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Abstract: In the late 20th century, computer viruses emerged as powerful malware that resides
permanently in target hosts. For a virus to function, it must load into memory from persistent storage,
such as a file on a hard drive. Due to the significant destructive potential of viruses, numerous defense
measures have been developed to protect computer systems. Among these, antivirus software is
one of the most recognized and widely used. Typically, antivirus solutions rely on static analysis
(signature-based) technologies to detect infections in files stored on permanent storage devices, such
as hard drives or USB (Universal Serial Bus) flash drives. However, a new breed of malware, fileless
malware, has been designed to evade detection and enhance durability. Fileless malware resides solely
in the memory of the target hosts, circumventing traditional antivirus software, which cannot access or
analyze processes executed directly from memory. This study proposes the Check-on-Execution (CoE)
kernel-based approach to detect fileless malware on Linux systems. CoE intervenes by suspending
code execution before a program executes code from a process’s writable and executable memory
area. To prevent the execution of fileless malware, CoE extracts the code from memory, packages it
with an ELF (Executable and Linkable Format) header to create an ELF file, and uses VirusTotal for
analysis. Experimental results demonstrate that CoE significantly enhances a Linux system’s ability
to defend against fileless malware. Additionally, CoE effectively protects against shell code injection
attacks, including buffer and memory overflows, and can handle packed malware. However, it is
important to note that this study focuses exclusively on fileless malware, and further research is
needed to address other types of malware.

Keywords: antivirus; fileless malware; dynamic analysis; memory analysis

1. Introduction

The proposed framework for detecting and mitigating fileless malware in Linux
systems has a significant relationship with the field of electronics, particularly in the
context of Internet of Things (IoT) devices. Linux is a prevalent operating system for
IoT devices due to its flexibility and open-source nature, making it a critical target for
malicious attacks. Fileless malware poses a unique threat to these devices, which often
have limited computational resources and rely on allow-lists rather than comprehensive
antivirus solutions. By enhancing security at the kernel level, the framework addresses the
vulnerabilities in electronic systems that use Linux. Integrating such security measures into
IoT devices can help safeguard against unauthorized access and manipulation, ensuring
the reliability and integrity of electronic systems increasingly interconnected in modern
technology landscapes. This relationship highlights the importance of developing advanced
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security protocols tailored to the specific needs of electronic systems, thereby contributing
to the broader field of electronics cybersecurity. Antivirus software is becoming a crucial
defense tool for computer and network systems. Tests comparing antivirus and different
viruses demonstrate that antivirus software shields computer systems against malware
attacks. Malware software is terminated, and the system is alerted when an antivirus engine
finds it. Each side in the continuous conflict between antivirus and malware develops new
strategies to trick the other. Finding a means to avoid antivirus detection is one of the
efficient tactics malware developers use.

Put another way, they attempt to make their malware invisible to antivirus. Unlike
antivirus engines, allow-lists are often used by IoT devices to prevent malware execution
due to the constrained resources of IoT. Linux is commonly used on IoT devices. However,
fileless malware can be executed undetected in a Linux system by first being injected into a
process in an allow-list. Therefore, fileless malware poses a threat to Linux-powered IoT
devices and infrastructure. As a result, creating a method to defend a Linux system against
fileless malware is crucial.

Fileless malware is one of the stealth methods that malware developers have recently
used most frequently. Even though fileless malware is not a new attack vector, its high
success rate has increased its use [1]. A 2017 study found that fileless virus attack strategies
were used in 77% of practical assault situations [2]. The study demonstrates that conven-
tional antivirus software cannot safeguard computer systems completely. Additionally,
according to a report [3] published in 2020, the rate of fileless malware rose by 900% from
2019 to 2020. Nowadays, many crypto miners and ransomware transmit their infections to
hosts via fileless malware.

Fileless malware is stored in the address space of a lawful procedure. Traditional
antivirus software, on the other hand, recognizes malware based on the harmful code
included in a file. Signature-based antivirus cannot access the destructive code kept in
physical memory, so it cannot identify associated threats. Windows hosts are initially the
most popular targets of fileless malware. The popularity of Linux-based desktops, IoT
devices, and servers has recently been accompanied by the emergence of fileless malware
on Linux platforms [4], and this trend is continuing. When building fileless malware
for Windows computers, different techniques are used than when doing so for Linux
systems [5]. The reason for this is that on the Windows and Linux platforms, the procedures
and interfaces for injecting code into the memory of a process from a separate approach are
dissimilar. For example, Windows fileless malware typically uses the macros of Windows
Office, PDF (Portable Document Format), PowerShell, and system administration utilities
like Windows Administration Interface Command (WMIC) and CertUtil. However, these
have rarely been used by Linux fileless malware [6]. However, the targets of fileless
malware on Linux and Windows are the same. Each aims to place malicious code within
the address space of an active, legitimate process running on the target system.

Section 1 of this paper introduces the basic concepts and motivations. Section 2
provides the necessary background knowledge. Section 3 is related research that focuses on
the defense mechanisms provided by the current antivirus software. Section 4 presents the
system structure and implementation details of CoE, while Section 5 reports the evaluation
results of CoE. The limitations of CoE are discussed in Section 6, and the final section
summarizes the paper, highlighting the contributions of CoE and outlining directions for
future work.

2. Background

The pertinent background information for Linux fileless malware is introduced in
this section. Although the method for inserting malicious code into a process changes
between Windows and Linux systems, their objectives are the same. These techniques aim
to introduce malicious code into a process’s address space. These techniques aim to save
the code in physical memory rather than a file in long-term storage.
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2.1. Fileless Malware

Malware that uses no files is both an attack method and an attack vector. The code
of fileless malware is stored at the address space of a process that is now operating on a
victim host, as opposed to traditional malware, whose code is stored in a file at the victim
host’s permanent storage. Antivirus software must obtain the file to determine whether
it is malware. It is challenging to identify fileless malware, since its code is kept in the
victim host’s physical memory, and current antivirus software is not built to recover code
from memory whose contents may change. As a result, an increasing number of malware
developers distribute their dangerous code using fileless malware.

2.2. Approaches to Inject Code into a Process

Two main ways exist to introduce code into a Linux process’s address space. The first
inserts shell code into the address space of the susceptible process by taking advantage
of the buffer overflow vulnerability [7]. This injection can be completed by an internal
or external cycle. This method launches heap overflow attacks [8] and stack-smashing
assaults [9]. Figure 1’s Path C illustrates this path.
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The target host’s internal process must cooperate with the second method [10] to
accomplish code injection. Attacks using command injection that are launched from outside
the target host [11] are used to carry out this operation. This procedure, typically a Linux
shell, can become Figure 1’s loader. This procedure may activate other loaders. The Python
and Perl interpreters, which Linux distributions typically pre-install on a Linux system, are
additional loaders. Additionally, PHP (Personal Homepage Program) is frequently used as
a loader on hosting systems.

A loader can be a Linux shell process or a process the Linux shell executes. A loader is
responsible for downloading harmful code from an external host to a target host. Malicious
scripts or executable binaries are downloaded when a loader is a Linux shell, injecting
malicious code into a process and causing the malicious code to be executed in memory. No
files are modified. For example, the following shell command $curl http://attacker/
evil.pl (accessed on 1 March 2024) | perl downloads a malicious Perl script from
a remote host and invokes a Perl interpreter to execute it. All the above operations happen
in memory only. In this case, the shell is the loader.

http://attacker/evil.pl
http://attacker/evil.pl
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Malicious code can be either a script or an executable binary, as shown in path A
of Figure 1. When an executable binary belonging to this type is executed, the related
process can inject malicious code into a different process using a system called ptrace().
The process can also use memfd_create() to allocate a memory area in the address space.
Then, the process injects a malicious ELF file into the allocated memory area. Finally,
the process executes the malicious ELF directly, without touching any other file in the
permanent storage of the target host. If the downloaded code is malicious, the script can
use a system called memfd_create() to perform the same thing described above. The
malicious code shown in path b of Figure 1 is also an executable binary, but its data area
already contains malicious machine code. By transferring execution flow to the malicious
machine code in the data area, a process belonging to this type can execute the malicious
machine code directly. All related files are deleted from their storage after creating any
of the above process types, and malicious code is executed. Using the ptrace() system,
an injecting process can inject code into a different process (injected process). However,
to do so, the injecting process must first collect the PID (Process IDentifier) and memory
layout of the injected process on the target host. As a result, it is often more practical, easier,
and less detectable to create fileless malware at the target host using the memfd_create()
system call.

2.3. An Execution Example of Fileless Malware

This section presents an example of how fileless malware can be spread to a host
and executed. Figure 2 illustrates this example. The target host in this figure has a com-
mand injection vulnerability, which allows an attacker to perform a shell on the target
host by injecting malicious commands into a benign command. If the target host has
Perl or Python interpreters, commonly pre-installed on many operating systems, the at-
tacker can use these interpreters to execute malicious code. In that case, an attacker
can use the shell to execute the following commands: $curl http://attacker/evil.pl
(accessed on 1 March 2024) | perl or $curl http://attacker/evil.py (accessed
on 1 March 2024) | python. Either command downloads a script from a remote host to
the target host and then invokes an interpreter to execute the script. The above operations
do not create a file in the permanent storage of the target host.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 22 

Malicious code can be either a script or an executable binary, as shown in path A of 
Figure 1. When an executable binary belonging to this type is executed, the related process 
can inject malicious code into a different process using a system called ptrace(). The 
process can also use memfd_create() to allocate a memory area in the address space. 
Then, the process injects a malicious ELF file into the allocated memory area. Finally, the 
process executes the malicious ELF directly, without touching any other file in the perma-
nent storage of the target host. If the downloaded code is malicious, the script can use a 
system called memfd_create() to perform the same thing described above. The mali-
cious code shown in path b of Figure 1 is also an executable binary, but its data area al-
ready contains malicious machine code. By transferring execution flow to the malicious 
machine code in the data area, a process belonging to this type can execute the malicious 
machine code directly. All related files are deleted from their storage after creating any of 
the above process types, and malicious code is executed. Using the ptrace() system, an 
injecting process can inject code into a different process (injected process). However, to 
do so, the injecting process must first collect the PID (Process IDentifier) and memory 
layout of the injected process on the target host. As a result, it is often more practical, 
easier, and less detectable to create fileless malware at the target host using the 
memfd_create() system call. 

2.3. An Execution Example of Fileless Malware 
This section presents an example of how fileless malware can be spread to a host and 

executed. Figure 2 illustrates this example. The target host in this figure has a command 
injection vulnerability, which allows an attacker to perform a shell on the target host by 
injecting malicious commands into a benign command. If the target host has Perl or Py-
thon interpreters, commonly pre-installed on many operating systems, the attacker can 
use these interpreters to execute malicious code. In that case, an attacker can use the shell 
to execute the following commands: $curl http://attacker/evil.pl | perl or 
$curl http://attacker/evil.py | python. Either command downloads a script 
from a remote host to the target host and then invokes an interpreter to execute the script. 
The above operations do not create a file in the permanent storage of the target host.  

 
Figure 2. Fileless malware attack example. 

In the Perl script example, the Perl interpreter creates a process to execute the down-
loaded script, evil_elf.pl. It first uses the memfd_create() system call to set up an 
anonymous file in the process’s address space, then writes a malicious ELF binary into 
this file, and finally executes the malicious binary. The malicious ELF still resides in the 
memory of the process, not in a file at the permanent storage of the target host. As a result, 
the download operation, injection operation, and execution operation occur in the target 
host’s memory. Since the memfd_create() system call first appeared in Linux version 
3.17 in October 2014, this example is applicable only to Linux distributions with Kernel 
version 3.17 or newer. 

The function of memfd_create() is similar to malloc(). The difference is that 
malloc() returns an indicator that points to an allocated memory. memfd_create() 
creates an anonymous file in the memory and returns its file descriptor. memfd_cre-
ate() was initially designed to allow various programs to share a memory and exchange 
messages through file descriptors. This kind of file is similar to a regular file function, 
with the write and read functions, and can also be loaded into memory for execution. 

Figure 2. Fileless malware attack example.

In the Perl script example, the Perl interpreter creates a process to execute the down-
loaded script, evil_elf.pl. It first uses the memfd_create() system call to set up an
anonymous file in the process’s address space, then writes a malicious ELF binary into
this file, and finally executes the malicious binary. The malicious ELF still resides in the
memory of the process, not in a file at the permanent storage of the target host. As a result,
the download operation, injection operation, and execution operation occur in the target
host’s memory. Since the memfd_create() system call first appeared in Linux version 3.17
in October 2014, this example is applicable only to Linux distributions with Kernel version
3.17 or newer.

The function of memfd_create() is similar to malloc(). The difference is that malloc()
returns an indicator that points to an allocated memory. memfd_create() creates an anony-
mous file in the memory and returns its file descriptor. memfd_create() was initially
designed to allow various programs to share a memory and exchange messages through
file descriptors. This kind of file is similar to a regular file function, with the write and read

http://attacker/evil.pl
http://attacker/evil.py
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functions, and can also be loaded into memory for execution. However, only the link file
can be seen in the file system. This anonymous file does not exist on a physical hard disk.
A link file is a particular file that points to another file.

3. Related Work

This section introduces the current defense methods and characteristics of antivirus
software, analyzes the defense effect against fileless attacks, and points out their shortcom-
ings. Antivirus software that can detect fileless malware is typically designed for Windows.
Finding such antivirus software for Linux systems is rare, if not impossible.

3.1. Fileless Malware Collections, Creation, and Analyses

Antivirus software that detects fileless malware is usually developed for Windows in
the industry. Finding such antivirus software in a Linux system is rare, if not impossible.
Hence, the major effort for Linux fileless malware is to analyze the behaviors of Linux
fileless malware. Fan Dang et al. [12] deployed hardware and software IoT honeypots
to collect fileless attacks on Linux-based IoT devices in the wild. They also analyzed the
collected samples for their prevalence, exploits, environments, and impacts. B.N. Sanjay
et al. [13] conducted a detailed survey on fileless malware, especially Windows fileless
malware. Sherif Saad et al. [14] designed and implemented a fileless malware using new
features in JavaScript and HTML5. They tested their proposed fileless malware with several
free and commercial malware detection tools that apply static and dynamic analysis. Ex-
perimental results show that their fileless malware bypassed all the anti-malware detection
tools used in their study. In a 2021 malware survey about diverse notorious malware made
by [15], Caviglione et al. concluded, “... standard mechanisms such as system monitor-
ing, firewalling, and proxying, restricted access to command prompts, website analysis,
whitelisting, and user education could be ineffective. Thus, research is needed to detect
and counteract fileless threats efficiently”.

3.2. Static Analysis

One of the static analysis techniques antivirus software uses is signature-based tech-
nology, which most antivirus software adopts. As shown in Figure 3, this type of antivirus
software scans a file to generate its signature. Then, it looks up the virus signature database
to see whether the file’s signature matches the virus’s signature in its virus signature
database. The file is deemed a virus file if there is a match. Otherwise, it is supposed to
be a normal file. Antivirus software destroys the virus file and issues a warning message
to the computer users. Each antivirus software company maintains its virus signature
database. The quality of the virus signature database determines the detection precision of
an antivirus. Because virus signature databases are the signatures of zero-day viruses, static
analysis-based antivirus cannot detect zero-day viruses. Because new viruses continue
emerging, antivirus software companies must collect new virus signatures persistently
and update their virus signature database continuously to mitigate the influence time of
zero-day viruses.
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This time-consuming job requires experienced professionals to maintain the virus
signature database. Besides, to avoid being detected by antivirus software, virus makers
develop various approaches to change the forms of their viruses. Encryption and com-
pression are the most used transformation methods [16]. An antivirus must obtain the file
before applying static analysis to check whether a file is a virus file. However, the fileless
malware’s code resides in a host’s memory, not the host’s file. Thus, it is challenging for
static analysis-based antivirus software to detect fileless malware. After all, current static
analysis-based antivirus software cannot retrieve malicious code stored in memory.

3.3. Dynamic Analysis

Dynamic analysis is the other virus detection method. Researchers have found that
most viruses have some special behavior patterns. These behavior patterns are relatively
uncommon in normal programs. Therefore, dynamic analysis-based antivirus software
uses these patterns to identify whether a running process is a virus. For example, normal
programs call graphics APIs to draw interfaces first, but viruses usually start reading
and writing a hard drive directly and download other malicious programs. Dynamic
analysis-based antivirus can detect the existence of fileless malware. Dynamic analysis-
based antivirus software usually creates an isolated virtual environment first and then
executes the program it wants to check in this virtual environment.

Meanwhile, when the program is executed in an isolated environment, dynamic
analysis-based antivirus collects behaviors generated by the program. Finally, based on the
behaviors that the antivirus software contains, the antivirus software determines whether
the program is a virus. For example, McAfee utilizes behavior and dynamic analysis to
detect whether a program runs simultaneously with PowerShell.

Compared with static analysis-based virus detection approaches, dynamic analysis-
based virus detection approaches usually use more resources and may create more false
alarms. Besides, it is not difficult for malware makers to change the behaviors of their
malware while completing the same work. Malware makers may add some operations to
bypass detection. For instance, a virus can elude detection by introducing a delay of 100 to
200 milliseconds to a harmful command. Moreover, some malware will first detect whether
it is in an isolated virtual environment, such as a virtual machine or sandbox. It does not
execute malicious code if it finds it is in a remote virtual environment.

3.4. Security Settings to Block Fileless Malware Execution

Security settings can turn off some functions that may be abused by fileless malware
to dispatch it to various hosts. Usually, they are radical solutions and may influence users’
usage experience of some programs. This defense method is not recommended if a user
needs a more open environment. Two examples utilize security settings to protect a system
against fileless malware. First, Microsoft Office users can turn off the macros to avoid
fileless malware that is spread through macros. Second, Web browser users can turn off the
JavaScript execution capability of their browsers to prevent related attacks. However, this
may make most websites work abnormally.

Providing users with setting security policies for a Linux system can achieve access
restrictions, which can be set to prohibit the execution of fileless malware. Because fileless
malware may utilize the directories used by shared memory, such as /tmp or /dev/sh/,
some administrators may mark these directories as non-executable to protect their systems
from fileless malware that uses these directories. But a super user can still execute the
programs in these directories.

3.5. Adoption of Security Patterns

Recent studies have underscored the critical role that security patterns play in enhanc-
ing the resilience of security frameworks like Check-on-Execution (CoE). In 2016, Hamid
et al. [17] researched establishing a formalized approach to modeling security patterns,
which are reusable solutions to common security problems in software design. By formal-
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izing these patterns, the authors aimed to provide a structured methodology that can be
systematically applied during the software development lifecycle to enhance the security
of software systems. They integrated security concerns early in software development,
mainly through pattern-based approaches. Security patterns encapsulate best practices
for addressing specific security requirements, allowing developers to implement security
measures consistently and effectively. The research explored the challenges associated with
the informal nature of existing security patterns, often leading to ambiguities and inconsis-
tencies in their application. To address these challenges, the authors proposed a formalized
framework for modeling security patterns, which includes using formal languages and
tools to ensure that security patterns are precisely defined, analyzed, and implemented.

In 2022, Fernandez et al. [18] explored how ASPs can create a systematic, reusable
framework for addressing software and system design security challenges. Abstract Se-
curity Patterns are generalized, high-level templates that describe security mechanisms
without tying them to specific implementations or technologies. These patterns encapsulate
fundamental security principles that can be applied across various domains, providing a
flexible yet robust foundation for securing software systems. The authors argued that by
using ASPs, developers and architects can ensure that security considerations are inherently
built into the system’s architecture from the early design stages.

4. Goals, Principles, and System Structure

This section describes the goals, principles, system structure, and significant com-
ponents of CoE. Unlike the approaches adopted by system settings (Section 3.4), which
may turn off some system functions, CoE does not turn off any system-provided tasks
while protecting the system from fileless malware. Additionally, the impact of CoE on the
performance of normal processes is minimal. A typical process is defined as one that does
not execute code stored in a writable memory area. For legitimate processes that need to
execute code stored in a writable area, such as a heap, if the system maintains the hash
value of the code confirmed to be benign, then only the performance of the first execution of
these processes will be affected. Subsequent executions will not experience any significant
performance degradation.

4.1. Design Principles

CoE is designed based on the following principles. For security reasons, a writable
page of a process is usually not executable. However, for specific purposes, such as in a heap
area, a writable region may still need to be both writable and executable simultaneously.
Writable process areas are often targets for fileless malware injection. Therefore, if we pause
the execution of code stored in a writable region, collect the code, and determine whether it
is malicious, we can effectively identify and stop harmful code injected into a process. It
enables us to protect a system from fileless malware. At the same time, legitimate processes
can still use writable memory to store and execute their code, provided that we allow
the suspended process to continue running when the analysis shows that the code is not
a virus.

4.2. System Structure

Figure 4 shows the system structure of CoE. CoE consists of the following major
components: CoE System Call Interceptor, textitCoE Page Fault Handler, CoE Scanner, CoE
File Extractor, CoE Code Extractor, and CoE Packer, except for component CoE Scanner,
which is in a user space process. The Linux kernel address space contains all the remaining
components. The primary element within the CoE System Call Interceptor is the CoE File
Extractor. Meanwhile, the CoE Page Fault Handler is constructed upon the foundations
of the Linux Page Fault Handler, but with the addition of two extra components: the CoE
Code Extractor and CoE Packer. As mentioned in Section 2.2, there are different approaches
for fileless malware to inject code into the address space of a process. We use component
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CoE System Call Interceptor and component CoE Page Fault Handler to intercept and catch
the code stored in a process’s memory.
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1. CoE Code Extractor: The primary function of the CoE Code Extractor is to extract
code from memory. CoE Code Extractor utilizes the NX bit (No eXecute bit) provided
by AMD (Advanced Micro Device) 64-bit CPUs (Central Processing Unit) or the XD bit
(Execute Disable bit) provided by Intel 64-bit CPUs, both of which are supported by
Linux, to trigger its execution. Figure 5 shows the layout of a Page Table Entry (PTE)
and the position of the NX bit in a PTE. When the NX bit of a PTE for a page frame is
set to 1, it indicates that the page frame is not executable. A Page Fault Exception will
be triggered if the CPU attempts to execute code from this page frame. Currently, the
CoE Code Extractor is executed within the CoE Page Fault Handler. CoE preemptively
sets the NX bits of all PTEs corresponding to writable and executable page frames to 1.
This approach allows CoE to leverage hardware to detect when the CPU attempts to
execute code stored in a writable page frame, eliminating the need for time-consuming
software checks.
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The copy-on-write mechanism, adopted by most modern OSes, including Linux,
inspired the design of the execution triggering mechanism of the CoE Code Extractor.
Figures 6 and 7 illustrate how copy-on-write works. As shown in Figure 6, there are two
tasks (i.e., processes), task A and task B, sharing a physical page frame. The PTE in task
A for the page frame, PTEA, is marked as non-writable. Similarly, the PTE in task B for
the same page frame is also marked as non-writable. When task A attempts to write data
into this page frame, a Page Fault Exception occurs because the PTE is set to non-writable.
Suppose the Page Fault Handler discovers that the virtual memory area assigned to task A
designates the page frame as writable. In that case, it recognizes that the copy-on-write
mechanism triggered the fault. Consequently, the handler allocates a new page frame to
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task A, updates PTEA to point to this new page frame, and sets the new page frame as
writable in PTEA. Figure 7 shows the result.
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CoE uses the NX bit and a mechanism similar to copy-on-write to trigger the execution
of the CoE Code Extractor. In Figure 8, the page frame with the number 100 in the
rightmost square represents a page frame that is readable, writable, and executable. Task
A’s corresponding vm-area will retain a record of these permissions. Because the page frame
is writable and executable, CoE first sets the PTE for this page frame as non-executable. As
a result, when task A attempts to execute code stored in this page frame, a page fault is
issued, triggering the CoE Code Extractor. CoE then checks the executable permission of
the page frame in the related vm-area. If the page frame is not executable, the CoE Code
Extractor terminates the execution of task A. If the page frame is executable, CoE collects
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the code in the page frame and sends it to other CoE components for analysis. If the code
is found to be malicious, CoE terminates task A. Otherwise, CoE sets the page frame as
executable in its PTE and allows task A to resume execution, as shown in Figure 9.
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2. CoE Packer: The primary function of the CoE Packer is to convert the code extracted
from memory into ELF format. Once the CoE Code Extractor determines the necessity
of verifying a code segment stored in a writable region, it instructs the CoE Packer to
retrieve the code and package it into an ELF file. The CoE Packer accomplishes this by
appending the appropriate ELF header and setting the ELF header’s entry point field
to the starting point of the assembled code. This conversion allows CoE to transfer
the code into an ELF file, which VirusTotal can then check to determine whether the
code is malicious or benign. VirusTotal only accepts and analyzes data in file form.

3. CoE Scanner: The primary function of the CoE Scanner is to scan packed ELF files.
After the CoE Code Packer converts a piece of code into an ELF file, it hands it
over to the CoE Scanner to determine whether the code is malware. The current
version of CoE Scanner utilizes VirusTotal’s APIs to assist in identifying malicious
code. VirusTotal provides a malware analysis service leveraging over 60 antivirus
engines to analyze input files, offering free and paid options.

4. CoE File Checker: As described in Section 2.2, file malware may use the memfd_create()
system call to create an anonymous area to inject a malware file and then use the execve()
system call to execute the file hidden inside the address space of a process. CoE File
Checker intercepts and collects files executed in this manner. When a program uses the
execve() system call, the CoE File Checker checks the file’s location to be executed and
determines whether the file is in memory. If the file is in memory, the CoE File Checker
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pauses the execution, retrieves it, and submits it to the CoE Scanner for further analysis.
CoE File Checker only allows benign programs to continue their execution.

4.3. Execution Paths of CoE

CoE uses two execution paths, the file path and the text path, to handle fileless malware.
The file path consists of the CoE File Extractor and CoE Scanner components, which handle
fileless malware created by the operating system called memfd_create() and exec (). As
described in subsection II-B, fileless malware created this way is more common, accessible,
and stealthy. Unlike fileless malware developed by the ptrace() system call, this type
does not require collecting information about an injected process, such as PID and memory
layout, from the injecting process at the target host. The text path consists of the CoE Code
Extractor, CoE Packer, and CoE Scanner components, which handle fileless malware that
contains only machine code in an attack process. This machine code may be stored in a
writable and executable memory area of the process or injected into the process using a
system called sptrace().

1. Execution Flows of the File Path: When CoE detects a process using the execve()
system call to execute a program, the CoE File Extractor first checks whether the file is
in memory, as illustrated in Figure 10. If the file is not stored in memory, the CoE File
Extractor allows the process to execute it. However, if the file is stored in memory, the
CoE File Extractor retrieves it and passes it to the CoE Scanner. The CoE Scanner then
uses VirusTotal to determine whether the file is malicious. The CoE File Extractor
generally allows the system to handle the file unless it is found to be malicious, in
which case the file’s execution is prevented, and the process is promptly terminated.

2. Execution Flows of the Text Path: When an instruction is executed, the CPU hardware
checks the NX bit in the PTE of the corresponding page frame, as illustrated in Figure 11.
If the NX bit is 0, the instruction is allowed to execute. However, if the NX bit is 1,
the hardware triggers a Page Fault Exception. This exception verifies whether the
permission in the vm-area of the page frame is writable. If it is writable, execution
is transferred to the CoE Code Extractor to determine whether the consent in the
vm-area is marked as executable. The Page Fault Handler terminates the related
process if the consent is marked as non-executable. If the permission is marked as
executable, the CoE Code Extractor restores the NX bit to 0. Subsequently, the CoE
Packer retrieves the code from memory and packs it with an ELF header, transforming
it into an ELF file. The ELF file is then sent to the CoE Scanner, which scans the file
using VirusTotal to determine whether the code is malicious or benign. If the file is
harmless, the CoE Scanner resumes the execution of the code; otherwise, it terminates
the execution. The size of a page frame is 4 K.Electronics 2024, 13, x FOR PEER REVIEW 12 of 22 
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5. Evaluation and Analysis

This section presents the results of various experiments conducted to evaluate the
effectiveness and efficiency of CoE. The analysis of these experimental results aims to
determine whether CoE can protect a Linux system from attacks by various fileless malware.

5.1. Effectiveness Tests for Code Stored in the Stack Segment

The host, OS, and Linux kernel specifications used in our experiments are detailed in
Table 1. To determine if CoE can pause the execution of code stored in a writable memory area,
we created two programs: safe_code.c (displayed in Table 2) and unsafe_code.c (displayed
in Table 3). These programs contain machine code stored in a local array variable, with execution
transferred to the stored machine code. To test this ability, we retrieved the code, packed it
into an ELF file, and sent it to VirusTotal for analysis. In safe_code.c, the machine code
modifies the value of a local variable a to 10. In unsafe_code.c, the machine code is a shell code
commonly used in buffer overflow attacks. We allowed the test process stack to be executable
during the execution of these programs, demonstrating the thoroughness of our analysis.

Table 1. CPU, OS, and Linux kerne speicfications.

CPU 3.4 GHZ AMD Ryzen 7 1700X CPU with 8 cores

OS Ubuntu 18.04
Kernel Linux Kernel 4.20.3

Table 2. Content of file safe_code.c.

1 #include <stdio.h>
2 #include <unistd.h>
3 int main() {
4 printf("pid:%d\n", getpid());
5 int a = 0;
6 char add[] = {
7 "\x55", // push %rbp
8 "\x48\x89\xe5", // mov %rsp,%rbp
9 "\x48\x89\x7d\xf8", // mov %rdi,-0x8(%rbp)
10 "\x48\x8b\x45\xf8", // mov -0x8(%rbp),%rax
11 "\xc7\x00\x0a\x00\x00\x00", // movl $0xa, (%rax)
12 "\x90", // nop
13 "\x5d", // pop %rbp
14 "\xc3" // retq
15 };
16 printf("%d\n", a);
17 printf("%p\n", add);
18 (*(void (*)())add)(&a); // a=10;
19 printf("%d\n", a);
20 }
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Table 3. Content of file unsafe_code.c.

1 #include <stdio.h>
2 #include <unistd.h>
3 int main() {
4 printf("pid:%d\n", getpid());
5 char shellcode[] = {
6 "\x48\x31\xd2", // xor rdx, rdx
7 "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68", // mov
$0x68732f6e69622f2f, %rbx
8 "\x48\xc1\xeb\x08", // shr $0x8, %rbx
9 “\x53” //push %xbx
10 “\x48\x89\xe7” // mov %rsp, %rdi
11 “\x50” //push %rax
12 “\x57” //push %rdi
13 “\x48\x89\xe6” //mov %rsp, %rsi
14 “\xb0\x3b” //mov $0x3b, %al
15 "\x0f\x05" // syscall
16 };
17 printf("%p\n”,shellcode);
18 (*(void (*)())shellcode)();
19 }

The program safe_code.c is executed successfully and subsequently terminates its
execution. Its pattern is similar to that of a traditional buffer overflow attack. Experimental
results indicate that CoE can protect a system from fileless malware, including buffer and
heap overflow attacks. However, this paper focuses solely on fileless malware. In addition
to the previous experiments, we conducted further tests to assess the current efficacy
of antivirus engines against fileless malware. Clam AntiVirus (ClamAV) is a popular
open-source Linux antivirus engine. We initially selected some viruses that ClamAV
could detect for these tests. We then converted these viruses into fileless malware and
provided the newly created fileless malware to ClamAV for examination. ClamAV failed to
identify the fileless malware as containing viruses. These results demonstrate that detecting
fileless malware remains challenging for antivirus engines, corroborating the conclusions
of Caviglione et al. regarding fileless malware, as discussed in Section 3.1.

5.2. Effectiveness Evaluation

To evaluate the effectiveness of CoE, we conducted experiments using three differ-
ent types of malware obtained from various sources. The first type was sourced from
VirusShare, the second consisted of shell code collected from the Shell-Storm Database,
and the third was packed malware. For our experiments, we created packed malware by
selecting samples from the first type of malware. We extracted each selected piece’s text
segment and added our ELF header and entry point to form a new file. We then used a
packing tool to pack the new file. During the execution of these three types of malware,
whether directly or indirectly through a process, CoE was able to identify and halt their
execution. Additionally, CoE generated or retrieved the relevant ELF files for scanning.
The detection effectiveness of CoE depended entirely on the virus signature databases we
utilized. For our experiments, we relied on VirusTotal to determine if a file was malicious
for our experiments.

Case 1: In this experiment, we selected 2668 malware samples from VirusShare,
converted them into fileless malware, and executed them. CoE’s file path was triggered to
handle the fileless malware. Among the 2668 malware samples, CoE correctly identified
2661 as malware and mistakenly classified seven fileless malware samples as benign. The
detection rate was 99.73%. Of the seven malware samples misclassified as harmless, five
could not execute, one merely printed a message, and the last attempted to implement
a program in the tmp directory. Since none of these seven samples exhibited malicious
behaviors, they should not be considered malware.
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[Result analysis]: Experimental results show that CoE can effectively detect fileless
malware.

Case 2: We collected 15 pieces of Linux x86-64 shell code from the Shell-Storm Database
to create 15 pieces of fileless malware. CoE’s text path was triggered to handle these fileless
malware samples. CoE successfully suspended the execution of all 15 pieces and obtained
the related ELF files. However, only eight out of the fifteen pieces of fileless malware were
detected as viruses by VirusTotal, resulting in a detection rate of 53.33%. Table 4 details the
types of shell code samples used in our experiments and the detection rates for each type.

Table 4. Detection Rates of Fileless Malware Created by Shell Code.

Shell Code Form # of Detected Shell Code
Samples

# of Total Shell Code
Samples Detection Rate

Execute (“/bin/sh”) 2 4 50%
Connect Back Shell 3 7 42.85%
Execute (“shutdown -h now”) 1 2 50%
Add users with passwd 1 1 100%
Execute (“/sbin/pagetables -F”) 1 1 100%
Total 8 15 53.33%

[Result analysis]: As mentioned above, CoE successfully suspended the execution of
all 15 pieces of fileless malware and obtained the related ELF files, demonstrating that all
CoE components functioned correctly. The CoE can protect a system against shell code
attacks despite being primarily designed to defend against fileless malware. If the virus
signature databases used by CoE can incorporate more shell code signatures, or if we create
a dedicated CoE shell code signature database, the accuracy of CoE’s shell code detection
could be significantly improved.

Case 3: Packing is a technique that compresses or encrypts malware samples to alter
their signatures, allowing attackers to create mutations that bypass antivirus detection.
When packed malware is executed, the decompression or decryption code is first applied
to the compressed/encrypted code, which is then stored in a writable and executable area.
This process triggers CoE’s execution. Our experiments involved 112 pieces of packed
malware. CoE detected 70 out of the 112 samples, resulting in a detection rate of 62.5%.

[Result analysis]: The malware used in case 3’s experiments is the same as in case
1’s. In case 1, experiments demonstrated that CoE could detect almost all tested fileless
malware. However, in case 3, the detection rate of CoE dropped to only 62.5%. The reason
for this discrepancy is as follows: For a file called file test retrieved from VirusShare, case 1
used it directly, allowing CoE to send the complete file test to VirusTotal. In contrast, case 3
involved altering the ELF header of the test. Consequently, even though the packed file
received by VirusTotal contained the same code segment as the file test, its different ELF
header affected the detection process.

These results suggest that some antivirus engines consider both the ELF header and
the code to determine whether a file is malware. Thus, as concluded from the analysis of
case 2’s results (shell code case), incorporating signatures derived from malicious machine
code can enhance CoE’s detection rate for packed malware.

5.3. Efficiency Evaluation

We conducted experiments to measure the execution overhead introduced by CoE.
Since CoE affects the execution time of code stored in writable and executable areas and
memory areas created by the memfd_create() system call, we evaluated the performance
overhead in these two scenarios.

Figure 12 shows that the performance overhead for executing code stored in a writable
and executable area is 22%. However, a program’s code section is typically non-writable for
security and reliability reasons, meaning this overhead should not impact most programs.
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Figure 12 indicates that the performance overhead for executing a file stored in a
memory area created by the memfd_create() system call is 7%, considered trivial.

5.4. File Scanning Time Evaluation

The primary performance overhead introduced by CoE, the file scanning time, includes
the time VirusTotal needs to analyze a file and determine its nature and the time to transmit
a file between the host and VirusTotal. VirusTotal returns the existing scan results when it
receives a previously analyzed file. However, when it encounters a new file, it performs
an initial analysis before sending back the results, which takes longer. It is important to
note that this latter scenario is relatively rare, providing reassurance about the frequency of
the issue.

In our first experiment, we repeatedly sent the same file that VirusTotal had already
analyzed and calculated the average file scanning time. As shown in Figure 13, the average
scanning time was 4.71 s. In the second experiment, we sent files that VirusTotal had not
previously analyzed and calculated the average scanning time. Figure 14 shows that the
average scanning time in this case was 80.1 s. These results indicate that file scanning time
represents a significant overhead.

To address this issue, caching previous file scanning results can minimize the need
for repeated scans of the same file. Additionally, triggering the scan of related files during
program installation can mitigate this non-trivial file scanning time issue. Furthermore,
using a local antivirus engine for scanning instead of sending files to VirusTotal may also
reduce the file scanning overhead.
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6. Discussion

CoE utilizes CPU hardware to initiate execution when code is about to be run from a
memory area that is both writable and executable. This approach is logically sound, as it
would be challenging for an attacker to inject code into a memory area that is not writable.
Typically, this assumption holds. However, if an attacker employs the ptrace() system
call for code injection, it becomes possible to inject code into a non-writable but executable
memory area. This is because ptrace() allows code injection within the kernel address
space, enabling the kernel to write code into any part of a process’s address space.

We propose hooking the ptrace() system call to address this vulnerability. By doing
so, whenever ptrace() attempts to write into a non-writable but executable memory area,
we can dynamically alter the permissions of the related virtual memory area to be writable
and executable. This measure effectively reduces the risk associated with ptrace()-based
code injections.
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7. Future Work
7.1. Integration of the Check-on-Execution (CoE) Framework into TPM Technology

To integrate the Check-on-Execution (CoE) framework into Trusted Platform Module
(TPM) technology, we can significantly enhance the security of Linux systems by leveraging
TPM’s advanced capabilities in secure boot processes, hardware-based attestation, and
integrity verification. Combining CoE and TPM creates a robust security framework that
addresses various vulnerabilities in Linux systems, especially those targeted by advanced
threats such as fileless malware. This integration not only provides hardware-based assur-
ances for code execution but also ensures the overall integrity of the system from boot to
runtime. Below is a detailed explanation of how CoE could be integrated with TPM, based
on the concepts outlined.

The Trusted Platform Module (TPM) is a specialized hardware-based security device
embedded in computing devices, offering a range of cryptographic functions and secure
storage capabilities. It acts as a trusted anchor for various security-related operations.
One of its primary functions is ensuring a safe boot, where TPM validates the integrity of
the boot loader and kernel to ensure the system boots with only trusted software. This
involves measuring and verifying each stage of the boot process to confirm that it has not
been tampered with. TPM also plays a crucial role in attestation by providing proof that a
system’s hardware and software configurations have not been altered. Through remote
attestation, TPM measures and reports the system’s state to a remote verifier, ensuring the
system operates securely. TPM supports sealing and binding, which involves encrypting
data so it can only be decrypted when the system is in a known, trusted state. This process
is essential for protecting sensitive data, ensuring it remains inaccessible if the system’s
integrity is compromised.

Integrating the Trusted Platform Module (TPM) with the Center of Excellence (CoE)
framework involves several vital enhancements to ensure system security. The primary
objective of this integration is to leverage TPM’s capabilities to bolster the integrity and
protection of the CoE framework at various stages. TPM enhances the integrity of the
CoE framework during the boot process through secure boot integration. This is achieved
by measuring and hashing the boot loader, kernel, and CoE components, with these
measurements stored in the TPM’s Platform Configuration Registers (PCRs). The TPM
compares these measurements against known good values, allowing the system to continue
booting only if the measurements match, confirming that the CoE framework is in a trusted
state. Suppose any alterations or compromises are detected in the CoE framework or its
dependencies, such as kernel modules. In that case, the boot process can be halted or the
system can be restricted, preventing potentially malicious code from executing. TPM is
used to continually verify the CoE framework’s integrity after the initial boot. This is done
by periodically extending TPM PCRs with the hash of the CoE’s current state or the state
of critical system components it interacts with, ensuring ongoing assurance of the CoE’s
security. Additionally, TPM’s remote attestation capabilities allow the CoE framework to
prove to a remote verifier, such as a security server or cloud-based management system,
that it is operating in a secure and unaltered state. This feature is particularly useful in
distributed environments or when higher security assurance levels are needed. TPM’s
sealed storage capability is utilized to protect critical CoE-related data, such as verified
code signatures and configuration files. This involves encrypting and sealing critical data
with TPM, ensuring it can only be decrypted when the system is in a verified good state.
Furthermore, sensitive CoE operations can be bound to specific TPM states, ensuring that
these operations are only executed when the system’s integrity has been confirmed. To
enhance security for code execution, TPM helps monitor and verify code before execution.
CoE can use TPM to measure the state of memory regions or processes prior to allowing
their execution, adding an extra layer of verification to ensure that only trusted code is
executed. Additionally, before running any code, CoE can check if the executable’s hash
matches a TPM-stored whitelist of trusted executables, thereby preventing the execution of
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unauthorized or malicious code. This comprehensive integration of TPM with CoE ensures
robust protection and integrity throughout the system’s lifecycle.

Integrating the Center of Excellence (CoE) with the Trusted Platform Module (TPM)
delivers several notable benefits that significantly enhance the security of Linux systems.
One of the primary advantages is increased security. By leveraging TPM, the CoE gains
hardware-based security assurances, which makes it substantially more challenging for
attackers to bypass or tamper with the framework. TPM’s provision of a hardware root
of trust offers robust protection against sophisticated threats like fileless malware, which
typically exploits software vulnerabilities. TPM integration improves the overall integrity
of the CoE framework and the entire system. TPM maintains the system’s integrity from the
boot process through runtime by continuously verifying the CoE components’ integrity and
system configurations’ integrity. This ongoing integrity check helps prevent unauthorized
modifications, mitigating the risk of security breaches and ensuring the system remains
secure against potential threats. The use of TPM’s attestation and sealing features ensures
trustworthy code execution. TPM attestation confirms that only verified and trusted code
is executed, significantly reducing the risk of fileless malware and other advanced threats
that depend on executing unverified or malicious code. This integration ensures that the
system only runs code verified as safe, thereby enhancing overall security and reliability.

Integrating the CoE framework with TPM technology significantly enhances the
security of Linux systems by providing hardware-based assurances for code execution,
system integrity, and data protection. This integration addresses potential vulnerabilities in
the CoE framework, such as the risks associated with kernel-level privileges and external
interactions, making it a more robust solution against advanced threats like fileless malware.
By leveraging TPM’s capabilities, the CoE framework can offer higher security assurance,
ensuring that Linux systems remain protected in an increasingly complex threat landscape.
The combination of CoE and TPM represents a powerful approach to securing modern
computing environments, particularly those that rely on Linux as their operating system.

7.2. Integration of XACML into the Framework within IoT Environments

The integration of XACML (eXtensible Access Control Markup Language) into the
Check-on-Execution (CoE) framework within IoT (Internet of Things) environments repre-
sents a strategic advancement in security and access control. XACML is a standard language
expressing access control policies, allowing for highly granular and context-aware permis-
sion management. XACML can significantly enhance security in IoT settings, where devices
are often resource-constrained and operate in dynamic, interconnected environments.

The integration of XACML (eXtensible Access Control Markup Language) into the
CoE (Center of Excellence) framework offers several advantages, particularly in IoT (In-
ternet of Things) environments. One of the primary benefits of integrating XACML into
the CoE framework is its capability to enforce granular and context-aware access con-
trol policies. In traditional access control systems, permissions are often static, applied
broadly to users or devices without considering the specific context in which an action is
requested. XACML, however, allows for a more nuanced approach. XACML policies can
be crafted to ensure that a device can only execute certain commands if it meets specific
contextual criteria. These criteria could include the device’s current network environment,
the time of day, specific other devices in the network, or even environmental factors such
as temperature or humidity. This level of detail ensures that access is granted only under
appropriate and secure conditions, significantly enhancing the security of IoT devices,
which often operate in varied and sometimes unpredictable environments. Integrating
XACML into the CoE framework within IoT environments presents a robust solution for
enhancing security through detailed and context-aware access control. This approach not
only strengthens the security posture of IoT devices but also ensures that access control is
adaptable to the dynamic nature of IoT networks. While challenges such as complexity and
performance overhead must be addressed, the benefits of incorporating XACML outweigh
these considerations. By providing a more granular and context-sensitive approach to
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managing permissions, XACML significantly protects IoT devices from unauthorized code
execution and other security threats, ensuring IoT systems’ overall reliability and security
using Linux.

8. Conclusions

This paper proposes a novel solution to combat fileless malware called Check-on-
Execution (CoE) within the Linux kernel. Recent research indicates that fileless malware
has successfully breached the defenses of various established antivirus engines, facilitating
the spread of diverse malicious software, including notorious ransomware and crypto-
mining malware, across numerous hosts. Traditional antivirus engines use static analysis,
maintaining a database of virus signatures. To detect malware, these engines must first
acquire the file, extract its signature, and then compare it against the virus signature
database. If a match is found, the file is identified as malware; otherwise, it is considered a
regular program.

Once installed, fileless malware resides solely in the memory of a process, typically
masquerading as a legitimate process that provides user services. This evasion strategy
renders traditional static analysis antivirus engines ineffective, as they cannot even access
the code of fileless malware, let alone analyze it. Additionally, the memory content of a
process is constantly changing, making it crucial for a detection solution to capture the
correct data—the fileless malware code—at the right time.

CoE leverages CPU hardware and Page Table Entries (PTEs) to trigger its execution,
reducing processing time and increasing accuracy. As a kernel-based solution, CoE is re-
silient against being disabled by attackers, a common vulnerability in traditional antivirus
engines. This resilience provides strong reassurance of its effectiveness. Experimental
results demonstrate that CoE effectively defends systems against fileless malware. More-
over, while CoE is not explicitly designed to counter shell code attacks or packed malware,
enhancing it with additional malicious code-based signatures suggests potential efficacy in
addressing these significant security threats.

CoE is a kernel-based solution, similar to Address Space Layout Randomization
(ASLR) and non-executable stacks, which provides robust security without requiring users
to have elevated privileges. Just as ASLR offers protection to every process executing on
a Linux system, CoE extends its protection to all processes running on a Linux system
with CoE enabled. This intrinsic nature of CoE ensures that it operates transparently and
universally, safeguarding processes without direct user interaction. Since CoE is integrated
into the kernel, no external program can interact with it directly, which means that CoE
does not increase the system’s attack surface. This design is crucial, as it prevents CoE from
being targeted or exploited by external malicious entities, thereby maintaining the system’s
security integrity. The misconception that CoE could increase the attack surface likely stems
from its interaction with VirusTotal, managed by user-space code rather than CoE itself.
This user-space code is designed to initiate outbound connections, specifically to VirusTotal,
to verify potential threats. It does not accept inbound connections from any host, effectively
isolating CoE from external threats and ensuring its interaction with VirusTotal does not
expose the system to additional risks. However, this user-space code is flexible and can be
configured to interact with alternative hosts, such as a local antivirus host like Amavis. By
switching the server connection to a local host like Amavis, several benefits can be realized,
including reduced network traffic, lower service costs, and faster analysis of threats. This
is particularly advantageous in environments where hosts face similar attack vectors, as
using a local antivirus host can significantly reduce the time required to analyze the same
code sent from different local hosts. In future work, we plan to implement this capability,
allowing organizations to tailor CoE’s operations to their specific network environments,
optimizing performance while maintaining high levels of security.
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