Multi-Dimensional Resource Allocation for Covert Communications in Multi-Beam Low-Earth-Orbit Satellite Systems
Abstract
:1. Introduction
- To meet the transmission requirements of various user equipments, we investigate how to utilize a multi-dimensional resource allocation strategy in the multi-beam LEO satellite network. Unlike existing works, we additionally consider the covert transmission requirements and examine their impact on satellite resource allocation.
- We derive the uplink covert transmission constraint and formulate the design of the multi-beam LEO satellite resource allocation strategy as an optimization problem. In our formulation, we jointly optimize satellite beam-hopping scheduling, frequency resource allocation, and transmit power of user equipments at different time slots.
- To efficiently find a solution, we first employ linearization techniques to transform the optimization problem into a MILP problem. Subsequently, we apply a machine learning-based method, specifically a Tree Markov Decision Process algorithm, to solve this MILP problem. Simulation results demonstrate that our approach is effective.
2. System Model and Problem Formulation
2.1. Satellite Channel Model
2.2. Covert Communication Model
2.3. Problem Formulation
3. TMDP-Based Resource Allocation Algorithm and Problem Linearization
3.1. TMDP-Based Resource Allocation Algorithm
3.2. Optimization Problem Linearization
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tallat, R.; Hawbani, A.; Wang, X.; Al-Dubai, A.; Zhao, L.; Liu, Z.; Min, G.; Zomaya, A.Y.; Hamood Alsamhi, S. Navigating Industry 5.0: A Survey of Key Enabling Technologies, Trends, Challenges, and Opportunities. IEEE Commun. Surv. Tutorials 2024, 26, 1080–1126. [Google Scholar] [CrossRef]
- Liu, S.; Gao, Z.; Wu, Y.; Kwan Ng, D.W.; Gao, X.; Wong, K.K.; Chatzinotas, S.; Ottersten, B. LEO Satellite Constellations for 5G and Beyond: How Will They Reshape Vertical Domains? IEEE Commun. Mag. 2021, 59, 30–36. [Google Scholar] [CrossRef]
- Chen, S.; Sun, S.; Miao, D.; Shi, T.; Cui, Y. The Trends, Challenges, and Key Technologies of Beam-Space Multiplexing in the Integrated Terristrial-Satellite Communication for B5G and 6G. IEEE Wirel. Commun. 2023, 30, 77–86. [Google Scholar] [CrossRef]
- Khan, W.U.; Ali, Z.; Lagunas, E.; Mahmood, A.; Asif, M.; Ihsan, A.; Chatzinotas, S.; Ottersten, B.; Dobre, O.A. Rate Splitting Multiple Access for Next Generation Cognitive Radio Enabled LEO Satellite Networks. IEEE Trans. Wirel. Commun. 2023, 22, 8423–8435. [Google Scholar] [CrossRef]
- Tang, J.; Bian, D.; Li, G.; Hu, J.; Cheng, J. Resource Allocation for LEO Beam-Hopping Satellites in a Spectrum Sharing Scenario. IEEE Access 2021, 9, 56468–56478. [Google Scholar] [CrossRef]
- Wei, D.; Zheng, D.; Pan, C.; Yang, L. Dynamic Beam Scheduling of Multibeam Low Earth Orbit Satellites Based on an Enhanced Artificial Bee Colony Algorithm. IEEE Access 2022, 10, 115424–115434. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, X.; Bu, Z. Resource Allocation with Interference Avoidance in Beam-Hopping Based LEO Satellite Systems. In Proceedings of the 2023 4th Information Communication Technologies Conference (ICTC), Nanjing, China, 17–19 May 2023; pp. 83–88. [Google Scholar] [CrossRef]
- Beidas, B.F.; Seshadri, R.I. Superior Iterative Detection for Co-Channel Interference in Multibeam Satellite Systems. IEEE Trans. Commun. 2020, 68, 7660–7671. [Google Scholar] [CrossRef]
- Kodheli, O.; Maturo, N.; Chatzinotas, S.; Andrenacci, S.; Zimmer, F. NB-IoT via LEO Satellites: An Efficient Resource Allocation Strategy for Uplink Data Transmission. IEEE Int. Things J. 2022, 9, 5094–5107. [Google Scholar] [CrossRef]
- Guo, Q.; Cui, G.; He, M.; Wang, W. Multi-Dimensional Resource Allocation Strategy for LEO Multi-Satellite Beam Hopping Systems. In Proceedings of the 2023 9th International Conference on Computer and Communications (ICCC), Chengdu, China, 8–11 December 2023; pp. 301–305. [Google Scholar] [CrossRef]
- Huang, J.; Yang, Y.; Lee, J.; He, D.; Li, Y. Deep Reinforcement Learning-Based Resource Allocation for RSMA in LEO Satellite-Terrestrial Networks. IEEE Trans. Commun. 2024, 72, 1341–1354. [Google Scholar] [CrossRef]
- Lin, Z.; Ni, Z.; Kuang, L.; Jiang, C.; Huang, Z. Dynamic Beam Pattern and Bandwidth Allocation Based on Multi-Agent Deep Reinforcement Learning for Beam Hopping Satellite Systems. IEEE Trans. Veh. Technol. 2022, 71, 3917–3930. [Google Scholar] [CrossRef]
- Jung, D.H.; Ryu, J.G.; Choi, J. When Satellites Work as Eavesdroppers. IEEE Trans. Inform. Forensic Secur. 2022, 17, 2784–2799. [Google Scholar] [CrossRef]
- Zheng, G.; Arapoglou, P.D.; Ottersten, B. Physical Layer Security in Multibeam Satellite Systems. IEEE Trans. Wirel. Commun. 2012, 11, 852–863. [Google Scholar] [CrossRef]
- Bankey, V.; Upadhyay, P.K. Physical Layer Security of Multiuser Multirelay Hybrid Satellite-Terrestrial Relay Networks. IEEE Trans. Veh. Technol. 2019, 68, 2488–2501. [Google Scholar] [CrossRef]
- Guo, K.; An, K.; Zhang, B.; Huang, Y.; Tang, X.; Zheng, G.; Tsiftsis, T.A. Physical Layer Security for Multiuser Satellite Communication Systems with Threshold-Based Scheduling Scheme. IEEE Trans. Veh. Technol. 2020, 69, 5129–5141. [Google Scholar] [CrossRef]
- Chen, X.; An, J.; Xiong, Z.; Xing, C.; Zhao, N.; Yu, F.R.; Nallanathan, A. Covert Communications: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2023, 25, 1173–1198. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D. Limits of Reliable Communication with Low Probability of Detection on AWGN Channels. IEEE J. Select. Areas Commun. 2013, 31, 1921–1930. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, X.; Tang, J.; Zhao, N.; Zhang, X.Y.; Niyato, D.; Wong, K.K. Covert Communication in UAV-Assisted Air-Ground Networks. IEEE Wirel. Commun. 2021, 28, 190–197. [Google Scholar] [CrossRef]
- Li, F.; Lam, K.Y.; Liu, X.; Wang, J.; Zhao, K.; Wang, L. Joint Pricing and Power Allocation for Multibeam Satellite Systems with Dynamic Game Model. IEEE Trans. Veh. Technol. 2018, 67, 2398–2408. [Google Scholar] [CrossRef]
- Chatzinotas, S.; Zheng, G.; Ottersten, B. Energy-Efficient MMSE Beamforming and Power Allocationin Multibeam Satellite Systems. In Proceedings of the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 6–9 November 2011; pp. 1081–1085. [Google Scholar] [CrossRef]
- Hu, J.; Guo, M.; Yan, S.; Chen, Y.; Zhou, X.; Chen, Z. Deep Reinforcement Learning Enabled Covert Transmission with UAV. IEEE Wirel. Commun. Lett. 2023, 12, 917–921. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, C.; Kuang, L.; Ge, N.; Lu, J. Non-Orthogonal Multiple Access Based Integrated Terrestrial-Satellite Networks. IEEE J. Sel. Areas Commun. 2017, 35, 2253–2267. [Google Scholar] [CrossRef]
- Scavuzzo, L.; Chen, F.; Chetelat, D.; Gasse, M.; Lodi, A.; Yorke-Smith, N.; Aardal, K. Learning to Branch with Tree MDPs. Adv. Neural Inf. Process. Syst. 2022, 35, 18514–18526. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Number of UEs | I | 5 |
Number of CUEs | J | 2 |
Number of bands | M | 2 |
Bandwidth | B | 400 MHz |
Number of beam areas | N | 5 |
Number of beams | 3 | |
Transmit power | [10 W 100 W] | |
Number of time slots | T | 5 |
Length of each time slot | 10 ms | |
Rate threshold for NUEs | D | 4 Mbps |
Signal carrier frequency | f | 20 GHz |
LEO satellite altitude | H | 1000 km |
GEO satellite altitude | 35,786 km | |
3 dB beam angel | ||
Beam radius | r | 87 km |
Receiving antenna gain | 30 dB | |
Eavesdropper antenna gain | 40 dB | |
Transmitting antenna gain | 20 dB | |
Noise power of LEO channel | −90 dBW | |
Noise power of GEO channel | −90 dBW | |
Covertness parameter | 0.1 |
01011 | 00111 | 10011 | 01011 | 10011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Chen, M.; Xu, L.; Wen, Z.; Wei, Y.; Li, S. Multi-Dimensional Resource Allocation for Covert Communications in Multi-Beam Low-Earth-Orbit Satellite Systems. Electronics 2024, 13, 3561. https://doi.org/10.3390/electronics13173561
Wang R, Chen M, Xu L, Wen Z, Wei Y, Li S. Multi-Dimensional Resource Allocation for Covert Communications in Multi-Beam Low-Earth-Orbit Satellite Systems. Electronics. 2024; 13(17):3561. https://doi.org/10.3390/electronics13173561
Chicago/Turabian StyleWang, Renge, Minghao Chen, Luyan Xu, Zhong Wen, Yiyang Wei, and Shice Li. 2024. "Multi-Dimensional Resource Allocation for Covert Communications in Multi-Beam Low-Earth-Orbit Satellite Systems" Electronics 13, no. 17: 3561. https://doi.org/10.3390/electronics13173561
APA StyleWang, R., Chen, M., Xu, L., Wen, Z., Wei, Y., & Li, S. (2024). Multi-Dimensional Resource Allocation for Covert Communications in Multi-Beam Low-Earth-Orbit Satellite Systems. Electronics, 13(17), 3561. https://doi.org/10.3390/electronics13173561