Deep Learning-Based Joint Beamforming Design for Multi-Hop Reconfigurable Intelligent Surface (RIS)-Aided Communication Systems
Abstract
:1. Introduction
- In the multi-hop RIS-aided multi-user communication system, the joint beamforming design, including the reflection matrices of all RISs and the transmit beamforming for all users at BS, is a challenge. In this paper, we propose a DL-based joint beamforming scheme aiming to maximize the system data rate.
- We analyze the computational complexity of the proposed DLBF method and the existing beamforming methods, which shows that the proposed method has suboptimal complexity performance. As a tradeoff, it is proved from the simulations that the data rate performance of the proposed DLBF method outperforms that of the existing method, having the optimal complexity performance.
- We investigate the effect of the RIS number on the data rate performance of multi-hop RIS-aided communication systems. The simulation results prove that the data rate performance can be significantly improved by the increasing number of RISs in the low signal-to-noise ratio (SNR) scenario, while the improvement decreases even disappears in the higher-SNR scenario. Thus, the number of RISs is suggested to be adaptively set according to the SNR value of different communication systems.
2. System Model and Problem Formulation
2.1. System Model
2.2. Problem Formulation
3. DL-Based Joint Beamforming Design
3.1. Reflection Matrix Design of RIS-1 to RIS-
3.2. DNN-Based Equivalent Beamforming Design
3.3. Decoupled Design of Equivalent Beamforming
Algorithm 1: Proposed DLBF design. |
|
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- You, X.H.; Wang, C.X.; Huang, J.; Gao, X.Q.; Zhang, Z.C.; Wang, M.; Huang, Y.M.; Zhang, C.; Jiang, Y.X.; Wang, J.H.; et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inform. Sci. 2021, 64, 110301. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.G.; Lei, X.F.; Karagiannidis, K.G.; Fan, P.Z. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 18–27. [Google Scholar] [CrossRef]
- Wu, Q.Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 142–149. [Google Scholar] [CrossRef]
- Liu, Y.W.; Liu, X.; Mu, X.D.; Hou, T.W.; Xu, J.Q.; Renzo, M.D.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutorials 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Pan, C.H.; Ren, H.; Wang, K.Z.; Xu, W.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Trans. Wirel. Commun. 2020, 19, 5218–5233. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Y.H.; Zhang, P.C.; Jiang, H.; Xiao, Y.H.; Huang, L. Physical layer security improvement for hybrid RIS-assisted MIMO communications. IEEE Commun. Lett. 2024. accepted. [Google Scholar] [CrossRef]
- Zheng, B.X.; You, C.S.; Zhang, R. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design. IEEE Trans. Wirel. Commun. 2021, 20, 4513–4526. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, B.P.; Zhang, H.M.; Basar, E. Physics-based 3D end-to-end modeling for double-RISs assisted non-stationary UAV-to-ground communication channels. IEEE Trans. Commun. 2023, 71, 4247–4261. [Google Scholar] [CrossRef]
- Huang, C.W.; Yang, Z.H.; Alexandropoulos, G.C.; Xiong, K.; Wei, L.; Yuen, C.; Zhang, Z.Y.; Debbah, M. Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design. IEEE J. Sel. Areas Commun. 2021, 39, 1663–1677. [Google Scholar] [CrossRef]
- Ma, X.Y.; Fang, Y.G.; Zhang, H.X.; Guo, S.S.; Yuan, D.F. Cooperative beamforming design for multiple RIS-assisted communication systems. IEEE Trans. Wirel. Commun. 2022, 21, 10949–10963. [Google Scholar] [CrossRef]
- Ma, X.Y.; Zhang, H.X.; Chen, X.H.; Fang, Y.G.; Yuan, D.F. Multi-hop multi-RIS wireless communication systems: Multi-reflection path scheduling and beamforming. IEEE Trans. Wirel. Commun. 2024, 23, 6778–6792. [Google Scholar] [CrossRef]
- Yan, W.J.; Yuan, X.J.; He, Z.Q.; Kuai, X.Y. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems. IEEE J. Sel. Areas Commun. 2020, 38, 1793–1808. [Google Scholar] [CrossRef]
- Xia, W.C.; Zheng, G.; Zhu, Y.X.; Zhang, J.; Wang, J.Z.; Petropulu, A.P. A deep learning framework for optimization of MISO downlink beamforming. IEEE Trans. Commun. 2020, 68, 1866–1880. [Google Scholar] [CrossRef]
- Shi, Y.M.; Konar, A.; Sidiropoulos, N.D.; Mao, X.P.; Liu, Y.T. Learning to beamform for minimum outage. IEEE Trans. Signal Process. 2018, 66, 5180–5193. [Google Scholar] [CrossRef]
- Gao, J.B.; Zhong, C.J.; Chen, X.M.; Lin, H.; Zhang, Z.Y. Unsupervised learning for passive beamforming. IEEE Commun. Lett. 2020, 24, 1052–1056. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.L.; Chen, H.H. Deep learning based joint beamforming design in IRS-assisted secure communications. IEEE Trans. Veh. Technol. 2023, 72, 16861–16865. [Google Scholar] [CrossRef]
- Chen, X.; Shi, J.F.; Yang, Z.H.; Wu, L. Low-complexity channel estimation for intelligent reflecting surface-enhanced massive MIMO. IEEE Wirel. Commun. Lett. 2021, 10, 996–1000. [Google Scholar] [CrossRef]
- Björnson, E.; Bengtsson, M.; Ottersten, B. Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [lecture notes]. IEEE Signal Process. Mag. 2014, 31, 142–148. [Google Scholar] [CrossRef]
- Chen, X.; Shi, J.F.; Zhu, J.Y.; Pan, C.H. General low-complexity beamforming designs for reconfigurable intelligent surface-aided multi-user systems. J. Electron. Inform. Technol. 2024, in press. [Google Scholar]
- Almekhlafi, M.; Arfaoui, M.A.; Assi, C.; Ghrayeb, A. A low complexity passive beamforming design for reconfigurable intelligent surface (RIS) in 6G networks. IEEE Trans. Veh. Technol. 2023, 72, 6309–6321. [Google Scholar] [CrossRef]
Literature | Beamforming Method | Complexity |
---|---|---|
[3] | Alternating optimization | |
[11] | Convex optimization | 1 |
[19] | Beam characteristic, ZF | |
[20] | KKT method | |
This paper | DL-based method |
Parameter | Value |
---|---|
Optimizer | Adam |
Loss function | MSE in (20) |
Epoch | 50 |
Batch size | 50 |
Training samples | 1 |
Test samples | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ye, J.; Wei, Y.; Shi, J.; Zhu, J. Deep Learning-Based Joint Beamforming Design for Multi-Hop Reconfigurable Intelligent Surface (RIS)-Aided Communication Systems. Electronics 2024, 13, 3570. https://doi.org/10.3390/electronics13173570
Chen X, Ye J, Wei Y, Shi J, Zhu J. Deep Learning-Based Joint Beamforming Design for Multi-Hop Reconfigurable Intelligent Surface (RIS)-Aided Communication Systems. Electronics. 2024; 13(17):3570. https://doi.org/10.3390/electronics13173570
Chicago/Turabian StyleChen, Xiao, Jiaoyang Ye, Yuxuan Wei, Jianfeng Shi, and Jianyue Zhu. 2024. "Deep Learning-Based Joint Beamforming Design for Multi-Hop Reconfigurable Intelligent Surface (RIS)-Aided Communication Systems" Electronics 13, no. 17: 3570. https://doi.org/10.3390/electronics13173570
APA StyleChen, X., Ye, J., Wei, Y., Shi, J., & Zhu, J. (2024). Deep Learning-Based Joint Beamforming Design for Multi-Hop Reconfigurable Intelligent Surface (RIS)-Aided Communication Systems. Electronics, 13(17), 3570. https://doi.org/10.3390/electronics13173570