for most scenarios. The deformation
models in three directions are considered independent of each other, and the dynamic
deformation angle can be given as follows [24,25]:

¨
θ+ 2µ

.
θ+ b2θ = w f , (3)
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where θ = [θx θy θz]
T is the deflection angle; µ = [µx µy µz]

T is the rate of deflection

deformation angle; w f and Var
(

w f ) = Q f = 4β3σ2(β = 2.146/τ) are the white noise and

its variance; τ = [τx τy τz]
T is the relevant time; and σ = [σx σy σz]

T is the variance of
the deflection deformation angle.

However, the lever arm between the main and sub-IMUs will have an impact on the
inertial measurement information. Specifically, the fixed arm length between the two IMUs
remains unchanged. Due to the influence of deck dynamic deflection deformation, it can
lead to dynamic changes in lever-arm length, resulting in dynamic lever-arm error. Figure 1
shows the schematic diagram of the length variation of the dynamic lever arm.
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Figure 1. Schematic diagram of changes in the dynamic lever-arm length.

Assuming the fixed lever-arm vector is r0 =
[

rx ry rz
]T and the deflection angle

vector is θ =
[

θx θy θz
]T in the main inertial vehicle coordinate system (m system),

we can obtain {
δrz1 = ry tan θx ≈ ryθx
δry1 = −rz tan θx ≈ −rzθx

. (4)

Similarly, the change in the component of the lever arm caused by the dynamic lever
-arm θy and θz is presented in the following Equation

δrx1 = rzθy
δrz1 = −rxθy
δrx2 = −ryθz
δry2 = rxθz

. (5)

The dynamic lever rm can be described as follows:

rm =
[

rx + δrx1 + δrx2 ry + δry1 + δry2 ry + δrz1 + δrz2
]T

=
[

rx + rzθy − ryθz ry + rxθz − rzθx rz + ryθx − rxθy
]T.

(6)

Equation (7) gives the first and second derivatives of the dynamic lever-arm vector.
.
rm

=
[
rz

.
θy − ry

.
θz rx

.
θz − rz

.
θx ry

.
θx − rx

.
θy

]T

¨
r

m
=
[
rz

..
θy − ry

..
θz rx

..
θz − rz

..
θx ry

..
θx − rx

..
θy

]T . (7)

3. Online Parameter Identification of the Dynamic Deformation Model Based on Angle
Increment Difference

To achieve a high-precision dynamic deformation model, a dynamic deflection de-
formation model parameter identification method based on the difference in angular
increment is proposed, in which an optimization model was constructed based on the
autocorrelation function of the angle increment difference between two sets of IMUs, and
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the related vector machine algorithm was applied for online parameter estimation. Finally,
the estimated dynamic deflection parameters were applied to the filtering model based on
inertia matching to estimate the deformation angle. The online identification process of
dynamic deformation model parameters is shown in Figure 2.
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3.1. Derivation and Analysis of Correlation Functions Based on Angular Increment Difference

The dynamic deflection angle information is contained in the angle increment output
difference of the IMU and presented in the form of exponentially decaying sine signals
(EDS). In order to obtain accurate model parameters for dynamic deformation angle, the
relationship between the output of the gyroscope and the dynamic deformation angle is
crucial. To estimate the model parameters using online estimation methods, the relationship
between the output of the gyroscope and the dynamic deformation angle needs to be
derived. The angular velocity is output by the gyroscope, and the relationship between
angular increment and dynamic deformation angle parameters can be calculated using the
output data of the main and sub-inertial navigation system gyroscopes. Specifically, it is
assumed that both the main IMU and sub-IMU of a ship can be sensitive to the projection
of the ship’s inertial angular velocity on the oxyz frame and ox′y′z′ frame, represented by
ωb

ib and ωx
ib. According to [26], the angular velocity matching relationship is as follows:

ωs
ib = Cs

b(φ)ω
b
ib +

.
θ. (8)

In the case of small deformation angles, we can obtain

Cb
s≈

 1 −φz φy
φz 1 −φx
−φy φx 1

 = I + (φ×). (9)

The static deformation angle is treated as a constant value. When the deformation
is regarded as a linear model, the difference in angular velocity between the main and
sub-IMU is expressed as follows:

∆ω = ωb
ib − ωs

ib = (φ×)ωb
ib− = −ωb

ib ×φ−
.
θ, (10)

where

ωb
ib× =

 0 −ωb
ihz ωb

iby
ωb

ihz 0 −ωb
ibx

−ωb
iby ωb

ihx 0

. (11)

Integrating both sides of Equation (10) in the k-th sampling simultaneously yields∫ tk

tk−t0

ωb
ib dt −

∫ tk

tk−t0

ωs
ibdt = −

∫ tk

tk−t0

(
ωb

ib ×φ
)

dt −
∫ tk

tk−t0

.
θdt, (12)

where t0 is the sampling period.
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By sorting out Equation (12), two sets of angular increment matching equations for
inertial navigation within k sampling cycles can be obtained.

δΘ1k − δΘ2k = −(δΘ1k)×
φk +φk−1

2
− (θk − θk−1). (13)

For Equation (13), δΘ1k and δΘ2k represent the angular increments of IMU1 and IMU2
within a single sampling period, respectively. By φk = Φ + θk, Equation (13) can be
rewritten as follows:

∆Θk = δΘ1k − δΘ2k

= −(δΘ1k)×
(

Φ +
θk+θk−1

2

)
− (θk − θk−1)

= −δΘ1k × Φ +
(

δΘ1k×
2 − I3

)
θk +

(
δΘ1k×

2 + I3

)
θk−1.

(14)

By estimating the static deformation angle Φ, the term −δΘ1k × Φ in Equation (14) is
compensated online and we obtain

∆Θk ≈
(

δΘ1k×
2

− I3

)
θk +

(
δΘ1k×

2
+ I3

)
θk−1. (15)

Further, Equation (15) can be approximated as follows:

∆Θk≈− θk + θk−1. (16)

When the correlation time τ ≥ 0, the correlation function of the dynamic deformation
angle can be expressed as follows:

Rθi (τ) =
λiσ

2
i√

µ2
i + λ2

i

exp(−µiτ) sin(λiτ + εi), i = x, y, z, (17)

where εi = arctan(λi/µi).
The following definition is made in terms of the above Equation.

R̃θi (τ) =
λiσ

2
i√

µ2
i + λ2

i

exp(−µiτ + j(λiτ + εi)), i = x, y, z. (18)

Combining Equation (17) and Equation (18) yields

Rθi (τ) =
1
2j

(
R̃θi (τ)− R̃∗

θi
(τ)
)

, i = x, y, z. (19)

According to the operation rule of the correlation function, the correlation function of
discrete angular increments ∆Θk can be expressed as

R∆Θ(n) = ⟨∆Θk, ∆Θk+n⟩
= ⟨θk, θk+n⟩+ ⟨θk−1, θk+n−1⟩ − ⟨θk−1, θk+n⟩ − ⟨θk, θk+n−1⟩
= 2Rθ(n)− Rθ(n − 1)− Rθ(n + 1).

(20)

Meanwhile, similar to the dynamic deformation angle model, the correlation function
of ∆Θk can be expressed as follows:

R∆Θ(n) =
1
2j
[
R′

∆Θ(n)− R′∗
∆Θ(n)

]
, (21)

R̃∆Θ(n) = 2R̃θ(n)− R̃θ(n − 1)− R̃θ(n + 1)

=
2λiσ

2
i√

µ2
i +λ2

i
exp[jεi][1 − cosh(−µi + jλi)] exp[(−µi + jλi)n].

(22)
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Equation (22) can be further organized to obtain

R̃∆Θ(n) = Ci exp[(−µi + jλi)n], (23)

where

Ci =
2λiσ

2
i√

µ2
i + λ2

i

exp[jarctan(λi/µi)][1 − cos h(−µi + jλi)]. (24)

It can be seen that Equation (23) has a similar form to the exponential sinusoidal
attenuation signal. If the parameters µi, λi, and Ci are solved by Equation (21), the first two
terms present the attenuation factor and dominant frequency of the dynamic deflection
model. By inputting the above parameters into Equation (24), σ2

i can be calculated.

3.2. Online Identification of Dynamic Deformation Model Parameters Based on the
RVM Algorithm

RVM is based on the structure of prior parameters and the automatic relevance deter-
mination theory to establish a sparse model under the Bayesian framework. Compared
to SVM, the computational complexity of the kernel function is significantly reduced, and
there is no need for the selected kernel function to satisfy the Mercer condition [27].

It is given that N samples are (x1, y1), . . . , (xN , yN) ∈ Rn × Rm, and the regression
function is given by

y(x; ω) =
N

∑
i=1

ωiK(x, xi) + ω0, (25)

where ω = [ω1, ω2, . . . , ωN ]
T is the weight vector; ω0 is the threshold value; and K(x, xi) is

the kernel function.
Because the target sample yi is independent, the likelihood function can be denoted as

follows:

P(y|ω , σ2)= (2 πσ2
)−N/2

exp

(
−∥y − Φω∥2

2σ2

)
, (26)

where Φ is a N × (N+1) order structural matrix composed of the kernel function.
According to the Bayesian framework, the prior distribution can be described as

P(ω|α ) =
(

2πσ2
)−N/2

∏N
i=1α1/2

i exp

(
−

αiω
2
i

2

)
, (27)

where α = [α1, α2, . . . , αN ]
T is the super parameter vector.

By Bayesian inference, the posterior distribution satisfies the following Equation

P(y
∣∣∣ω, α, σ2) ∼ N(µ, Σ), (28)

where the posterior mean µ and variance ∑ can be calculated as follows:{
∑= (σ−2ΦTΦ + A

)−1

µ = σ−2 ∑ ΦTy
, (29)

where A = diag(α1, α2, . . . , αN).
By the edge integration of weights, the likelihood distribution of output is obtained by

P(y|α , σ2) =
∫

P(y|ω , σ2)P(ω|α )dω. (30)

We can obtain the edge likelihood distribution of hyperparameter, that is

P(y|α , σ2) ∼ N(0, C), (31)
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where C = σ2I + ΦA−1ΦT. I is an identity matrix.
Updated αnew

i and (σ2)
new are determined by Equation (32).

αnew
i = γi

µ2
i

(σ2)
new

= ∥y−Φµ∥2

N−∑N
i=0 γi

, (32)

where µi is the i-th element value of µ; and γi = 1 − αi Nii and Nii are the i-th diagonal
value of ∑.

µ and ∑ are updated by Equation (32) until the convergence condition presented as
Equation (33) is met.

L(ω) =
1

2σ2

N

∑
i=1

[
yi − ωTΦ(xi)

]2
+

N

∑
i=0

log|ωi|, (33)

where the first term is the sum of measurement errors, and the second term is the regular-
ization term. Figure 3 shows the flowchart of the RVM algorithm.
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Using the RVM algorithm for dynamic deformation model parameter identification
involves deriving the autocorrelation function form of the difference in the output angle
increment of two sets of IMUs. In the process of simplifying the angle increment difference
∆Θk, online compensation is implemented for −δΘ1k × Φ. The autocorrelation function
of the angle increment difference is obtained to identify the parameters of the dynamic
deformation model by comparing Equations (21) and (23). The related vector machine
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algorithm is then selected to assist in establishing the algorithm model using the general
form of exponentially decaying sine signals, and the parameters are reasonably set to
complete the online parameter identification. As shown above, the specific process of
online identification of dynamic deformation model parameters is as follows:

(1) Calculate the angular increment output difference ∆Θk of two sets of IMUs in each
sampling cycle and compensate for −δΘ1k × Φ. The first static deformation angle
Φ can be roughly determined by the coarse alignment, and then estimated by the
deformation algorithm.

(2) Solve the numerical value R∆Θ(n) of the autocorrelation function ∆Θk.
(3) Substitute R∆Θ(n) into the RVM algorithm and use Equation (33) for parameter

identification.
(4) Apply the identified parameters to the angular velocity matching algorithm for defor-

mation angle estimation, substitute the estimated deformation angle back in step (1),
and proceed to the next step of calculation.

4. Dynamic Attitude Measurement Method for Deck Based on Model
Predictive Filtering

To solve the problems of truncation error and non-Gaussian noise in the dynamic
attitude deformation angle model of the deck, this paper proposes a dynamic attitude
measurement method for the deck based on model prediction filtering. By designing a
robust maximum correlation entropy filter based on model prediction, estimating and
compensating for the filtering model error, a robust estimation of the deck deflection
deformation is achieved.

4.1. Model Error Analysis and Prediction Estimation

Model predictive filtering is an advanced filtering method proposed in recent years
that overcomes the limitation of traditional Kalman filtering that assumes model errors
as process noise processing. The biggest advantage of model predictive filtering is its fast
calculation speed. It estimates observable low-state variables as model errors and uses
observations to correct uncertain errors. In addition, since the model predicts the filtering
equation through analytical expressions and does not have an iterative inversion process,
it can reduce system dimensionality, accelerate calculation speed, and improve real-time
performance while ensuring high system accuracy [22,23].

Specifically, the principle of predictive filtering involves using the predicted output of
the filter to track the actual observed output in real time, thereby estimating the model error
of the system. Firstly, the system state space differential model is derived from differential
equations and is as follows: { .

x(t) = F(t)x(t) + Gw(t)
z(t) = H(t)x(t) + v(t)

, (34)

where x(t) is the system status; F(t) is the state transition matrix; w(t) is the system
noise vector; H(t) is the measure matrix; z(t) is the external measurement vector; and
v(t) is the measurement noise. Representing the state estimation value and corresponding
measurement prediction value with x̂(t) and ẑ(t), respectively, and the measurement model
is obtained by the Taylor expansion

ẑ(t + ∆t) ≈ ẑ(t) + Z(x̂(t), ∆t) + Λ(∆t)S(x̂(t))D(t), (35)

where

ẑ(x̂(t), ∆t) =

[
p1

∑
k=1

∆tk

k!
Lk

f (H1) · · ·
pn

∑
k=1

∆tk

k!
Lk

f (Hm)

]T

, (36)

Λ(∆t) = diag
(

∆tp1

p1!
· · · ∆tpm

pm!

)
, (37)
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S(x̂(t)) =


Lg1

[
Lp1−1

f (H1)
]

· · · Lgq

[
Lp1−1

f (H1)
]

...
Lg1

[
Lpm−1

f (Hm)
]

· · · Lgq

[
Lpm−1

f (Hm)
]


m×q

, (38)

where pi(i = 1, · · · , m) is the lowest order that appears in the differentiation of the i-th
component; Hi(t); Lk

f (Hi) is the k-th Lie derivative; and gi(i = 1, · · · , q) is the i-th column
in G(t). The definition of the predictive filtering performance indicator function is

J =
1
2
[zk+1 − ẑk+1]

TR−1[zk+1 − ẑk+1] +
1
2

DT
k ADk = min, (39)

where A is the positive semi-definite weighting matrix for model error.
The estimated model error Dk that satisfies the performance metric of Equation (39)

within time [tk, tk+1] can be designed as

D̂k = −
{
[Λ(∆t)S(x̂k)]

TR−1[Λ(∆t)S(x̂)] + A
}−1

×[Λ(∆t)S(x̂)]TR−1[ẑk+1 + Z(x̂, ∆t)− zk+1].
(40)

According to Equation (40), D̂k can be calculated and compensated in the state transi-
tion model.

4.2. Design of Maximum Correlation Entropy Robust Filter Based on Model Prediction

In the model of the dynamic deformation angle of the deck mentioned above, it is
assumed that the noise follows a Gaussian probability density function (PDF). However,
due to the impact of wave environments and other external interferences from the ocean
environment, the model is not driven by ideal Gaussian white noise and exhibits a non-
Gaussian distribution. Compared to the minimum mean square error (MMSE) criterion
based on Gaussian noise, the maximum correlation entropy criterion offers better robust
estimation performance in non-Gaussian situations by capturing high-order moments
of information. Therefore, this paper combines model prediction filtering and employs
MCE as the optimal estimation criterion instead of MMSE to achieve robust and accurate
estimation of the dynamic deformation angle of the deck.

The model error vector estimated by Equation (40) is used to compensate for the state
prior mean as follows:

xk|k−1 = Fkxk−1 + GkD̂k, (41)

where Gk is the transfer matrix for model error.
Furthermore, the covariance matrix of the state prior mean is calculated as follows:

Pk|k−1 = FkPk−1FT
k + GkQkGT

k . (42)

The measurement update process is based on maximizing the correlation entropy
between state prior and measurement information, rather than minimizing the mean square
error of state estimation. Specifically, the measurement prediction information is calculated
as follows:

zk|k−1 = Hkxk|k−1. (43)

Using Equation (44), the cost function is built as

JMCC(xk) = Gσ

(∥∥∥xk − xk|k−1

∥∥∥2

(Pk|k−1)
−1

)
+ Gσ

(∥∥∥zk − zk|k−1 − Hk

(
xk − xk|k−1

)∥∥∥2

R−1
k

)
, (44)

where ∥·∥2
A = (·)TA(·) is the square of the weighted Mahalanobis distance with A as the

weight matrix.
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The Gaussian kernel function is defined as follows:

Gσ(∥·∥2
A) = exp

(
−∥·∥2

A
2σ2

)
, (45)

where σ > 0 is the kernel width and the optimal estimation based on maximum correlation
entropy is obtained through the following objective function:

x̂k = argmax
xk

JMCC(xk). (46)

The optimization problem is solved by the following Equation:

∂JMCC(xk)

∂xk
= 2P−1

k|k−1

(
xk − x̂k|k−1

)
− 2LkHT

k R−1
k

(
zk − ẑk|k−1 − Hk

(
xk − x̂k|k−1

))
= 0, (47)

where

Lk =

Gσ

(∥∥∥zk − ẑk|k−1 − Hk

(
xk − x̂k|k−1

)∥∥∥2

R−1
k

)
Gσ

(∥∥∥xk − x̂k|k−1

∥∥∥2

(Pk|k−1)
−1

) . (48)

By reorganizing Equation (47), we obtain

xk =
(

P−1
k|k−1 + LkHT

k R−1
k Hk

)−1(
Lz

kHT
k R−1

k

(
zk − ẑk|k−1 − Hkx̂k|k−1

)
+ P−1

k|k−1xk

)
. (49)

Because the state–transition model in inertial measurement systems is constructed ac-
curately, the prior information about the state is accurate. In addition, a correlation entropy
matrix was constructed to replace the correlation entropy scalars of each measurement
information. Therefore, through further sorting, the mean and covariance matrix of the
posterior estimation of the state can be obtained as follows:

x̂k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
, (50)

Pk = Pk|k−1 − KkPzz,k|k−1(Kk)
T, (51)

where
Kk = Pxz,k|k−1

(
Pzz,k|k−1

)−1
= Pk|k−1HT

k Ck

(
HkPk|k−1HT

k Ck + Rk

)−1
, (52)

Ck = diag
[

Gσk

(∥∥z̃1,k
∥∥2

R−1
1,k

)
, . . . , Gσk

(∥∥z̃m,k
∥∥2

R−1
m,k

)]
. (53)

4.3. Dynamic Measurement Model Based on Rodrigues Parameters in Inertial Frames

Due to the presence of the lever arm between the main IMU and sub-IMU, the dynamic
deformation angle will introduce an error in the dynamic lever arm. Therefore, it was
necessary to consider the influence of the dynamic lever arm. The measurement relationship
between the main IMU and sub-IMU is provided in the inertial frame. The projection
relationship of the specific force sensitive to the main IMU and sub-IMU under the influence
of the lever-arm effect in the geocentric inertial frame is presented as follows:

fi
s = fi

m + Ci
m[ω

m
im × (ωm

im × rm) +
.

ω
m
im × rm + 2ωm

im × .
rm

+
¨
r

m
], (54)

where Ci
m is the coordinate transformation matrix from the main inertial coordinate system

to the geocentric inertial coordinate system; ωm
im is the output of the main IMU’s gyroscope;

ωm
im × ωm

im × rm is the acceleration caused by the rigid lever arm; and 2[ωm
im×]

.
rm

+
¨
r

m
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is the acceleration caused by the dynamic lever arm. According to Equation (54), after
compensating for the acceleration of the rigid lever arm, we obtain{

fi
s = fi

mc + Ci
mfrd

frd =
{
[(ωm

im×)(ωm
im×) + (

.
ω

m
im×)]L0 + L1

}
θ+ [2(ωm

im×)L0 + L2]µ + L0w f
, (55)

where fi
mc is the specific force information of main IMU after compensating for the accel-

eration of the rigid lever arm; frd is the dynamic arm acceleration caused by deflection
deformation; and L0, L1 and L2 are represented as follows:

L0 =

 0 rz −ry
−rz 0 rx
ry −rx 0


L1 =

 0 −β2
yrz β2

zry

β2
xrz 0 −β2

zrx
−β2

xry β2
yrx 0


L2 =

 0 −2βyrz 2βzry
2βxrz 0 −2βzrx
−2βxry 2βyrx 0


. (56)

Considering the influence of the lever-arm effect, the angular velocity relationship
measured by the main IMU’s and sub-IMU’s gyroscope in the inertial frame is defined
as follows:

ωi
is = ωi

im + Ci
mωm

ms = ωi
im + Ci

mµ, (57)

where ωi
is is the projection of the sub-IMU’s gyroscope in the inertial frame; ωi

im is the
value of the main IMU’s gyroscope; ωm

ms is the rotational angular velocity of the sub-
IMU relative to the main IMU; and Ci

mωm
ms can be regarded as the deflection deformation

angular velocity.
The main inertial vehicle coordinate system (m) and sub-inertial vehicle coordinate

system (s) were fixed at the initial moment of transfer alignment, and the inertial solid-
ification coordinate system, im and is, could be obtained, respectively. The coordinate
transformation matrix Cim

m between them is a time-varying matrix that can be calculated
from the output of the main IMU’s gyroscope ωm

im. According to the directional cosine
matrix differential equation, we can obtain{ .

C
im
m = Cim

m (ωm
im×)

Cim
m (0) = I3

. (58)

Similarly, the transformation matrix Cîs
s can be represented as follows:

.
C

îs
s = Cîs

s (ω̂
s
is×)

Cîs
s (0) = I3

, (59)

where îs is the computational inertial solidification coordinate system and ω̂s
is is the output

of sub-IMU’s gyroscope.
For the short-term alignment process, this tracking error ϕis

s can be considered a small
amount, and there are  Cîs

s = Cîs
is C

is
s = [I3 − (ϕis

s ×)]Cis
s

.
ϕ

is
s = −Cis

s [(ε
s + ws

g)]
, (60)

where εs is the constant zero bias of the sub-IMU’s gyroscope and ws
g is the random noise

of the sub-IMU’s gyroscope.
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After accurately fixing the length of the arm of the main and sub-inertial navigation
systems, the rigid arm acceleration compensation was applied to the main inertial naviga-
tion system. The specific force after compensation is denoted as fm

mc. fm
mc can be projected to

the im system by Cim
m as follows:

fim
mc = Cim

m fm
mc. (61)

Similarly, the output of sub-IMU’s accelerometer can be transformed and described in
îs system as

f̂îs
s = Cîs

s f̂s
s = [I3 − (ϕis

s ×)]Cis
s (f

s
s +∇s + ws

a), (62)

where ∇s is the constant zero bias of the sub-IMU’s accelerometer and ws
a is the random

noise of the sub-IMU’s accelerometer.
If Equation (62) is expanded and high-order small quantities are ignored, we can

obtain
f̂îs
s = fis

s + f̂îs
s × ϕis

s + Cîs
s ∇s + Cîs

s ws
a. (63)

Combining Equations (55), (61), and (63) yields

f̂îs
s − f̂îs

s × ϕis
s − Cîs

s ∇s − Cîs
s ws

a = Cis
im(f

im
mc + Cim

m frd), (64)

where Cis
im is a constant matrix and represents the directional cosine matrix corresponding

to the installation error angle between the main and sub-inertial vehicle coordinate systems
at the initial moment of alignment.

Similarly, for the output of the main and sub-IMU’s gyroscope, we obtain

ω̂îs
s − ω̂îs

s × ϕis
s − Cîs

s εs − Cîs
s ws

g = Cis
im(ω

im
im + Cim

m µ), (65)

where {
ω̂îs

s = Cîs
s ω̂s

is
ωim

im = Cim
m ωm

im
. (66)

Cis
im can be represented by Rodrigues vectors lis

im . According to the Cayley transforma-
tion, the relationship between the two satisfies the following Equation

Cis
im =

[
I3+(lis

im × )]
−1[

I3 −
(

lis
im×

)]
. (67)

By substituting Equation (67) into Equations (64) and (65), it can be concluded that

f̂îs
s − fim

mc = (f̂îs
s + fim

mc)× lis
im +

[
I3+(lis

im × )]δfîs
s + [I3 −

(
lis
im×

)
]Cim

m frd, (68)

ω̂îs
s − ωim

im = (ω̂îs
s + ωim

im)× lis
im +

[
I3+(lis

im × )]δωîs
s + [I3 −

(
lis
im×

)
]Cim

m µ, (69)

where δfîs
s = f̂îs

s × ϕis
s + Cîs

s ∇s + Cîs
s ws

a and δωîs
s = ω̂îs

s × ϕis
s + Cîs

s εs + Cîs
s ws

g.
The right-hand side of Equations (68) and (69) contain the Rodrigues vectors corre-

sponding to the installation error angles between the main IMU and sub-IMU. Therefore,

the specific force (f̂îs
s ,fim

mc) and angular velocity (ω̂îs
s ,ωim

im) of the main IMU and sub-IMU can
be used as matching variables to construct the corresponding matching equations. Since
there is no small angle assumption for the installation error angle during the derivation
process, this matching equation is suitable for the transfer alignment process with a large
misalignment angle.

The specific force and angular velocity outputs of the sub-IMU contain random noise
disturbances, such as dynamic deflection deformation and measurement noise, which
affect the matching accuracy in Equations (68) and (69). The smoothing characteristics of
the integration process can attenuate random noise, improve the signal-to-noise ratio of
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measurement information, and improve the performance of misalignment angle estimation.
However, although integral operation can enhance the anti-interference ability against
random noise to a certain extent, it also complicates the transfer process from measurement
information to state variables. Therefore, only the specific forces of the main IMU and
sub-IMU in the inertial solidification coordinate system were selected for integration.

Specifically, integrating Equation (68) yields

Vis
s − Vim

m = (Vis
s + Vim

m )× lis
im +

[
I3+(lis

im × )]δVis
s + [I3 −

(
lis
im×

)
]Vim

r , (70)

where 
Vîs

s =
∫ t

0 f̂îs
s (τ)dτ =

∫ t
0 Cîs

s (τ)f̂
is
s (τ)dτ

Vim
m =

∫ t
0 fim

mc(τ)dτ =
∫ t

0 Cim
m (τ)fm

mc (τ)dτ

δVîs
s =

∫ t
0 (f̂îs

s × ϕis
s + Cîs

s ∇s + Cîs
s ws

a)dτ

Vim
r =

∫ t
0 Cim

m frd dτ

. (71)

Because Cis
im is a constant matrix, the Rodrigues parameters corresponding to Cis

im
satisfy the following differential Equation:

.
l
is
im = 0. (72)

Except for the constant drift of sub-inertial gyroscopes εs and the constant bias ∇s of
accelerometers, the integration of dynamic arm acceleration Vim

r , deflection angle θ, and
angular velocity µ in system im were selected as state variables. Equation (73) gives the
definition of state vector.

X = [(lis
im)

T
(δVis

s )
T

(ϕis
s )

T
(εs)

T (∇s)
T (Vim

r )
T

(θ)T (µ)T]
T

. (73)

Therefore, based on the above derivation, the system state differential equation was
constructed as follows: .

X = FX + Gw, (74)

where the process noise w = [(ws
g)

T (ws
a)

T (w f )
T]

T
, and the state transition matrix F is

represented as

F =



03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 (f̂îs
s ×) 03×3 Cîs

s 03×3 03×3 03×3

03×3 03×3 03×3 −Cîs
s 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3 03×3 Cim

m Ar1 Cim
m Ar2

03×3 03×3 03×3 03×3 03×3 03×3 03×3 I3×3
03×3 03×3 03×3 03×3 03×3 03×3 Aw1 Aw2


, (75)

where 
Ar1 = [(ωm

im×)(ωm
im×) + (

.
ω

m
im×)]L0 + L1

Ar2 = 2(ωm
im×)L0 + L2

Aw1 = diag(−β2)
Aw2 = diag(−2β)

. (76)

The process noise driving matrix G is represented as follows:

G =

03×3 03×3 −(Cîs
s )

T
03×3 03×3 03×3 03×3 03×3

03×3 (Cîs
s )

T
03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 (Cim
m L0)

T
03×3 I3×3


T

. (77)
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According to Equations (69) and (70), the measurement equation can be constructed
as follows:

Z =

[
Vis

s − Vim
m

ω̂îs
s − ωim

im

]
= h(X) + wk

=

[
Vis

s + Vim
m

ω̂îs
s + ωim

im

]
× lis

im +

 I3+(lis
im×

)
03×3

03×3 I3+(lis
im×

)[ δVis
s

ω̂îs
s × ϕis

s + Cîs
s εs

]

+

I3 −
(

lis
im×

)
03×3

03×3 I3 −
(

lis
im×

)[ Vim
r

Cim
m µ

]
+ wk,

(78)

where wk is the measurement noise caused by the integration of residual errors and inertial
device errors. Compared with the ship’s deformation angle measurement model based
on angular velocity matching, this model does not require the initial parameters binding
and strapdown calculation of the main IMU. It reduces the computational workload while
suppressing the influence of compensating deflection deformation and dynamic arm errors,
thereby enhancing the real-time performance of the calculation.

5. Simulation Experiment and Analysis

To verify the proposed method, we simulated and generated the ship’s motion at-
titude, IMU data, dynamic deformation angle, and other data through the following
simulation conditions.

(1) The initial latitude was set to 45◦ and the initial longitude was set to 126◦. The motion
state of the ship was to move forward with a constant speed of 20 knots. The initial
roll angle was 0◦, the initial pitch angle was also 0◦, and the initial heading angle was
45◦. The ship’s sway motion satisfies Equation (79)

θ = 10
◦

sin(π
4 t)

γ = 10
◦

sin(π
4 t)

γ = 45
◦
+ 10

◦
sin(π

5 t)
. (79)

(2) The constant the gyroscope drift was set to 0.01◦/h, the angle random walk to
0.001◦/

√
h, the constant zero deviation of the accelerometer to 50 ug, and the ac-

celeration random walk to 10 ug/
√

h. The installation error angle of IMU is 5′′, and
the scale factor error was 5 ppm. The calculation frequency was set to 100 Hz, and the
initial horizontal misalignment angle and azimuth misalignment angle were 1′, and
5′, respectively.

(3) The static deformation angle was set to a constant value [10′ 10′ 30′], and the dynamic
deformation angle was generated using a second-order Markov model as follows:

θi(k + 2) = 2(1 − µiT)θi(k + 1) +
(

2µiT − b2T2
)

θi(k) + 2b
√

DiµiT3w(k), (80)

where w(k) is zero-mean Gaussian white noise. The variance of the deflection angle
was set to σ = [6′ 6′ 10′]2, and the time related to the deflection angle was set to

τ1 = [10s 10s 30s]T. The fixed arm length was set to rb = [10m 10m 2m]
T.

(4) Compare the proposed improved deck dynamic attitude measurement algorithm
(IDAM) based on model prediction with the following common existing methods
to verify the effectiveness of the proposed algorithm regarding the support vector
regression-based algorithm for deck dynamic attitude measurement (SVRAM) [12]
and the whale optimization-based algorithm for deck dynamic attitude measurement
(WOAM) [13]. The root mean square error (RMSE) was used as a quantitative indicator
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to evaluate the accuracy of the different measurement methods and was defined as
follows:

RMSEt =

√√√√ 1
T

T

∑
k=1

(xk − x̂k)
2, (81)

where x̂k and xk represent the estimated state value and the true value of the state.

The CPU configuration of simulation computer was an Intel Core i5-1135G7 (2.4 GHz)
and the simulations were run using Microsoft Visual Studio 10.0 software.

The estimation of deflection angle using different methods is shown in Figure 4.
Figures 5 and 6 give the attitude estimation errors and its RMSE values with the different
methods, respectively.

Figure 4. Estimation results of the deflection angle with different methods.

It can be concluded from Figure 4 that the proposed algorithm can track and estimate
the dynamic deformation angle more effectively compared to the SVRAM and WOAM
methods, especially for the estimation of the z-axis dynamic deformation angle. Further-
more, as shown in Figures 5 and 6, the proposed IDAM method significantly improves the
accuracy of deck attitude measurement with accurate estimation of dynamic deformation
angles and effective implementation of model prediction filtering. For the z-axis attitude,
the estimated RMSE of the IDAM was 4.260′. Compared with the 6.560′ and 5.032′ of
SVRAM and WOAM methods, respectively. Thus, the estimation accuracy decreased by
35.06% and 15.34%, respectively, indicating that the proposed algorithm can effectively
improve the attitude measurement accuracy under deck dynamic deformation.
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Figure 5. The error of attitude error angle estimation with different methods; (a) overall view of
attitude error angle estimation; (b) partial enlarged drawing of attitude error angle estimation.
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Figure 6. Attitude error angle estimation error represented by RMSE.

6. Shipborne Experiment and Analysis

To further verify the effectiveness and reliability of the proposed method, a shipborne
experiment was conducted. Figure 7a shows the overall view of the shipborne experiment
platform. All experimental equipment is annotated in Figure 7b including the high-precision
fiber optic inertial navigation system (PHINS), the main IMU, the sub-IMU and so on. PHINS,
the main IMU, and sub-IMU were connected with the synchronous recording device and data
record computer to synchronously record all navigation information.
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Figure 7. Installation diagram of shipborne experiment; (a) overall view of shipborne experiment
platform; (b) installation and layout of all equipment in the experiment platform.

The detailed information of data collected from the experiment is listed in Table 1. The
sampling time was 10 ms.

Table 1. Detailed information of data collected from the experiment.

Index Device Information Unit Sampling Frequency

1 main IMU
gyroscope ◦/h 100 Hz

accelerometer m/s2 100 Hz

2 Sub-IMU
gyroscope ◦/h 100 Hz

accelerometer m/s2 100 Hz

3 PHINS-1
gyroscope ◦/h 100 Hz

accelerometer m/s2 100 Hz

4 PHINS-2
gyroscope ◦/h 100 Hz

accelerometer m/s2 100 Hz

5 GNSS
latitude ◦ 1 Hz

longitude ◦ 1 Hz
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In order to complete the precise alignment of the PHINS as quickly as possible during
the experiment, approximately 20 min of maneuvering were carried out until the alignment
of the PHINS was completed. After the alignment process was finished, static data were
collected for 2 h. The fixed installation deviations between the testing IMUs and PHINS
were determined by integrated alignment using the static data. The calculation results are
shown in Table 2.

Table 2. Installation deviation between testing IMUs and PHINS.

Item Installation Deviation1 Installation Deviation2

Pitch (◦) −0.041 −0.029
Roll (◦) 0.430 0.525

Heading (◦) −0.250 0.330

As shown in Table 2, installation deviation1 represents the installation deviation between
the main IMU and PHINS-1 on the left side in Figure 7b, and installation deviation2 denotes the
installation deviation between the sub-IMU and PHINS-2 on the right side in Figure 7b.

Figure 8 gives the navigation trajectory of the experimental platform.

Figure 8. The trajectory of the experimental platform.

Figure 9 gives the attitude error of the deck under different methods, and its RMSE is
shown in Figure 10.

Figure 9. Attitude measurement error.
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Figure 10. RMSE of attitude measurement error.

From Figure 9, the following conclusions can be drawn: (1) Compared with the
SVRAM method, the attitude errors of the WOAM and proposed IDAM methods were
significantly reduced; (2) in terms of horizontal attitude error, the difference between
the WOAM methods and the proposed IDAM methods was minimal; (3) in terms of
heading error, the WOAM method had a large error, around 150 s, and the proposed IDAM
method had better performance. Finally, the obtained conclusions are consistent with the
simulation results.

It can be seen from Figure 10 that different methods have different attitude measure-
ment performance. For the method based on SVRAM, the values of RMSE for roll, pitch,
and heading are 5.155′, 5.098′, and 25.143′, respectively. For the method based on WOAM,
the values of RMSE for roll, pitch, and heading are reduced to 0.828′, 1.914′, and 10.735′,
respectively. Compared with SVRAM, the accuracy is improved by 83.94%, 62.46%, and
57.30%, respectively. Furthermore, the proposed IDAM achieves high-accuracy dynamic
angle parameters, and the model prediction method further improves the estimation effect.
Therefore, the estimated RMSE of roll, pitch, and heading angles are reduced to 0.797′,
1.852′, and 9.589′, which are 3.74%, 3.24%, and 10.68% better than WOAM, respectively,
showing better attitude estimation performance and verifying the effectiveness of the
proposed algorithm.

7. Conclusions

In order to address the difficulty of achieving accurate attitude information of typical
deck areas, firstly, this paper carried out an online estimation of dynamic deformation
model parameters by using the RVM algorithm to adapt to the complex changes in dynamic
deformation of the deck. Secondly, an MPF-based dynamic attitude measurement method
using maximum correlation entropy as the optimization criterion is proposed to deal with
the influence of model truncation error and non-Gaussian noise. Finally, this paper designs
a dynamic measurement model based on Rodrigues parameters in an inertial frame by
integrating the application of the dynamic deformation model with adaptive parameters.
Meanwhile, there is no restriction on the range of the misalignment angle and no need
for sub-inertial navigation calculation. The experiment results and comparison analysis
demonstrate that the proposed dynamic attitude inertial measurement method has higher
estimation accuracy than the previous methods. Moreover, from an algorithm adaptability
point of view, the proposed method significantly improves the navigation performance of
inertial navigation systems in extreme cases.

In the future, we plan to test more types of algorithms and their combinations applied
to this field and conduct the verification through shipborne experiments.
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