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Abstract: The progress of object detection technology is crucial for obtaining extensive scene informa-
tion from aerial perspectives based on computer vision. However, aerial image detection presents
many challenges, such as large image background sizes, small object sizes, and dense distributions.
This research addresses the specific challenges relating to small object detection in aerial images and
proposes an improved YOLOv8s-based detector named Aerial Images Detector-YOLO(AID-YOLO).
Specifically, this study adopts the General Efficient Layer Aggregation Network (GELAN) from
YOLOv9 as a reference and designs a four-branch skip-layer connection and split operation module
Re-parameterization-Net with Cross-Stage Partial CSP and Efficient Layer Aggregation Networks
(RepNCSPELAN4) to achieve a lightweight network while capturing richer feature information. To
fuse multi-scale features and focus more on the target detection regions, a new multi-channel feature
extraction module named Convolutional Block Attention Module with Two Convolutions Efficient
Layer Aggregation Net-works (C2FCBAM) is designed in the neck part of the network. In addition,
to reduce the sensitivity to position bias of small objects, a new function, Normalized Weighted
Distance Complete Intersection over Union (NWD-CIoU_Loss) weight adaptive loss function, was
designed in this study. We evaluate the proposed AID-YOLO method through ablation experiments
and comparisons with other advanced models on the VEDAI (512, 1024) and DOTAv1.0 datasets. The
results show that compared to the Yolov8s baseline model, AID-YOLO improves the mAP@0.5 metric
by 7.36% on the VEDAI dataset. Simultaneously, the parameters are reduced by 31.7%, achieving
a good balance between accuracy and parameter quantity. The Average Precision (AP) for small
objects has improved by 8.9% compared to the baseline model (YOLOv8s), making it one of the
top performers among all compared models. Furthermore, the FPS metric is also well-suited for
real-time detection in aerial image scenarios. The AID-YOLO method also demonstrates excellent
performance on infrared images in the VEDAI1024 (IR) dataset, with a 2.9% improvement in the
mAP@0.5 metric. We further validate the superior detection and generalization performance of
AID-YOLO in multi-modal and multi-task scenarios through comparisons with other methods on
different resolution images, SODA-A and the DOTAv1.0 datasets. In summary, the results of this
study confirm that the AID-YOLO method significantly improves model detection performance while
maintaining a reduced number of parameters, making it applicable to practical engineering tasks in
aerial image object detection.

Keywords: small object detection; aerial images; four-branch skip-layer connection and split operation
module; convolutional block attention module with two convolutions efficient layer aggregation
networks; weight-assignment-regression cost function
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1. Introduction

In recent years, with the rapid development of UAV remote sensing technology, drones
equipped with various imaging systems, such as high-resolution cameras and infrared sen-
sors, can capture extensive scene information. This aerial image object detection technology,
aimed at air-to-ground applications, has become a crucial component in modern military
systems for intelligence gathering [1]. In the civilian sector, as computer vision technology
matures and aerial images offer advantages such as wide viewing angles, large monitoring
areas, ease of operation, and mobile deployment [2], they have been widely used and
recognized in fields such as perimeter surveying, natural resource management, disaster
response, emergency rescue, and ground traffic vehicle detection (Figure 1). Therefore,
utilizing UAV remote sensing platforms for aerial image object detection to capture more
real-time ground information can enhance the applicability and convenience of ground
object detection. The goal of object detection is to identify and locate instances of interest.
Although general object detection has been widely applied in many fields, aerial image
detection faces more challenges than ordinary image detection.
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Figure 1. Application scenarios of aerial images: (a) infrared unmanned aerial vehicle detection
in high-altitude military scenarios; (b) high-altitude drone-based traffic vehicle detection; (c) high-
altitude ground target detection in aerial remote sensing images; (d) high-altitude drone battlefield
environment monitoring.

On the one hand, small object detection in air-to-ground scenes is challenging mainly
due to the significant external condition variations, complex backgrounds, small target
imaging proportions, significant differences in the sizes of the targets, extensive redundant
background information, changes in lighting conditions, and similar target colors. These
factors challenge the detector’s ability to distinguish and recognize small ground targets.
Currently, most object detection techniques are applied in singular contexts and exhibit
poor generalization. Aerial imagery covers a wide range of targets and includes numerous
background objects, making it suitable for diverse application scenarios due to its vast
shooting scenes and variable angles [3]. In detecting small objects in aerial images, it is
crucial to enhance network architectures to improve detection accuracy and utilize multi-
scale feature fusion mechanisms to comprehensively improve the performance of object
detection tasks in aerial imagery [4].

On the other hand, current general solutions for small ground object detection mainly
involve designing a complex deep neural network to separate strong feature representations
of objects from the background. It often leads to a heavy computational burden, large
model structures, and complex parameters, requiring more computational resources and
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large computing devices [5], which fails to meet the lightweight and real-time requirements
for edge deployment on small embedded mobile devices in practical engineering.

Therefore, neural network methods for object detection in aerial images must be
adapted to the specific characteristics of these challenges. The focus of this paper is on
small object detection in aerial images. We have developed a recognition model with high
accuracy, fast real-time detection, reduced parameter count, and strong generalization
capabilities. This innovative approach significantly enhances the ability to detect and
recognize ground objects in aerial images, addressing practical needs. To this end, we
designed an innovative detector named AID-YOLO specifically for small object detection in
aerial imagery. A key innovation of this work is that the AID-YOLO model maintains stable
accuracy improvements with a reduced parameter count, achieving an optimal balance
between model complexity and performance.

We trained and evaluated AID-YOLO using the VEDAI (512, 1024) and DOTAv1.0
datasets, which comprise aerial viewpoint images annotated with diverse labels for small
objects. The results demonstrate that compared to the current state-of-the-art methods,
AID-YOLO improves the detection capability of small ground objects while reducing the
number of parameters.

Our contributions are summarized as follows:

(1) To better extract small object feature information, we utilized the concept of mod-
ule splitting and reorganization along with efficient the layer aggregation networks
(ELAN hierarchical processing approach to reconstruct a four-branch skip-layer con-
nection and split operation feature extraction module, RepNCSPELAN4, to replace
the CSPDarknet53 to 2-Stage FPN (C2F) module in YOLOv8. It allows the model
to comprehensively improve small object detection performance in terms of being
lightweight, having a better inference speed, and enhanced accuracy.

(2) To integrate multi-scale feature information and emphasize the detection of target
regions, we introduce the Multi-Spatial Channel Enhanced Convolutional Block At-
tention Module (MSCE-CBAM) in the neck section. Consequently, a novel feature
extraction module, C2FCBAM, is formed at the neck, enabling the network to focus
more on detecting small target regions while learning richer features.

(3) To tackle the discrepancies in the sensitivity of the Intersection Over Union (IoU)
loss function towards objects of varying scales, we have introduced a novel weight-
assignment-regression cost function called NWD-CIoU_Loss. We enhanced the detec-
tion performance of small objects by introducing the Normalized Weighted Distance
(NWD) loss function and assigning weight distribution coefficients to adjust the
relative importance between the two losses.

2. Related Work

In aerial devices, object detection aims to identify objects from various complex ground
backgrounds, determine their locations and categories, and thus complete subsequent tasks
such as information collection and ground surveying to meet the requirements. The rise
of deep learning technology has led to significant progress in deep neural network-based
object detection methods, which perform exceptionally well in complex scenes. The main-
stream object detection algorithms mainly include the two-stage detectors represented
by the Faster R-CNN [6] series, the one-stage detectors represented by the YOLO [7] se-
ries and SSD [8], and the Transformer-based DETR series [9] and the latest Mamba [10]
methods. Transformer architectures in the natural language processing domain are too
complex to apply directly to engineering applications due to their large parameter volumes
and training difficulties. One-stage object detection models, which input images directly
into the network and output classification and regression results from a single network
model, significantly enhance detection efficiency and are more suitable for real-time detec-
tion requirements. Therefore, the YOLO series remains the most widely used algorithm.
We selected YOLOv8 [11] as the baseline for improvement in this paper because it has
demonstrated effectiveness and power in numerous computer vision tasks.



Electronics 2024, 13, 3564 4 of 24

Given the extensive view, complex background, small target imaging proportions,
mutual occlusion between different target sizes, and significant differences in aerial images
for ground–air scenes, many researchers have applied deep learning models to UAV remote
sensing images for target feature analysis to improve the accuracy of detection algorithms.
To effectively address the complex background problem of aerial images, in 2019, Xue
Yang et al. proposed the SCRDet method [12]. This approach effectively distinguishes
the salient features of targets from the surrounding distractions, resulting in improved
accuracy and robustness in aerial image object detection tasks. Chen et al. [13] have
achieved remarkable detection performance in real-world unmanned aerial vehicle (UAV)
scenarios by optimizing the residual connection modules within convolutional networks
and augmenting the number of convolutional kernels, thereby enhancing the network’s
capability in feature extraction from high-resolution aerial imagery.

Jiang et al. [14] proposed a UAV target detection framework for infrared images and
videos, extracting features from ground targets and using an improved YOLOv5s for
ground object recognition. This algorithm achieved high recognition accuracy and fast
recognition speed. Li et al. [15] proposed an enhanced small parameter target detection net-
work based on the YOLOv8s model. The authors replaced the PAFPN structure of YOLOv8
with Bi-FPN and improved the backbone with the Ghostblock [16] module, achieving a
neural network method with fewer parameters but better detection performance. Wang
et al. [17] enhanced the YOLOv8 model by incorporating a small target structure (STC)
into the neck of the network. This modification addresses the challenges of detecting small
targets in aerial images by capturing contextual information and minimizing detection
information loss. However, this approach increases the number of parameters. In a related
study, Pan et al. [18] improved upon the YOLOv8 model by modifying the Conv and C2f
layers with the integration of RFCBAM and the adoption of an enhanced inner-MPDIoU as
the model’s bounding box regression loss. These enhancements boost the model’s ability
to learn from complex small samples. Despite these improvements, further parameter
optimization remains necessary. Applying transformer-based methods for aerial image
object detection has garnered significant attention as a research hotspot in computer vision.
DETR (Detection Transformer) [19] has pioneered the introduction of transformers into
the domain of object detection, successfully integrating Convolutional Neural Networks
(CNNs) with transformers. Subsequently, addressing the shortcomings of DETR in terms
of model convergence speed and resource consumption during training, improved models,
such as efficient DETR [20], PnP DETR [21], and sparse DETR [22], have emerged. While
these advancements have enhanced recognition accuracy for aerial remote sensing tasks,
they still need to improve algorithmic real-time performance and substantial parameter
sizes, posing challenges for deployment on edge devices. Therefore, there is an ongoing
need to develop more efficient and lightweight transformer-based solutions that balance
high accuracy and reduced computational complexity, enabling practical applications in
resource-constrained environments.

In recent years, rotating object detection has emerged as a popular research direction.
The center point, width, height, and rotation angle typically define rotating bounding boxes.
Rotating boxes can more closely surround the targets for complex-shaped objects while
aligning with their shapes and orientations. Sharma et al. [23] introduced the Yolors model,
which enhances the detection of rotated and closely spaced small objects in aerial imagery,
facilitating real-time target detection in more significant aerial scenes. Yao et al. [24]
addressed the issues of boundary discontinuity in two-stage oriented bounding box (OBB)
detection by proposing a simple and effective bounding box representation inspired by
polar coordinates, integrating it into both detection stages. This method achieves a good
balance between accuracy and speed among mainstream two-stage oriented detectors.
However, the meticulous labeling of rotating boxes for vast imagery is time-consuming
and labor-intensive. Luo et al. [25] proposed a method for directed object detection based
on single-point labels to tackle the high costs of rotating box annotations. By designing a
multi-view cooperative optimization strategy, they effectively predict the rotating bounding
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boxes from point labels, significantly reducing annotation costs while achieving competitive
performance on two remote sensing object detection datasets.

Although these methods have significantly improved when applied to aerial image
object detection, effectively detecting small targets from wide-area backgrounds still faces
many challenges. The main challenges are as follows: (1) the diminutive size of ground
targets results in their limited presence within aerial images, while the background oc-
cupies a substantial portion, thereby providing restricted detection information; (2) the
down-sampling process within the detection network may lead to the disappearance of
crucial features necessary for small object detection; (3) small objects within aerial images
may encounter challenges such as interference from background colors, occlusion, and
varying angles, making their differentiation from the background or similar objects difficult;
(4) avoid designing large and complex deep networks for small object extraction. The
AID-YOLO method, as outlined in this paper, tackles the previously mentioned issues
by employing hierarchical processing for module splitting and reorganization, as well as
multi-scale fusion. This approach enables the detection of small recognition targets, making
it well-suited for multi-task cross-modal scenarios in aerial image object detection tasks.

3. Methods
3.1. Overview of AID-YOLO

AID-YOLO is an improved version of the YOLOv8 model, comprising three main
components, as illustrated in Figure 2. In the backbone of the network, AID-YOLO in-
corporates the following key components: A convolutional layer, batch normalization, a
sigmoid linear unit (CBS), RepNCSPELAN4, and Spatial Pyramid Pooling Fast (SPPF).
The significant improvements in the backbone manifest in the reconstructed four-branch
skip layer connections and the split operation feature extraction module, RepNCSPELAN4,
which replaces the C2F module in the original YOLOv8. This modification reduces the
model’s weight while facilitating more effective propagation and aggregation of feature
information across different levels, thereby enhancing feature extraction. In the neck of
the network, while the overall architecture still utilizes a Feature Pyramid Network (FPN)
and a Path Aggregation Network (PAN) for top–down and bottom–up feature pyramid
structures, the C2F module incorporates a multi-space channel enhancement convolutional
attention mechanism to form the C2FCBAM module. It facilitates feature fusion across
different scales, improving the model’s focus and recognition capabilities for small objects.
In the head of the network, improvements are constructed through the regression branch,
which employs Distribution Focal Loss (DFL) and introduces a weight allocation method
using NWD-CIoU loss. It addresses the issue of the IoU loss function’s varying sensitivity
to objects of different scales. By assigning weighting coefficients, the relative importance
of the two loss functions is adjusted, ultimately enhancing the detection performance for
small objects.

3.2. Backbone Network

The proposed backbone network model primarily includes convolutional layers and
RepNCSPELAN4 components. Each stage block contains a Conv block with a stride of 2
and a RepNCSPELAN4 module (Figure 3a) for down-sampling and feature extraction. The
most critical component for feature map extraction in the backbone is the RepNCSPELAN4
module. This design integrates the RepConv structure and draws inspiration from Cross-
Stage Partial Network (CSPNet) and ELAN [26], generally adopting a four-branch skip-
layer connection and split operation for feature extraction. Replacing the original C2F
module in YOLOv8 with this design has yielded significant improvements.
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In YOLOv9 [27], the authors introduced an improved Generalized Efficient Layer
Aggregation Network (GELAN), which integrates the CSPNet and ELAN models to opti-
mize gradient pathways for enhanced feature information propagation and aggregation.
The design principle of CSPNet involves partitioning the feature map into two segments:
one undergoes convolution. In contrast, the other merges with the upper-layer convo-
lution results through a cross-stage method. This separation of gradient flow reduces
computational complexity and enriches branch fusion information. ELAN, by contrast,
enhances gradient flow and aggregates features from multiple levels, ensuring that each
layer incorporates a “Resnet” pathway. This design improves the model’s receptive field
and feature representation capabilities, effectively mitigating the challenges associated with
increased training difficulty. The GELAN significantly reduces computational load and
parameter count while maintaining detection performance.

We draw inspiration from the GELAN module proposed in YOLOv9, employing the
concepts of segmentation and recombination while introducing a hierarchical processing
approach. This design enhances feature extraction capabilities alongside network channel
expansion. Consequently, we developed the RepNCSPELAN4 feature extraction mod-
ule, which leverages comprehensive gradient flow information to improve the extraction
of features related to small targets for detection tasks. Specifically, the module incorpo-
rates a four-branch skip layer connection and split feature extraction operations, allowing
RepNCSPELAN4 to be defined as follows:
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RepNCSPELAN4(Conv1(C1)) = Conv4(concat(split1(0.5C3), split2(0.5C3), Conv2(C4), Conv3(C4))) (1)
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In this module, C1 serves as the input, which passes through the layer of Conv1 and
produces an output of C3. Subsequently, a split convolution operation is performed, where
split1(0.5C3) and split2(0.5C3) represent the first two segments of the Conv output, divided
along the channel dimension, with no further operations applied before outputting these
segments. The outputs generated by Conv2 (C4) and Conv3 (C4) result from independent
convolution and pooling operations applied to their respective channels. Finally, the four
segments are concatenated along the dimension to produce the final output features. The
specific process is delineated as follows:

First, in the initial two branches, namely split1 and split2, the absence of any op-
erational transformations leads to a direct output equivalent to 2 × 0.5 C3. In the sub-
sequent feature extraction modules, the third branch undergoes processing through the
Re-parameterization-Net with Cross-Stage Partial (RepNCSP1) submodule (Figure 3b).
RepNCSP1 divides the input features into two segments: one segment undergoes feature
extraction via the Re-parameterization Bottleneck without Identity Connection (RepN-
Bottleneck), while the other employs conventional convolution operations. These two
segments are concatenated to augment the network’s feature extraction capabilities and
performance, enhancing its overall efficacy in capturing relevant information. The architec-
ture of the RepNBottleneck submodule (Figure 3c) references the ResNet structure, where
one branch maintains the output channel count at C4/2. In contrast, the other branch
is processed through the Re-parameterization Convolution without Identity Connection
(RepConvN) submodule (Figure 4). The core idea of RepConvN is to utilize two distinct
convolution kernel sizes, 3 × 3 and 1 × 1, for feature extraction. During the inference
phase, structural re-parameterization merges the 1 × 1 and 3 × 3 convolution kernels into
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a single 3 × 3 kernel. Specifically, the 1 × 1 kernel is padded to match the size of the 3 × 3
kernel, allowing the padded kernel to be added to the original 3 × 3 kernel based on the
principle of additivity of kernels of the same size, thereby forming a 3 × 3 convolution
kernel for inference. Applying RepConvN within the RepNBottleneck submodule enhances
the model’s efficiency and performance. After the nested RepNBottleneck feature extraction
is completed, the process returns to the RepNCSP1 submodule, where N operations of the
RepNBottleneck submodule are sequentially executed. The output from this module is then
concatenated with the original convolution channel, resulting in an output feature size of C4
after passing through Conv2. Subsequently, the output features from the third branch serve
as input for the fourth branch, which again enters the RepNCSP2 submodule, repeating the
operations above. Ultimately, the output features from the RepNCSP2 submodule, after
passing through Conv3, also yield a size of C4.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 24 
 

 

Yolov8, which arises from fusing features from different hierarchical levels. Consequently, 
the proposed module achieves a comprehensive improvement characterized by reduced 
parameter counts, heightened detection accuracy, and better training generalization. It of-
fers a more streamlined and efficient alternative to conventional methods, thereby con-
tributing to advancements in object detection performance. 

 
Figure 3. The module of RepNCSPELAN4: (a) RepNCSPLEN4; (b) RepNCSP; (c) RepNBottleneck. 

 
Figure 4. RepConv module structure: (a) RepConv layer in training; (b) RepConv layer in inference. 

3.3. Neck Network 
In YOLOv8, the neck network maintains the PAFPN structure, which can fuse feature 

maps of different scales and provide richer feature representations. At this point, the C2f 
module simultaneously fuses low-resolution and high-resolution feature maps to enhance 
detection accuracy. In recent years, attention mechanisms have been widely introduced 
into object detection architectures to optimize models and achieve significant results. 
Through learning and model training, deep neural networks can learn which regions need 
specific attention in each new image, forming the necessary attention. Among these, self-

Figure 4. RepConv module structure: (a) RepConv layer in training; (b) RepConv layer in inference.

The final output consists of four distinct channels: split1 and split2, each repre-
senting the initial two outputs with channel dimensions of 0.5 C3, respectively. These
are subsequently processed through the RepNCSP1 submodule and Conv2 block, lead-
ing to the third output feature with C4 channels. Further, the fourth path involves the
RepNCSP2 submodule and Conv3 block, resulting in an output feature of C4 channels.
Ultimately, these four channels undergo a Concat operation, yielding a final output feature
of C1 = 0.5 C3 + 0.5C3 + C4 + C4 = C3 + 2 × C4. This module’s innovative design lies in its
capability to amplify channel dimensions while effectively learning multi-scale small object
features and expanding the receptive field through intra-module feature vector splitting
and multi-level nested convolutions. This approach not only enhances the network’s ef-
ficiency but also addresses the issue of excessive parameter counts in the original C2F
module of Yolov8, which arises from fusing features from different hierarchical levels.
Consequently, the proposed module achieves a comprehensive improvement characterized
by reduced parameter counts, heightened detection accuracy, and better training gener-
alization. It offers a more streamlined and efficient alternative to conventional methods,
thereby contributing to advancements in object detection performance.

3.3. Neck Network

In YOLOv8, the neck network maintains the PAFPN structure, which can fuse feature
maps of different scales and provide richer feature representations. At this point, the C2f
module simultaneously fuses low-resolution and high-resolution feature maps to enhance
detection accuracy. In recent years, attention mechanisms have been widely introduced into
object detection architectures to optimize models and achieve significant results. Through
learning and model training, deep neural networks can learn which regions need specific
attention in each new image, forming the necessary attention. Among these, self-attention,
spatial attention, temporal attention mechanisms, and branch attention are the most typical
attention mechanisms. Therefore, adding attention mechanisms in the neck not only allows
the network to focus more on the target regions and model them more finely but also helps
the network focus on edge, texture, and other detail information of small target objects in
the image data, thereby improving the overall recall and precision of object detection.
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The Convolutional Block Attention Module (CBAM) is an attention mechanism used
in computer vision tasks, particularly suitable for Convolutional Neural Networks (CNNs).
The principle underlying the CBAM involves the fusion of channel and spatial attention,
considering the significance of features in both the channel and spatial dimensions. This
approach refines the input feature map in two stages. By jointly using these two attention
mechanisms, it can better capture the key features of small targets in images. Fundamentally,
the channel attention mechanism first focuses on “which channels are important”, using
parallel operations of average pooling and max pooling to integrate the spatial information
in the input feature map, obtaining dual feature maps. These dual feature maps are then
fed into a shared multilayer perceptron, adding the output features of the two multilayer
perceptrons one by one and generating the channel attention map through a sigmoid
activation function. The spatial attention mechanism first focuses on “where are important”,
performing parallel operations of global max pooling and global average pooling at the
channel level on the input feature map to obtain a pair of feature maps. Next, these feature
maps are concatenated along the channel axis and convolved to reduce parameter count.
Subsequently, a sigmoid operation generates spatial attention features. This mechanism
adapts to improve the model’s focus on critical features, enhancing recognition ability. More
importantly, the CBAM is a lightweight, universal module that enhances training efficiency
without adding computational burden to the network, making it simple and efficient.

Therefore, this paper also designs a multi-spatial channel-enhanced C2FCBAM module
in AID-YOLO, as shown in Figure 5, aiming to improve the detection of small objects.
As shown in Figure 4, the neck network C2f module plays a crucial role in the CSP
Bottleneck structure. Through feature transformation, branch processing, and feature fusion
operations, it can extract and transform the features of the input data, generating more
representative outputs. It aids in enhancing the performance and representation capability
of the network, thereby facilitating its improved adaptability to intricate data tasks. Hence,
in the CBAM attention mechanism, based on assigning convolutional attention weights in
both spatial and channel dimensions, we cascade and enhance the two CBAM modules and
combine them with the Bottleneck module at the neck network’s C2F part. The Bottleneck
module is still based on two convolutional modules, first passing through the initial
convolutional layer and then replacing the second convolutional layer with the second
nested and MSCE-CBAM. This internal and external nested double residual information
linkage further enhances the model’s ability to focus on crucial attributes of the detection
object, improving detection performance.

3.4. Head Network

The detection samples in this dataset primarily focus on small targets. Tiny objects
generally have dimensions smaller than 16x16 pixels, providing extremely restricted vi-
sual information. The elevated complexity imposed on the network model hampers its
ability to acquire discriminative features for detecting diminutive targets, resulting in an
elevated rate of missed detections. Currently, mainstream bounding boxes adopt BCE
(Binary Cross-Entropy) as the classification loss and IoU (Intersection over Union) as the
regression loss. Despite many modifications, IoU’s sensitivity to objects of different scales
varies greatly, as shown in Figure 6. For example, with small objects in the recognition
dataset, minor positional deviations can cause significant IoU drops, resulting in inaccurate
positive and negative sample label assignments. However, the Intersection over Union
(IoU) demonstrates minimal variations for larger objects, suggesting discretization of IoU
measurements when accounting for objects of diverse scales and positional deviations.
Therefore, using the IoU series as a loss function for small object detection models can lead
to insufficient feature information feedback for small targets, causing the model to focus
only on larger targets while neglecting small target feature learning, making it difficult for
the model to converge. Although the CIoU loss function combines the characteristics of
Generalized Intersection over Union (GIoU)and IoU loss functions, considering the area
and center distance of the bounding box. Since CIoU is designed based on the object’s area,
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the influence of larger objects becomes more significant, potentially leading to excessive
correction for smaller objects. Thus, using different loss weights for recognition targets of
varying sizes to improve this issue is crucial.
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We propose a new weighted regression cost function, NWD-CIoU_Loss, based on
bounding box loss to solve this problem. This function integrates the NWD_loss function,
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specifically designed for small targets, with the CIoU function. By allocating a weight
distribution coefficient to modify the relative significance of the two losses, the detection
performance for minuscule objects is enhanced. The NWD loss function comprises the
following steps:

First, to better describe the weight of different pixels within the bounding box, the
bounding box is modeled as a two-dimensional Gaussian distribution. The calculation
process is as follows: The horizontal bounding box R = (cx, cy, w, h), where (cx, cy), w, and h
represent the center coordinates, width, and height. Its inscribed ellipse equation is

(x − µx)
2

σ2
x

+
(y − µy)

2

σ2
y

= 1 (2)

In the equation, (ux, uy) are the center coordinates of the ellipse, and δx and δy are
the semi-axis lengths along the x and y axes. Thus, ux = cx, uy = cy, δx = w2, and δy = h2,
δy = h2. The probability density function of the two-dimensional Gaussian distribution is
as follows:

f (x
∣∣µ, ∑ ) =

exp(− 1
2 (x − µ)T ∑−1(x − µ))

2π
√

∑
(3)

where (x, y) represents the coordinates of the Gaussian distribution, u is the mean vector,
and Σ is the covariance matrix.

Next, the distribution distance is calculated using the Wasserstein distance from
optimal transport theory. For two-dimensional Gaussian distributions, µ1 = N (m1, Σ1)
and µ2 = N (m2, Σ2), the second-order Wasserstein distance between µ1 and µ2 is defined
as follows:

W2
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where ∥•∥F denotes the Frobenius norm.
For bounding box modeling, the Gaussian distributions modeled by the bounding

boxes A = (cxa, cya, wa, ha) and B = (cxb, cyb, wb, hb) modeled Gaussian distribution Na, Nb,
can simplify the second-order Wasserstein distance to

W2
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2
,

ha

2
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,
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2

,
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2
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2

2

(5)

Since W2(Na, Nb) is a distance metric, and the original IoU is a similarity metric
for bounding boxes, a new metric called the normalized Wasserstein distance (NWD) is
obtained through exponential normalization:

NWD(Na, Nb) = exp(−

√
W2

2 (Na, Nb)

C
) (6)

Here, C represents a constant closely tied to the dataset, conventionally set to 12.8.
Finally, since IoU_Loss cannot provide gradient transformations for optimizing the

network when there is no overlap between the predicted bounding box P and the ground
truth G (i.e., P∩G = 0) or when P and G are mutually inclusive (i.e., |P∩G| = P or G),
the NWD metric is designed as a loss function to better deal with small object detection
as follows:

LNWD = 1 − NWD(NP, Ng) (7)

where NP is the Gaussian distribution model of the predicted box P, and Ng is the Gaussian
distribution model of the ground truth box G. In summary, considering the inconsistent
distribution of targets of different scales in ground-based scenes, the ratio of NWD to
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IoU metrics is set to α: β to achieve better detection of targets of diverse scales. The final
bounding box regression loss function is as follows:

NWD − CLoU_loss = α × NWD_loss + β × CLoU_loss (8)

where α + β = 1 represents the adjusted weight range of the bounding box loss, considering
that small objects are more sensitive to displacement from the center point, and α is set to
be greater than β in the experiments.

4. Experiments and Results
4.1. Dataset and Experimental Settings

The VEDAI dataset [28] is an aerial image dataset designed to detect various small vehi-
cles. Each image in the dataset includes visible (RGB) and infrared (IR), with two available
resolutions: 1024 × 1024 and 512 × 512. The object size varies between various model
sizes, mainly in the small size of the target object (in Figure 7). In our experiments, we
mostly use the 1024-resolution visible light version to test the performance of the pro-
posed model. However, we also validated the 512-resolution versions (the abbreviation for
VEDAI1024 and VEDAI512). This dataset encompasses small aerial vehicles and showcases
a range of diversities, encompassing multiple orientations, variations in illumination and
shadows, high reflectivity, and instances of occlusion. Their presence underscores the
dataset’s complexity and richness in capturing real-world scenarios. The original data
consist of 1271 aligned visible and infrared images, focusing on detecting small vehicles in
remote sensing images. The image backgrounds encompass complex scenes such as forests,
cities, roads, parking lots, and fields. During preprocessing, categories with fewer than
50 instances were removed and classified as “Other”. Subsequently, in response to the issue
of misalignment between labels and data, images labeled as 0 were excluded from the orig-
inal dataset, and the experiment transformed annotations of the VEDAI dataset into YOLO
format. The center coordinates of the bounding boxes were normalized, and the length and
width of the detection boxes were also normalized to [0, 1]. As the center coordinates of the
bounding boxes were normalized, the lengths and widths of the detection boxes were also
normalized to fall within the range of [0, 1]. In the label processing phase, values of the
bounding boxes that exceeded the normalized boundaries were clipped (i.e., we set values
less than 0 to 0 and greater than 1 to 1). Ultimately, the model selected 1246 experimental
images with corresponding data and labels. The final recognition categories were car,
pickup, camping, truck, other, tractor, boat, and van, with class IDs converted to 0, 1, . . .,
and 7, respectively, making N = 8. The dataset was split into a training set and a validation
set in a ratio of 0.8:0.2, resulting in 996 images for training and 250 for validation.
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We used the improved Yolov8s as the primary network framework, with an experimen-
tal environment consisting of Ubuntu 20.04 OS, Python 3.8.18, Torch 2.2.1, and Cuda4.11.0.
The improved network in this experiment did not utilize pre-trained weights. The hard-
ware setup included two NVIDIA GTX 3090 GPUs, and we modified the experiment’s code
based on version 8.1.25 of Ultralytics. Throughout the experiment, consistent hyperpa-
rameters were maintained for training, testing, and validation. The training epochs were
set to 300, with a learning rate of 0.01, momentum of 0.937, a batch size of 64, and input
images resized to 640 × 640 for network input. The presented results comprise detection
outputs from Yolov8s and the proposed AID-YOLO network, alongside comparative data
from relevant referenced papers. Table 1 summarizes the experimental environment and
parameter settings.

Table 1. Experimental environment and parameter settings.

Setting Parameters

CPU Intel I9-10920X
System Ubuntu20.04

GPU RTX3090*2
Python 3.8.18
Torch 2.2.1

Training Epochs 300
Weight_decay 0.0005
Momentum 0.937

4.2. Evaluation Metrics

The experiments evaluate the proposed detection method based on detection perfor-
mance and model parameter size. The evaluation metrics include precision (P), recall (R),
Average Precision (AP), Mean Average Precision (mAP), and millions of parameters (M).
Precision is the proportion of correctly predicted targets among all detected targets, while
recall measures the proportion of correctly detected targets among all actual targets.

The calculation methods for precision and recall are defined as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

TP and TN represent correct predictions, and FP and FN represent incorrect results.
The meanings of these metrics are as follows:

True Positive (TP): The box is correctly classified as a positive sample, and it is indeed
a positive sample.

True Negative (TN): The box is correctly classified as a negative sample and, indeed, a
negative sample.

False Positive (TN): The box is incorrectly classified as a positive sample, but it is a
negative sample.

False Negative (FN): The box is incorrectly classified as a negative sample, but it is a
positive sample. It means that it represents the actual object that went undetected.

AP =
∫ 1

0
P(R)dR (11)

mAP =
1
k

k

∑
i=1

APi =

∫ 1
0 P(R)dR

N
(12)
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AP is the area under the precision–recall (P-R) curve. The closer the AP value is to 1,
the better the detection performance of the algorithm. The calculation process of AP can be
summarized as follows: mAP is the average of AP values for each class. It is a comprehen-
sive metric used for fairly measuring the performance of multi-class object detection tasks.
Therefore, the mAP is used to evaluate the detection accuracy in our experiments. Our
metrics include two different Average Precision scores: mAP@0.5 (mAP@0.5 represents the
average accuracy at an IOU threshold of 0.5) and mAP@0.5–0.95 (mAP@0.5:0.95 means the
average mAP calculated at multiple IoU thresholds ranging from 0.5 to 0.95 with a step
size of 0.05). Here, P represents precision, R represents recall, and N is the number of recog-
nition categories. Giga Floating-point Operations Per second (GFLOPs) and parameter size
(parameters) are used to measure the complexity and computational cost of the model.

In this experiment, the dataset primarily consists of aerial images, where the ground
objects vary significantly in scale. To better evaluate the performance of the AID-YOLO
model in detecting small, medium, and large objects, we incorporate the evaluation metrics
APS, APm, and APl. The specific definitions of these metrics are as follows:

APs (Average Precision for small objects): Average Precision for small objects (areas
less than 32 × 32 pixels).

APm (Average Precision for medium objects): Average Precision for medium objects
(areas between 32 × 32 and 96 × 96 pixels).

APl (Average Precision for large objects): Average Precision for large objects (areas
greater than 96 × 96 pixels).

4.3. Experimental Results
4.3.1. Validation of the Benchmark Framework

The Table 2 comprehensively evaluates the model size and inference capabilities of
different baseline frameworks based on the number of layers, parameter size (parameters),
GFLOPs, and inference speed (FPS). The detection performance of these models is measured
by mAP@0.5. Although YOLOv8X achieved the best detection performance, it has 169 more
layers than YOLOv8s (393 vs. 224), its parameter size is 6.13 times that of YOLOv8s (68.1M
vs. 11.1M), and its GFLOPs are 9.03 times that of YOLOv8s (257.4 vs. 28.5). In the case of
YOLOv8s, its mAP@0.5 is lower than that of frameworks such as YOLOv8x; it is selected
as the baseline framework due to its significant advantages in terms of layers, parameter
size, GFLOPs, FPS, and overall performance for edge deployment. The experiments above
validate the rationality of selecting YOLOv8s as the baseline detection framework.

Table 2. Comparison of model size and inference capability of different baseline YOLO frameworks
in VEDAI1024 (RGB).

Method LAYERS Parameters (M) GFLOPs FPS mAP@0.5

Yolov5s 193 9.1M 23.8 196 0.632
Yolov6s 142 16.3M 44 200 0.57
Yolov8s 168 11.1M 28.5 238 0.639
Yolov8l 268 43.6M 164.8 123.4 0.667

Yolov8m 295 25.8M 78.7 158.7 0.662
Yolov8x 365 68.1M 257.4 90 0.68

Bold represents the overall performance display of Yolov8s.

4.3.2. Ablation Experiment

In our ablation study (Table 3), we compared the baseline method using the YOLOv8s
model to verify the effectiveness of our various enhancements for detecting small objects. This
study progressively combines each optimization measure, and Table 3 presents the detailed
results of these experiments. (1) Backbone Improvement: The improved model employs a
four-branch skip layer connection and the split operation module RepNCSPELAN4 to replace
the C2F module in the YOLOv8s backbone network (YOLOv8s + RepNCSPELAN4); (2) Neck
Improvement: An improved C2FCBAM module is combined with the Bottleneck module at
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the C2F location in the neck network (YOLOv8s + RepNCSPELAN4 + C2FCBAM); (3) Loss
Function Improvement: The introduction of the NWD-CIoU_loss function enhances
the weight distribution loss for detecting small objects (YOLOv8s + RepNCSPELAN4
+ C2FCBAM + NWD-CIoU_loss). Through these three stages of improvement, we devel-
oped the proposed AID-YOLO detection model. Each model was evaluated using multiple
metrics from the VEDAI dataset. In this experiment, all hyperparameters were kept con-
stant. During training, the input image size was 640 × 640, the batch size was 64, and the
training ran for 300 epochs.

Table 3. Comparison table of VEDAI1024 ablation experiment results.

Method P R mAP@0.5 mAP@
0.5–0.95

Parameter
(M)

Yolov8s 0.698 0.559 0.639 0.392 11.1M
Yolov8s+ RepNCSPELAN4 0.559 0.632 0.647↑ 0.405 7.56M

Yolov8s+ RepNCSPELAN4 + C2FCBAM 0.625 0.609 0.654 0.405 7.59M
Yolov8s+ RepNCSPELAN4 +C2FCBAM + NWD-CIOU_loss 0.706 0.632 0.686 0.412 7.59M

Bold represents the maximum or minimum value of the column.

The experimental results are shown in Table 3. The results demonstrate that the
proposed modules improved recognition accuracy.

Analysis of RepNCSPELAN4: When employing RepNCSPELAN4 as the feature
extraction module in the backbone, substantial enhancements were observed in recognition
accuracy and the network model’s lightweight nature. The mAP@0.5 metric exhibited a
1.25% increase compared to the baseline, while the mAP@0.5–0.95 metric experienced a
3.32% improvement. Additionally, the parameter count decreased by 32%, achieving a
commendable balance between accuracy and parameter efficiency.

Analysis of C2FCBAM: After adding the C2FCBAM module, although the improve-
ment observed on the dataset was relatively modest, the mAP@0.5 metric still showed
a slight increase, contributing an increase of 1.1%. It indicates that C2FCBAM enables
the network to focus on critical regions favorable for small object detection and enhances
multi-scale fusion characteristics. It improves the model’s ability to model image fea-
tures and helps the network better focus on crucial feature parts to improve small object
detection accuracy.

Analysis of NWD-CIoU_loss: The most significant improvement in recognition ac-
curacy for the AID-YOLO model was achieved by introducing the NWD-CIoU_loss
weight distribution loss function. The mAP@0.5 metric increased by 7.36%, and the strict
mAP@0.5–0.95 metric improved the most, with an increase of 5.1%. It indicates the impor-
tance of considering the varying scales of objects and analyzing the sensitivity of small
objects to positional deviations in this task. This section achieved the best detection effect
and improved small object recognition ability when a more extensive weight was applied
to the positional deviation term, with α:β approximately equal to 4:1.

Based on the training curves from mAP@0.5 (Figure 8), it is clear that as the RepNC-
SPELAN4 module, C2FCBAM, and NWD-CIoU loss function modules are successively
added during the ablation experiments, the recognition accuracy of the AID-YOLO detector
gradually increases. The improvement rates for these additions are 1.25%, 2.35%, and
7.36%, respectively.

Similarly, based on the training curves from mAP@0.5–0.95 (Figure 9), it is evident
that the recognition accuracy of the AID-YOLO model increases by 3.32% and 5.1% succes-
sively with the addition of the RepNCSPELAN4 module, C2FCBAM, and NWD-CIoU_loss
function modules.
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4.4. Algorithm Comparison
4.4.1. Numerical Comparisons

We compared our experimental results with YOLO series algorithms, the Yolov8s
baseline model, the classic SSD algorithm, and the latest detection models, RT-DETR,
Yolov9s, and Yolov10s. The numerical comparison results are presented in Table 4 below.
The results for the visual detection performance of the baseline YOLO models and the
AID-YOLO are presented in Table 4. It can be observed that this method accurately
detects categories of objects that were either not detected or incorrectly predicted by the
YOLO series algorithms. Especially for categories such as pickup and car or van and
boat, the similarities between these objects can lead to confusion during detection. The
model also demonstrates commendable performance for visually challenging and unevenly
distributed categories, such as boat and tractor. Table 4 summarizes the performance of the
YOLOv5s, YOLOv6s, YOLOv8 series, SSD, YOLOv9s, YOLOv10s, RT-DETR models, and
the proposed AID-YOLO across eight recognition categories on the VEDAI1024 dataset. It
also comprehensively compares metrics such as mAP@0.5, mAP@0.5–0.95, parameters (M),
APs, GFLOPs, and more.

Table 4. Performance comparison of different algorithms in VEDAI 1024(RGB) for object recognition.

Methods Car Pick
Up Camping Truck Other Tractor Boat Van Map0.5 APs APm APl FPS Parameters

(M) GFlops

Yolov5s 0.791 0.73 0.698 0.672 0.433 0.534 0.482 0.712 0.632 0.195 0.287 0.459 196 9.11M 23.8
Yolov6s 0.756 0.687 0.636 0.55 0.47 0.464 0.416 0.585 0.57 0.146 0.267 0.357 200 16.3M 44
Yolov8s 0.828 0.753 0.668 0.677 0.448 0.601 0.447 0.688 0.639 0.202 0.282 0.252 238 11.1M 28.5
Yolov8m 0.823 0.764 0.656 0.672 0.486 0.596 0.532 0.766 0.662 0.22 0.303 0.51 158.7 25.84M 78.7
Yolov8l 0.831 0.796 0.659 0.617 0.533 0.637 0.571 0.69 0.667 0.178 0.294 0.459 132.4 43.61M 164.8
Yolov8x 0.81 0.805 0.687 0.628 0.582 0.672 0.516 0.74 0.68 0.186 0.303 0.459 90 68.13M 257.4
Yolov9s 0.844 0.766 0.683 0.626 0.483 0.609 0.413 0.662 0.636 0.195 0.296 0.204 188 7.29M 26.7

Yolov10s 0.799 0.691 0.776 0.554 0.52 0.653 0.474 0.735 0.65 0.217 0.287 0.383 250 8.04M 24.5
Rtdetr-resnet50 0.766 0.696 0.639 0.584 0.523 0.609 0.472 0.53 0.602 0.205 0.277 0.51 140.8 41.95M 125.7

SSD 0.755 0.741 0.736 0.756 0.632 0.823 0.459 0.386 0.661 --- --- --- --- --- ----
retinannet 0.17 0.37 0.6 0.45 0.5 0.27 0.46 0.03 0.389 0.091 0.283 0.6 46.2 --- ---

FCOS 0.78 0.73 0.74 0.55 0.49 0.74 0.56 0.49 0.627 0.161 0.394 0.8 52 --- ---
Ghost 0.757 0.637 0.706 0.489 0.361 0.388 0.476 0.711 0.566 --- --- --- 263 5.92M 16.1

Yolov8-P2 0.814 0.736 0.71 0.509 0.493 0.538 0.479 0.677 0.62 --- --- --- 182 10.6M 36.7
YoloX 0.82 0.79 0.81 0.58 0.55 0.74 0.50 0.5 0.674 0.22 0.422 0.3 59.95 --- ---

AID-Yolo 0.826 0.726 0.701 0.731 0.496 0.649 0.575 0.782 0.686 0.22 0.30 0.408 208.3 7.59M 30.6

Bold represents the maximum or minimum value of the column.
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The experiments were conducted on the VEDAI1024 dataset by scaling the input
image size to 640 × 640, as shown in Table 4. The proposed AID-YOLO model achieved
the best mAP@ 0.5, with a value of 0.686. Two categories achieved the highest accuracy
among the eight object recognition categories tested. Compared with the baseline method,
YOLOv8s, the AID-YOLO model improved the mAP@0.5 from 0.639 to 0.686, representing
an overall increase of 7.36%. Additionally, the number of parameters was reduced from
11.1M to 7.59M, a decrease of 31.7%. Furthermore, comparisons with the state-of-the-art
models, YOLOv9s and YOLOv10s, showed improved recognition precision of 7.8% and
5.54%, respectively. The model parameters of AID-YOLO increased by only 4% compared
to YOLOv9s while decreasing by 5.93% compared to YOLOv10s. Notably, for small object
detection, specifically for objects with a pixel area smaller than 32×32, the Average Precision
(AP) improved by 8.9% over the baseline model (YOLOv8s), making AID-YOLO one of
the best performers among all compared models. Although the model did not achieve the
best results for medium and large object detection, the AP for medium target detection was
only 1% lower than that of single-stage YOLO series algorithms (e.g., YOLOv8m) while
requiring only one-third of the parameters. While some two-stage detection methods (e.g.,
FOS) performed better for medium and large object detection, their slower inference speeds
rendered them less effective for real-time target detection tasks. Although the modified
model showed a decrease in frames per second (FPS), it remained above 200, making
it suitable for real-time aerial image detection scenarios. In summary, the AID-YOLO
model demonstrates comprehensive improvements in accuracy, parameter efficiency, and
detection speed, achieving favorable results for aerial image detection tasks.

4.4.2. Heatmap Comparison

To provide a more intuitive visual comparison, Figure 10 presents the feature displays
of the original image alongside YOLOv5s, YOLOv8s, YOLOv9s, YOLOv10s, and AID-
YOLO. This section utilizes Grad-CAM heatmaps to visualize the prediction process of
the networks, highlighting key feature regions in the specific prediction images generated
by the YOLOv5s, YOLOv8s, YOLOv9s, YOLOv10s, and AID-YOLO detection algorithms.
The heatmap feature maps are the same size as the input network images, specifically
640 × 640 pixels. The experimental setup specifies the extraction of features and heatmap
displays from the model networks’ 9th, 12th, 15th, 18th, and 21st layers, with the configura-
tion set to exclude bounding boxes in the visualized images. The generated heatmaps are
shown below:

Figure 10. Heatmap comparison between AID-YOLO and other networks. The term “original” refers
to the original distribution image, while “original visualize” indicates the output display of the
original network. The heatmaps for YOLOv5s, YOLOv8s, YOLOv9s, YOLOv10s, and AID-YOLO
represent the visualization of these algorithms using the best pre-trained weights. (a–c) represent
different test images.
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By comparing the visualized images shown in Figure 10, it is evident that the AID-
YOLO model represents more obvious object structures, more accurately identifies regions
of interest, and highlights distinctive feature areas. Compared to other YOLO series
algorithms, AID-YOLO demonstrates significant advantages in recognition performance.

4.4.3. Visualization Comparison

The following analysis highlights the differences in object detection results from
images of various scenes, shooting angles, and object types between YOLOv5s, YOLOv8s
(baseline model), YOLOv9s, YOLOv10s, and AID-YOLO.

In Figure 11a, under conditions of dense and occluded environments, AID-YOLO
successfully identified categories such as boat (light green box), van (dark green box), and
camping (orange box), which YOLOv5s, YOLOv8s, or YOLOv9s did not detect. Addi-
tionally, YOLOv5s and YOLOv8s incorrectly classified the car (red box) as a pickup (light
pink box), while YOLOv10s mistakenly identified the pickup (light blue box) as a car (dark
blue box). In Figure 11b, in scenarios with dense objects and similar sizes, AID-YOLO
recognized car (red box), camping (orange box), and tractor (green box), which were not
detected by YOLOv5s and YOLOv8s, as well as by YOLOv9s and YOLOv10s. In Figure 11c,
in low-light conditions with smaller object sizes, the AID-YOLO algorithm successfully
identified all categories, including car (red box), tractor (green box), and pickup (light pink
box). In contrast, YOLOv5s and YOLOv8s incorrectly classified pickup (light pink box) as a
car (red box), while YOLOv9s failed to detect pickup (light blue box), and YOLOv10s did
not recognize the tractor category.
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4.4.4. Infrared Image Validation Comparison

The AID-YOLO model was also validated on infrared images (IR) from the VEDAI1024
dataset, showing excellent performance. Compared to YOLOv5s, the mAP@0.5 metric
improved from 0.609 to 0.633, an increase of 3.94% in recognition accuracy. Compared to
the YOLOv8s baseline model, the mAP@0.5 metric (Figure 12) improved from 0.615 to
0.633, an increase of 2.9%, and the mAP@0.5–0.95 metric (Figure 13) improved from 0.364
to 0.383, an increase of 5.21%. These results indicate that the model is also suitable for
multi-modal object recognition tasks.

The accuracy comparison curves are shown below:
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Figure 12. VEDAI (1024) (IR) mAP@0.5 performance curve comparison.

Figure 13. VEDAI (1024) (IR) mAP@0.5-0.95 performance curve comparison.

4.4.5. Verification and Comparison of Images at Different Resolutions

To verify the proposed AID-YOLO model’s advantage across different image reso-
lutions, this section uses the VEDAI512 dataset for comparative validation. The study
considered other single-stage and two-stage object detection methods, such as SSD, Faster
R-CNN (including the VGG16 backbone), RetinaNet [29] (with the ResNet-50 backbone),
and EfficientDet [30]. Although the experiment employed different implementation frame-
works, we configured all networks with the same parameters to ensure a fair comparison.
The input size for all networks was fixed at 512 × 512, with a batch size of 64. The learning
rate for all detectors was set to 0.001, with a momentum of 0.9, and it conducted training
over a fixed 200 epochs. The results are as follows in Table 5:

Table 5. Performance comparison of different algorithms in VEDAI 512 for object recognition.

Method Precision Recall mAP@0.5

SSD 0.69 0.51 0.543
EfficientDet(D0) 0.58 0.54 0.375
EfficientDet(D1) 0.60 0.68 0.514
Faster R CNN 0.48 0.71 0.509
RetinaNet(50) 0.47 0.59 0.403

AID-YOLO 0.628 0.507 0.592

Experiments demonstrate that the AID-YOLO model is also suitable for object detec-
tion tasks with different image resolutions. Although the VEDAI512 dataset has half the
resolution of VEDAI1024, and despite a reduction in recognition accuracy, the proposed
model still shows a detection advantage in comparison experiments with related algorithms.
The mAP@0.5 metric remains higher than some classic algorithms. The AID-YOLO model
exhibits relatively low recall rates, attributed to the diverse and imbalanced class distribu-
tion within the VEDAI dataset. For instance, the number of cases for the “car” category is
approximately eight times that of the “van” category. This disparity results in insufficient
sample representation for specific classes, reducing recognition capabilities. Additionally,
the model prioritizes improving prediction accuracy, which may sacrifice some of its ability
to detect positive samples, thereby contributing to the lower recall rate observed.
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4.4.6. Comparison of DOTA-v1.0

To validate the generalization of our proposed network, we compared AID-YOLO
with different one-stage or two-stage methods using data from a single modality, including
a large-scale dataset for object detection in aerial images (DOTA). The DOTAv1.0 dataset
contains rich scene variations in aerial images with extensive target scale and orientation
variations, consisting of 2806 large images and 188,282 instances across 15 categories. For
the setup, we cropped the images to 1024 × 1024 pixels. Half of the original images were
selected as the training set, and the experiment used 1/6 for the validation set. The input
size for the images was fixed at 512 × 512, with training epochs set to 100 and a batch size
of 16. To validate the superiority of our proposed AID-YOLO, six classic methods were
selected for comparison: single-stage algorithms (Yolov8s, RetainNet GFL [31]), a two-stage
method (Faster R-CNN), and lightweight models (MobileNetV2 [32] and ShuffleNet [33].
The experimental results are presented in the table below:

As shown in Table 6, the AID-YOLO achieved the best detection results on the DOTA-
v1.0 dataset: mAP@0.5. Regardless of whether compared with two-stage, single-stage, or
lightweight methods, the model parameters (7.59M) and GFLOP (30.6) are significantly
smaller than other algorithm detectors. The above experiments demonstrate that the
algorithm possesses both scene detection generalization and meets the requirements for
downsizing and lightweight implementation in engineering applications.

Table 6. Performance comparison of different algorithms in DOTA-v1.0 for object recognition.

Method mAP@0.5 Parameters (M) GFLOPs

RetainNet [25] 0.504 55.39 293.36
GFL [26] 0.665 19.13 159.18

Faster R-CNN 0.606 60.19 289.25
MobileNetV2 [27] 0.569 10.30 124.24

ShuffleNet [28] 0.577 12.11 142.60
Yolov8s 0.649 11.9 28.5
Yolov10s 0.639 8.04 24.5

Ghost 0.625 9.47 16.1
AID-Yolo 0.653 7.59 30.6

4.4.7. Comparison of SODA-A

This experiment aimed to validate the universality of the proposed AID-YOLO model.
To achieve this, we conducted tests using the large-scale dataset SODA-A, which focuses
on small object detection in aerial remote sensing images. The SODA-A dataset comprises
a rich collection of remote-sensing images with diverse scene transformations and a wide
range of target scales and orientations. The original dataset provided by the authors
includes 2512 ultra-high-resolution images across ten categories. The original images were
cropped into 640 × 640 pixel sub-images in the preprocessing stage. A threshold size of
0.01 was set to remove duplicate or inaccurate labels and merge similar ones. Ultimately,
the training set comprised 11,837 images, while the validation set contained 3309 images.
The experiments were conducted with 100 epochs and a batch size of 32 without employing
any pre-trained network weights. The experimental results are presented in Table 7:

Table 7. Performance comparison of different algorithms in SODA-A for object recognition.

Yolov8s Yolov9s Yolov10s Ghost Yolov8s-P2 AID-YOLO

Airplane 0.748 0.775 0.729 0.731 0.689 0.777
Helicopter 0.557 0.462 0.412 0.496 0.399 0.576

Small-vehicle 0.467 0.51 0.459 0.448 0.433 0.492
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Table 7. Cont.

Yolov8s Yolov9s Yolov10s Ghost Yolov8s-P2 AID-YOLO

Large-vehicle 0.528 0.527 0.475 0.492 0.449 0.534
Ship 0.437 0.487 0.414 0.404 0.383 0.466

Container 0.5 0.521 0.475 0.48 0.45 0.521
Storage-tank 0.56 0.605 0.549 0.539 0.523 0.596

Swimming-pool 0.844 0.845 0.827 0.833 0.817 0.85
Windmill 0.62 0.581 0.571 0.56 0.52 0.633
(ignore) 0.249 0.219 0.241 0.255 0.21 0.272

mAP@0.5 0.551 0.553 0.515 0.524 0.487 0.572
mAP@0.5–0.95 0.304 0.302 0.284 0.282 0.265 0.319

Precision 0.601 0.629 0.569 0.583 0.547 0.628
Recall 0.542 0.527 0.519 0.523 0.502 0.547

Bold represents the maximum value of the column.

In analyzing the overall results in Table 7 and Figure 14, it was observed that the
original dataset underwent a reduction in image resolution during the cropping process,
which led to some small target objects being unevenly segmented. Additionally, numerous
classes with uneven distribution contributed to the SODA-A dataset’s relatively low overall
detection accuracy. However, comparative experimental data indicate that testing on this
dataset still reflects the advantages of the AID-YOLO model. Specifically, the AID-YOLO
model achieved the highest precision for four detection categories, with a mAP@0.5 that
exceeds the parameter-comparable YOLOv9s model by approximately 3.4%. Furthermore,
the recall rate was also the highest among the compared algorithms. Although the accuracy
could have been more optimal, the overall evaluation metrics demonstrated strong per-
formance. Among the other comparison models, YOLOv9s also exhibited good detection
results on this dataset, suggesting that the design of the AID-YOLO model, which draws
on the YOLOv9 architecture, is reasonably justified.
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5. Conclusions

This paper proposes a real-time lightweight end-to-end detection network, AID-
YOLO, for small object detection in aerial images. The detector benefits from the design
of four-branch skip layer connections and the split operation feature extraction module
RepNCSPELAN4, enabling the model to comprehensively improve small object detection
performance in lightweight, inference speed, and accuracy enhancement. We integrated
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the designed C2FCBAM into the model, allowing the network to learn more features while
focusing more on detecting small object areas. Furthermore, considering the sensitivity to
slight positional deviations of small objects, we devised a weighted allocation regression
cost function, namely NWD-CIoU_Loss. By determining the optimal coefficient distribution
ratio based on model characteristics, we enhanced the detection of small objects.

In this experiment, with the above improvements, the proposed AID-YOLO achieved
68.6% mAP@0.5 on the VEDAI1024 dataset with lower computational costs, which is 7.36%
higher than YOLOv8s; meanwhile, the parameter count is reduced by 31.7% compared
to YOLOv8s, achieving a good balance between accuracy and parameter count. In terms
of small object detection metrics, the AID-YOLO model shows an improvement of 8.9%
in Average Precision (AP) compared to the baseline model (YOLOv8s), positioning it as
one of the top performers among all compared models. Additionally, the FPS metric
remains suitable for real-time detection in aerial image scenarios. Moreover, comparative
experimental results using this model on infrared images and other datasets indicate that
the model also has advantages in detection performance and generalization.

Next, we plan to implement aerial image object detection tasks on high-performance
embedded platforms in engineering applications to evaluate the proposed method’s prac-
tical deployment effects. Meanwhile, to better adapt to the impact of light changes on
detection effects, we will continue to research multi-modal fusion networks to better meet
the requirements of aerial image applications in practical scenarios.
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Abbreviations

AID-YOLO you only look once based aerial image detector
GELANs Generalized Efficient Layer Aggregation Networks
ELAN Efficient Layer Aggregation Networks
C2F CSPDarknet53 to 2-Stage FPN

C2FCBAM
Convolutional Block Attention Module with Two Convolution Efficient
Layer Aggregation Networks

RepNCSPELAN4
Re-parameterization-net with Cross-Stage Partial CSP and Efficient
Layer Aggregation Networks

MSCE-CBAM Multi-Spatial Channel Enhanced Convolutional Block Attention Module
NWD-CIoU_Loss Normalized Weighted Distance Complete Intersection Over Union
CBS conv2d Batch normalization, sigmoid linear unit
SPPF Spatial Pyramid Pooling Fast
BCE Binary Cross-Entropy
CSPNet Cross-stage partial network
RepNBottleneck Re-parameterization Bottleneck without Identity Connection
RepConvN Re-parameterization Convolution without Identity Connection
RepNCSP Re-parameterization-net with Cross-Stage Partial
SiLU Sigmoid linear unit

https://downloads.greyc.fr/vedai/
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