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Abstract: Reconfigurable intelligent surface (RIS) is one of the promising technologies for sixth
generation communications due to its advantages including energy saving, high spectral efficiency,
etc. However, the non-convex joint beamforming design is a challenge, especially in the multi-hop
RIS-assisted communication system. This paper proposes a deep learning-based joint beamforming
(DLBF) design, aiming to maximize the system data rate for multi-hop RIS-aided communication
systems. The proposed DLBF design consists of the reflection matrices design of all RISs and the
transmit beamforming design at the base station, which has a reduced computational complexity.
Numerical results show that the proposed DLBF can achieve 1.8 bit/s/Hz sum rate gain compared
to the conventional beamforming method for the two-user scenario, which can be enhanced by
large-scale users. The sum rate performance can be improved by increasing the number of RISs
due to the reflection gain, and corresponding results provide a guidance of the multi-hop number
selection for further investigation.

Keywords: reconfigurable intelligent surface; deep learning; joint beamforming; low complexity;
maximum data rate

1. Introduction

Sixth generation (6G) communication will meet new performance indicators of future
communications, including improving the data rate, expanding the communication cover-
age, and realizing the intelligent communication [1,2]. Reconfigurable intelligent surface
(RIS) emerges as an innovative technology of 6G communication at the right moment.
Specifically, an RIS is a surface consisting of massive low-cost reconfigurable passive reflect-
ing elements, where each element can be controlled independently. An RIS can produce a
reflected signal by adjusting the parameters of each element, which can reflect signal with
reconfigurable amplitude and phase shift. The advanced RIS technology can effectively
reduce the energy consumption as well as the hardware cost [3–6].

Existing works mainly focus on single RIS-aided communication systems, which is
not available for the haul communications with significant channel blocking and signal
attenuation such as the high-frequency terahertz communication. To enhance the cover-
age range and overcome the severe path loss, double RISs and even multiple RISs are
considered. First, the double-RIS-assisted system was investigated in [7,8], where the
cooperative passive beamforming design and 3D channel modeling method were proposed,
respectively. Furthermore, multiple RISs were discussed in [9–11], where conventional
joint beamforming designs were proposed with the goal of significantly improving the
system performance such as power gain or sum rate. However, the conventional joint
beamforming designs have some constraints such as high computational complexity [11]
and limited convergence performance [12].
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Deep learning (DL)-based neural networks were originally designed to solve classifica-
tion problems, but they have also shown satisfying performance in regression problems, for
example, deep neural networks (DNNs) have been used to predict transmit power [13]. For
beamforming design, a DL-based transmission beamforming method was proposed based
on the interrupt probability to deal with the channel uncertainty at the base station (BS)
of the multiple-input single-output (MISO) downlink beamforming scenario [14]. Then,
unsupervised learning was applied to beamforming design for single RIS-aided commu-
nication systems with excellent performance [15]. In [16], a DL-based joint beamforming
design of transmit beamforming at the BS and phase shift design at the RIS was proposed
to minimize the secrecy outage probability, which shows a lower computational complexity
than the conventional methods. Therefore, our objective is to design a low-complexity
DL-based joint beamforming scheme for multiple-RIS-assisted communication systems.

In this paper, a DL-based joint beamforming (DLBF) design is proposed for multi-hop
RIS-enhanced multi-user communication systems, where the reflection matrices of all RISs
and the transmit beamforming at BS are jointly optimized to maximize the system data rate.
Furthermore, simulation results show that the proposed DLBF design achieves improved
sum rate and relatively low complexity over the conventional beamforming method. The
major contributions of this paper are summarized as follows:

1. In the multi-hop RIS-aided multi-user communication system, the joint beamforming
design, including the reflection matrices of all RISs and the transmit beamforming for
all users at BS, is a challenge. In this paper, we propose a DL-based joint beamforming
scheme aiming to maximize the system data rate.

2. We analyze the computational complexity of the proposed DLBF method and the ex-
isting beamforming methods, which shows that the proposed method has suboptimal
complexity performance. As a tradeoff, it is proved from the simulations that the
data rate performance of the proposed DLBF method outperforms that of the existing
method, having the optimal complexity performance.

3. We investigate the effect of the RIS number on the data rate performance of multi-
hop RIS-aided communication systems. The simulation results prove that the data
rate performance can be significantly improved by the increasing number of RISs in
the low signal-to-noise ratio (SNR) scenario, while the improvement decreases even
disappears in the higher-SNR scenario. Thus, the number of RISs is suggested to be
adaptively set according to the SNR value of different communication systems.

2. System Model and Problem Formulation
2.1. System Model

We consider a multi-hop RIS-enhanced communication system that consists of S
RISs with Ni reflecting elements for the ith RIS (i = 1, 2, · · · , S), K single-antenna user
equipments (UEs), and one BS with M antennas. In this paper, we consider a downlink
scenario, where the direct transmission channel between BS and UEs is assumed to be
blocked. The reason is that the dynamic wireless environment has numerous potential
obstacles and unexpected fading [10]. The cascaded BS-RIS-UE channel consists of S + 1
components involving three parts: first, the BS-RIS-1 channel G1,BS ∈ CN1×M; second, the
RIS-i-RIS-i + 1 channel Gi+1,i ∈ CNi+1×Ni with i = 1, 2, · · · , S − 1; and third, the RIS-S-UEs
channel Hr = [h1 · · · hK]

T ∈ CK×NS , where hk stands for the RIS-S-UE-k channel gain
following the Rician fading model. The system model is shown in Figure 1. In general, RIS
is deployed close to the adjacent BS or RISs that can guarantee the line-of-sight channel [10].
Here, the channel state information (CSI) is assumed to be perfectly known according to
the existing channel estimation methods [17].
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Figure 1. A multi-hop RIS-enhanced system.

The reflection matrix of the ith RIS is Θi = diag
(

ejθi,1 , · · · , ejθi,n , · · · , ejθi,Ni

)
∈ CNi×Ni

(i = 1, 2, · · · , S), where θi,n ∈ [0, 2π) denotes the phase shift of the nth reflecting element
equipped on the ith RIS. Thus, the received signal at all UEs can be given by

y = HrΘSGS,S−1 · · ·G2,1Θ1G1,BSWs + n, (1)

where s = [s1, s2, · · · , sK]
T is the transmit signal with its entries satisfying zero mean and

unit variance, W = [w1, w2, · · · , wK] ∈ CM×K is the transmit beamforming at BS for all UEs,
and n = (n1, n2, · · · , nK)

T stands for the additive white noise vector whose entries satisfy
zero mean and variance σ2. In the multiple-RIS-enhanced system, the BS and RIS-i are
equipped with Mx × My and Ni,x × Ni,y uniform rectangular arrays (URAs), respectively,
where Mx My = M, Ni,x Ni,y = Ni (i = 1, 2, · · · , S), and {}x/{}y is the number of antennas
or elements in the horizontal/vertical direction of the URA. Thus, the channel matrices of
BS-RIS-1 and RIS-i-RIS-i + 1 (i = 1, 2, · · · , S − 1) links can be respectively written as

G1,BS = γ1a1,r(ϑ1,r, φ1,r)aH
BS,t(ϑBS,t, φBS,t), (2)

Gi+1,i = γi+1ai+1,r(ϑi+1,r, φi+1,r)aH
i,t(ϑi,t, φi,t), (3)

where γi is the complex gain, aBS,t(ϑBS,t, φBS,t) ∈ CM×1 stands for the array steering vector
of the transmission direction of BS, and ai,r/t(ϑi,r/t, φi,r/t) ∈ CNi×1 stands for the array
steering vector of the receiving/transmission direction of RIS-i. Further, as shown in
Figure 1, ϑBS/i,t ∈ [0, π) and φBS/i,t ∈ [0, π

2 ) are the azimuth and elevation angles of the
BS/RIS-i’s direction-of-departure (DOD), respectively, and ϑi,r ∈ [0, π) and φi,r ∈ [0, π

2 ) are
the azimuth and elevation angles of the RIS-i’s direction-of-arrival (DOA), respectively. In
general, the steering vectors are given by

a(ϑ, φ) = ay(ϑ, φ)⊗ ax(ϑ, φ), (4)

where ax(ϑ, φ) denotes an Mx × 1 vector with the mxth element being ej 2π
λ l(mx−1) cos ϑ sin φ;

similarly, ay(ϑ, φ) denotes an My × 1 vector with the myth element being ej 2π
λ l(my−1) sin ϑ sin φ,

mx = 1, · · · , Mx, and my = 1, · · · , My, and ⊗ being the Kronecker product [17]. Here, l
stands for the distance between two adjacent elements or antennas of the URA, and λ is
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the wavelength. To simplify the notation, let D = 2π
λ l. Thus, the mth element of a(ϑ, φ) is

[a(ϑ, φ)]m = ejD sin φ[(mx−1) cos ϑ+(my−1) sin ϑ], where m = (my − 1)Mx + mx.

2.2. Problem Formulation

For the kth UE, the received signal is

yk = hkΘSGS,S−1 · · ·G2,1Θ1G1,BSWs + nk

= hkΘSGS,S−1 · · ·G2,1Θ1G1,BSwksk︸ ︷︷ ︸
useful signal

+
K

∑
i=1,i ̸=k

hkΘSGS,S−1 · · ·G2,1Θ1G1,BSwisi︸ ︷︷ ︸
interference signal

+ nk︸︷︷︸
noise signal

,
(5)

where wk ∈ CM×1 is the kth column of the transmission beamforming matrix W at the BS.
Thus, the signal-to-interference-plus-noise ratio of the kth UE can be attained

γk =
|hkΘSGS,S−1 · · ·G2,1Θ1G1,BSwk|2

∑K
i ̸=k |hkΘSGS,S−1 · · ·G2,1Θ1G1,BSwi|2 + σ2

. (6)

Therefore, the sum data rate of all UEs can be given as

R =
K

∑
k=1

log2(1 + γk). (7)

The joint beamforming problem to maximize the data rate can be formulated as

(P1): max
W,Θ1,··· ,ΘS

R

s.t. θi,n ∈ [0, 2π), i=1, 2,· · ·, S, n=1, 2,· · ·, Ni

K

∑
k=1

∥wk∥2
2 ≤ Pmax,

(8)

where Pmax denotes the maximum transmit power of BS. We can find that (P1) is a non-
convex problem, where it is hard to obtain the optimal transmit beamforming W, reflection
matrices Θ1, Θ2, · · · , and ΘS. Our goal is to deal with this challenging joint design problem
with a reduced complexity.

3. DL-Based Joint Beamforming Design

This section discusses the DL-based joint beamforming design, including the reflection
matrices design, the DNN-based equivalent beamforming design, and the decoupled
design of the equivalent beamforming.

3.1. Reflection Matrix Design of RIS-1 to RIS-S − 1

We assume that the transmitting array and receiving array are far-field, and the
wavefront of the narrow-band signal arriving at each element of URA is a parallel wave.
According to (2) and (3), we can give the following definitions:

G1,BS = γ1a1,r(ϑ1,r, φ1,r)aH
BS,t(ϑBS,t, φBS,t) ≜ γ1g1,rgH

BS,t (9)

Gi+1,i = γi+1ai+1,r(ϑi+1,r, φi+1,r)aH
i,t(ϑi,t, φi,t) ≜ γi+1gi+1,rgH

i,t. (10)
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As a result, the received signal at the kth UE in (5) is

yk = γShkΘSgS,r

1

∏
i=S−1

γigH
i,tΘigi,rgH

BS,tWs + nk. (11)

Based on each element satisfying gH
i,t(n)gi,t(n) = 1 and gH

i,r(n)gi,r(n) = 1 (n = 1, 2, · · · , Ni),
the reflection matrix of RIS-i can be designed as

Θi = diag{gi,t}diag{gH
i,r}, i = 1, 2, · · · , S − 1. (12)

Then, by substituting (12) into (11), the received signal of the kth UE is given by

yk
(a)
= γShkΘSgS,r

1

∏
i=S−1

γi NigH
BS,tWs + nk

(b)
= AhkΘSgS,rgH

BS,tWs + nk,

(13)

where (a) is due to gH
i,tdiag{gi,t}diag{gH

i,r}gi,r = Ni, and (b) is achieved by the definition of
A = ∏S−1

i=1 γi NiγS.
For simplicity, we define that G = gS,rgH

BS,t ∈ CNS×M, then the cascaded channel and
reflection matrix of RIS-S in (13) can be reconstructed as

hkΘSG = hk


g1

g2
. . .

gNS




ΘS,1
ΘS,2

...
ΘS,NS

, (14)

where gn ∈ C1×M denotes the nth row of G, and ΘS,n = diag
(
ejθS,n , ejθS,n , · · · , ejθS,n

)
∈

CM×M consists of M elements with the same value as the nth element of the reflection
matrix ΘS of RIS-S with n = 1, 2, · · · , NS. Accordingly, in (13), the equivalent cascaded
channel and joint beamforming of the kth UE can be respectively given as

aheq,k = hk


g1

g2
. . .

gNS

, (15)

weq,k =


ΘS,1
ΘS,2

...
ΘS,NS

wk. (16)

Thus, the received signal at the kth UE in (13) is given by

yk = Aheq,k

(
weq,ksk +

K

∑
i ̸=k

weq,isi

)
+ nk. (17)

It can be seen that, with the known CSI in (15), the joint beamforming problem (P1) is
derived as

(P2): max
weq,k

K

∑
k=1

log2

(
1 +

|Aheq,kweq,k|2

∑K
i ̸=k |Aheq,kweq,i|2 + σ2

)

s.t.
K

∑
k=1

∥weq,k∥2
2

NS
≤ Pmax.

(18)
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As shown in (P2), the following goal is to optimize the equivalent joint beamforming
in (16) and then propose the decoupled design of the transmit beamforming W and the
reflection matrix of RIS-S ΘS.

3.2. DNN-Based Equivalent Beamforming Design

The optimal equivalent joint beamforming weq,k can be pointed out for (P2) as [18]

weq,k =

√
pul,k

NS︸ ︷︷ ︸
Power

(
IMNS + ∑K

k=1
pdl,k
σ2 hH

eq,kheq,k

)−1
hH

eq,k∥∥∥∥(IMNS + ∑K
k=1

pdl,k
σ2 hH

eq,kheq,k

)−1
hH

eq,k

∥∥∥∥
2︸ ︷︷ ︸

Direction

(19)

where pul,k/pdl,k denotes the uplink/downlink beamforming power for the kth UE, and
the latter part is the beamforming direction. Thus, the goal is transformed to design the
uplink and downlink power allocation pul and pdl for all UEs.

The proposed DNN-based equivalent beamforming framework for the RIS-aided
downlink system is shown in Figure 2, which is used to optimize the uplink and downlink
power allocation instead of the direct beamforming estimation. To deal with the complex
data, we choose the convolutional neural network (CNN) architecture since the CNN can
reduce the number of learning parameters by sharing the weights and biases. As a result,
the computational complexity, as well as the demand for the prediction capability in terms
of network neurons and layers, is reduced significantly [13]. Moreover, CNNs demonstrate
superior approximation and feature extraction abilities when compared to fully connected
neural networks.

,eq kh

I

Q
CLs

BNLsReLU
FL

FCL Sigmoid

MSE

N
o
rm
alizatio

n dlp

Output

ulpˆ
ulp

ˆ
dlp

,
eq
k

w

Input

Figure 2. The DNN-based equivalent beamforming framework.

The DNN-based equivalent beamforming framework in Figure 2 consists of an input,
convolutional layers (CLs), batch normalization layers (BNLs), activation layers (including
ReLU and sigmoid functions), one flatten layer (FL), one fully connected layer (FCL) with
2K neurons, and an output. The detailed descriptions of all layers are introduced as follows.

First, the input is the equivalent cascaded channel heq,k in (15), where the complex
channel vectors are decomposed into the in-phase component and orthogonal component,
and both components contain the real part and imaginary part of the complex channel
coefficients. Second, each CL creates eight convolutional kernels of size 3 × 3 that are
convolved with the input layer, and the parameters of the convolutional kernels are shared
among all channel coefficients. Third, BNLs normalize the output of the CLs, where the
output of the CLs first subtracts the batch mean and then divides by the batch standard
deviation, which can speed up the training process and improve the stability of the module.

As for the activation layers, the ReLU function is used in the middle, and the sigmoid
function is used last since the predicted variables are positive real values and continuous.
Dropout layers are added after each activation layer for randomly setting the output of a
portion of neurons to zero to reduce the possibility of overfitting. After that, the FL is used
to transform its input into a vector.
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Furthermore, considering the continuous output values, we use the mean square error
(MSE) as the loss function, which is defined as

MSE =
1

LT

T

∑
t=1

∥∥∥q(t) − q̂(t)
∥∥∥2

2
(20)

where L is the batchsize, T is the sample number, q(t) is the target result of the tth sample
in the neural network, and q̂(t) is the corresponding predicted result.

At the end, the output generates the predicted uplink/downlink power allocation
vector p̂ul/p̂dl , which is normalized with the maximum transmit power constraint as

pul =
Pmax

∥p̂ul∥1
p̂ul ,

pdl =
Pmax

∥p̂dl∥1
p̂dl .

(21)

Thus, the optimal equivalent beamforming vector weq,k in (19) can be attained.

3.3. Decoupled Design of Equivalent Beamforming

According to (16), the equivalent beamforming of the kth UE can be given as

weq,k =


ΘS,1
ΘS,2

...
ΘS,NS

wk =



ejθS,1

. . .
ejθS,1

ejθS,2

. . .
ejθS,2

...
ejθS,NS

. . .
ejθS,NS




wk,1
wk,2

...
wk,M

 =


ejθS,1 wk
ejθS,2 wk

...
ejθS,NS wk

 = ŵeq,k (22)

where ŵeq,k is attained from the predicted power allocation optimized by the former DNN-
based equivalent beamforming framework. It is easy to find that (22) has infinite solutions,
where either particular solution is available. Thus, without loss of generality, let ejθS,1 = 1,
and general solutions for each element of the transmit beamforming wk and reflection
matrix ΘS can be obtained. For ∀i ∈ {1, 2, · · · , M}, we have

wk = ŵeq,k(1 : M) (23)

ejθS,n =
ŵeq,k((n − 1)M + i)

wk(i)
, n = 1, 2, · · · , NS (24)

where wk(i) denotes the ith (i = 1, 2, · · · , M) element of wk(i), and ŵeq,k((n − 1)M + i) is
the ((n − 1)M + i)th element of ŵeq,k.

Thus, the proposed DLBF design for RIS-assisted system can achieve the reflection
matrix of RIS-i (i = 1, 2, · · · , S − 1) in (12), the transmit beamforming of BS from (23), and
the reflection matrix of RIS-S from (24). The overall algorithm to solve problem (P1) is
summarized as Algorithm 1.
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Algorithm 1 Proposed DLBF design.

Inputs: Transmit angles at BS (ϑBS,t, φBS,t); azimuth and elevation angles of the RIS-i’s
DOD/DOA (ϑi,t/r, φi,t/r); the RIS-S-UE-k channel hk.

Outputs: Transmit beamforming at the BS W=[w1, · · · , wK]; reflection matrix of the RIS-i
Θi.

1: Calculate Θi using (12) for i = 1, 2, · · · , S − 1.
2: Update the equivalent channel heq,k in (15) of the kth UE.
3: Output the joint beamforming ŵeq,k from the DNN.
4: Decouple ŵeq,k into transmit beamforming wk and reflection matrix ΘS using (23)

and (24), respectively.

The computational complexity of the proposed DLBF method comes from the reflection
matrix design and decoupled design of the equivalent beamforming. The complexity of the
reflection matrix design in (12) is of O((S − 1)N3), and in (14)–(16) is of O(N2M + NM2),
where N is the number of reflecting elements of each RIS. Further, the complexity of the
decoupled design in (22)–(24) is of O(NM2). Thus, for K UEs, the sum computational
complexity of the proposed DLBF is of O((S − 1)N3 + K(N2M + NM2)). For comparison,
Table 1 summarizes the beamforming methods and corresponding complexity of the
existing methods in [3,11,19,20] as well as our proposed DLBF method in this paper, where
the complexity is for the one-RIS case. Table 1 shows that the proposed DLBF method has a
relatively low complexity.

Table 1. The computational complexity comparison.

Literature Beamforming Method Complexity

[3] Alternating optimization O(N6)

[11] Convex optimization O(K3 + M4K
1
2 log( 1

ϵ )I) 1

[19] Beam characteristic, ZF O(N + K2 M + K3)
[20] KKT method O(NIKM2)

This paper DL-based method O(K(N2 M + NM2))
1 Notations ϵ and I denote the solution accuracy and the number of iterations, respectively.

4. Simulation Results

This section presents the simulation results to evaluate the performance of the pro-
posed DLBF design in multiple-RIS-enhanced multi-user systems via simulations on the
TensorFlow framework based on Keras, where the simulations are running by GTX4070.
In the simulations, the BS is equipped with 4 antennas, the number of UEs is K = 2, 3, 4,
and the number of elements on each RIS is N = 64, 100, 144, 196, 256. The distance setting
between two adjacent devices including BS, RIS and UE is 30 m, which indicates that one
more RIS hop can enhance the coverage range with 30 m. In the proposed DL model, we
use the Adam optimizer with the loss function in (20).

Figure 3 and Figure 4 respectively show the simulated sum data rate for 2RIS-aided
systems with the number of the batch size being 50, 100, 150, and 300, and the number of
training sample size being 5000, 10,000, 15,000, and 30,000, where the number of reflecting
elements is N = 64 and the number of users is K = 4. First, it can be seen from both figures
that the simulated sum data rate increases with the increase in SNR. Second, we can find
that with the change in batch size and sample size, the simulated sum data rate does not
change significantly, which indicates that the proposed model is robust.
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Figure 3. Simulated sum rate performance for 2RIS-aided systems with the number of batch size
being 50, 100, 150, and 300.
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Figure 4. Simulated sum rate performance for 2RIS-aided systems with different number of training
sample size.

Thus, in the following simulations, considering the calculation cost and optimal
performance, we set both the epoch and batch size to be 50, where the training samples and
test samples are 1× 104 and 5× 103, respectively. The parameters setup of the proposed DL
model is as summarized in Table 2. Notably, due to the limited precision of the phase shifter,
we consider the optimized continuous phase shift (CPS), the corresponding quantized
2bit-phase shift (2PS) and 1bit-phase shift (1PS) for comparison.

Figure 5 compares the simulated sum data rate for 2RIS-aided systems, where the
proposed DLBF, the conventional beamforming (BF) [19] and the random BF methods
are employed for comparison, the SNR being 0 dB with K = 2. From Figure 5, we can
see that the proposed DLBF method has about 1.8 bit/s/Hz performance gain over the
conventional BF design for the 2RIS-aided system with CPS, where the performance gain
can be enhanced for the large-scale UEs scenario in 6G systems. However, the data rate
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performance gain of the proposed DLBF over the conventional BF in [19] is a tradeoff of the
suboptimal complexity performance as shown in Table 1. For the proposed DLBF, the CPS
scheme outperforms the corresponding 2PS and 1PS schemes due to the quantization error.

Table 2. Parameters for the DL model setup.

Parameter Value

Optimizer Adam
Loss function MSE in (20)

Epoch 50
Batch size 50

Training samples 1 × 104

Test samples 5 × 103
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Figure 5. Simulated sum rate performance for 2RIS-aided systems with the number of reflecting
elements being N = 64, 100, 144, 196, 256.

Figure 6 presents the simulated sum data rate for multiple-RIS-aided systems, where
the number of RISs is S = 2, 3, 4 with K = 2 and SNR= 0 dB. Figure 6 shows that the
simulated sum data rate increases with the increasing number of RISs due to the reflection
gain of RIS. Further, when the number of IRSs increases from two to three, the performance
gap between CPS and discrete phase shift including 2PS and 1PS is enlarged, but the
performance gap between 2PS and 1PS is reduced. The reason is that more RISs bring in
superimposed quantization error.

Figure 7 illustrates the simulated sum rate for multiple-RIS-aided systems employing
CPS, where the number of RISs is S = 2, 3, 4 with K = 2, 3, 4 and N = 100. From Figure 7, it
is observed that for a fixed SNR value and RIS number, the simulated sum rate performance
can be improved by increasing the number of UEs. For the same number of UEs, that
means all lines in the same color, the performance improvement obtained by the increasing
number of RISs is decreasing with the SNR value for 2RISs and 3RISs systems, which
proves that the reflection gain becomes weaker with the higher SNR. However, for the
4RISs scenario, the data rate performance outperforms that of the 2RISs/3RISs scenario
in the low-SNR region but worse in the high-SNR region since with more RISs, in other
words, the longer transmission distance results in serious path loss. This result provides
guidance for RIS selection that, for the severe SNR scenario, it is suggested to select more
RIS nodes to improve the data rate performance; for the superior SNR scenario, fewer RIS



Electronics 2024, 13, 3570 11 of 13

nodes are suggested to save the total computational complexity and the achievable data
rate performance.
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Figure 6. Simulated sum rate performance for multiple-RIS-aided systems with the number of
reflecting elements being N = 64, 100, 144, 196, 256.
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Figure 7. Simulated sum rate performance versus SNR for multiple-RIS-aided systems with the
number of UEs being K = 2, 3, 4.

5. Conclusions

This paper proposes a DLBF design for multi-hop RIS-aided communication systems,
where the reflection matrices of all RISs and the transmit beamforming at BS are optimized
and formulated as closed-form expressions to maximize the system data rate. Simulation
results show that the proposed DLBF design can achieve a higher sum data rate over
the conventional beamforming design, which can be further enhanced by the increasing
number of UEs. The simulation results prove that the data rate performance can be
improved by the increasing number of RISs, while the improvement is reduced with the
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increasing SNR value. Accordingly, the number of RISs in multi-hop link is suggested to be
determined by the SNR value of various communication systems.
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