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Abstract: The early detection of breast cancer is essential for improving treatment outcomes, and
recent advancements in artificial intelligence (AI), combined with image processing techniques, have
shown great potential in enhancing diagnostic accuracy. This study explores the effects of various im-
age processing methods and AI models on the performance of early breast cancer diagnostic systems.
By focusing on techniques such as Wiener filtering and total variation filtering, we aim to improve
image quality and diagnostic precision. The novelty of this study lies in the comprehensive evaluation
of these techniques across multiple medical imaging datasets, including a DCE-MRI dataset for breast-
tumor image segmentation and classification (BreastDM) and the Breast Ultrasound Image (BUSI),
Mammographic Image Analysis Society (MIAS), Breast Cancer Histopathological Image (BreakHis),
and Digital Database for Screening Mammography (DDSM) datasets. The integration of advanced AI
models, such as the vision transformer (ViT) and the U-KAN model—a U-Net structure combined
with Kolmogorov–Arnold Networks (KANs)—is another key aspect, offering new insights into the
efficacy of these approaches in different imaging contexts. Experiments revealed that Wiener filtering
significantly improved image quality, achieving a peak signal-to-noise ratio (PSNR) of 23.06 dB and a
structural similarity index measure (SSIM) of 0.79 using the BreastDM dataset and a PSNR of 20.09 dB
with an SSIM of 0.35 using the BUSI dataset. When combined filtering techniques were applied,
the results varied, with the MIAS dataset showing a decrease in SSIM and an increase in the mean
squared error (MSE), while the BUSI dataset exhibited enhanced perceptual quality and structural
preservation. The vision transformer (ViT) framework excelled in processing complex image data,
particularly with the BreastDM and BUSI datasets. Notably, the Wiener filter using the BreastDM
dataset resulted in an accuracy of 96.9% and a recall of 96.7%, while the combined filtering approach
further enhanced these metrics to 99.3% accuracy and 98.3% recall. In the BUSI dataset, the Wiener
filter achieved an accuracy of 98.0% and a specificity of 98.5%. Additionally, the U-KAN model
demonstrated superior performance in breast cancer lesion segmentation, outperforming traditional
models like U-Net and U-Net++ across datasets, with an accuracy of 93.3% and a sensitivity of
97.4% in the BUSI dataset. These findings highlight the importance of dataset-specific preprocessing
techniques and the potential of advanced AI models like ViT and U-KAN to significantly improve
the accuracy of early breast cancer diagnostics.

Keywords: breast cancer diagnosis; image processing; wiener filtering; vision transformer; U-KAN
model; image quality assessment

1. Introduction

The literature on breast cancer detection and diagnosis using image processing and
artificial intelligence (AI) reveals significant advancements and varied methodologies,
reflecting the ongoing evolution in this critical field. Central to these advancements is the
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integration of AI techniques, such as machine learning (ML) and deep learning (DL), which
have significantly enhanced the accuracy and efficiency of breast cancer detection.

The article [1] systematically reviews the application of image processing in breast
cancer recognition, detailing advancements in detection, segmentation, registration, and
fusion techniques. The authors emphasize the promising future of unsupervised and
transfer learning in enhancing diagnostic accuracy and patient privacy protection. Sim-
ilarly, Zerouaou and Idri [2] conducted a structured literature review, identifying deep
learning as the predominant method for classification tasks in breast cancer imaging, with
mammograms being the most extensively studied imaging modality. They highlight the
importance of image preprocessing, feature extraction, and public datasets in improving
diagnostic performance.

The early and accurate detection of breast cancer remains a critical challenge in medi-
cal diagnostics, with significant implications for patient outcomes. Advances in medical
imaging and artificial intelligence (AI) have opened new avenues for enhancing the pre-
cision of tumor detection, particularly in mammographic imaging. SA Khan et al. [3]
conducted a comprehensive survey of medical imaging fusion techniques, emphasizing
the strengths and limitations of various methods in improving diagnostic accuracy. Their
work highlights key challenges, such as noise sensitivity, computational complexity, and
the difficulty of preserving essential image details, which continue to impede the broader
application of these techniques in clinical practice. Addressing these challenges is vital in
developing more reliable and effective fusion methods for medical imaging.

Building on this foundation, SU Khan et al. [4] explored the application of deep learn-
ing models for semantic segmentation in breast tumor detection. Through a comparative
analysis, they identified the Dilation 10 (global) model as particularly effective, achieving
high pixel accuracy in differentiating tumor regions in mammograms. However, their
study also uncovered significant challenges, including dataset imbalance and the risk of
over-segmentation, which can lead to false positives. These findings underscore the need
for careful model selection, balanced datasets, and further refinement of AI-based methods
to enhance the reliability and accuracy of early breast cancer detection.

Expert human knowledge is essential in traditional cancer image recognition paradigms.
The process involves image segmentation, feature extraction, and the application of ma-
chine learning algorithms to these handcrafted features in order to develop predictive
models. In contrast, deep learning offers an end-to-end solution that processes raw images
directly. Deep learning systems use biologically inspired neural networks to transform data
through multiple nonlinear layers, yielding progressively more abstract representations.
This hierarchical approach enables the formation of complex, highly discriminative models,
significantly enhancing the ability to classify cancerous images accurately. These studies
underscore the pivotal role of advanced image processing and AI technologies in enhancing
the early detection, diagnosis, and treatment of breast cancer. Integrating these technologies
improves diagnostic accuracy and efficiency and holds promise for personalized medicine,
ultimately aiming to improve patient outcomes and reduce mortality rates associated with
breast cancer.

Despite significant advancements in the application of artificial intelligence (AI) and
image processing techniques for breast cancer detection, several critical challenges remain
unresolved. The current body of literature extensively documents the efficacy of machine
learning (ML) and deep learning (DL) models, which have markedly improved the accuracy
of breast cancer diagnostics. However, a persistent gap exists concerning the generalizabil-
ity and robustness of these models when applied across a diverse range of medical imaging
modalities. A predominant limitation within the existing research is the heavy reliance
on single-modality datasets. This dependency constrains the performance of AI models,
particularly when these models are deployed across various imaging modalities, such as
mammography, ultrasound, magnetic resonance imaging (MRI), and histopathology [5,6].
The heterogeneity in image quality and the presence of modality-specific noise further
exacerbate this issue, leading to variability in diagnostic outcomes and diminishing the
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models’ efficacy in clinical settings. In response to these identified gaps, the present study
undertakes a systematic exploration of the integration of advanced image processing tech-
niques with state-of-the-art AI models. The primary objective is to enhance diagnostic
performance across multiple medical imaging modalities. To this end, the study focuses
on the application of Wiener filtering and total variation filtering as preprocessing steps to
refine image quality. These preprocessing techniques are then evaluated in conjunction with
cutting-edge AI models, specifically the vision transformer (ViT) and the U-KAN model.

Breast cancer remains one of the most significant health challenges worldwide, de-
manding continual improvements in diagnostic accuracy and early detection. This study
investigates the impact of various image processing techniques, notably Wiener filtering
and total variation filtering, on the quality and diagnostic precision of breast cancer detec-
tion across different medical imaging modalities. Additionally, it evaluates the consistency
and robustness of advanced AI models, such as vision transformers (ViTs) and U-KAN,
when applied to diverse datasets, including dynamic contrast-enhanced MRI (DCE-MRI),
ultrasound, mammography, and histopathology. By addressing these research questions,
this study fills a critical gap in the literature, providing a comprehensive evaluation of AI
models in conjunction with tailored image preprocessing techniques. The findings aim to
contribute to developing more robust, generalizable, and clinically applicable diagnostic
systems for early breast cancer detection.

The remainder of this paper is organized as follows. Section 2 reviews related work
on preprocessing techniques and AI-driven breast cancer detection and segmentation. The
methodology, including image processing and ViT model training, is detailed in Section 3.
Section 4 presents the validation of the theoretical framework through experimental studies.
Concluding remarks are provided in Section 5.

2. Related Works

This section provides a comprehensive overview of the key components of our re-
search, which focuses on medical image preprocessing, breast cancer detection, lesion
segmentation, and the selection of appropriate AI models for training. The section begins
by establishing the necessity of each technological implementation, highlighting the critical
role that preprocessing plays in standardizing medical images and enhancing diagnostic
accuracy. Following this, it delves into the methodologies used for breast cancer detection,
emphasizing the importance of accurate image segmentation in localizing lesions. The
discussion extends to the selection and training of suitable AI models, underscoring the
criteria and rationale for their use in achieving optimal performance. Additionally, the
chapter reviews recent advancements in each of these areas, analyzing the effectiveness of
contemporary techniques and the persistent challenges they aim to address. Through a
rigorous examination of these elements, the chapter aims to contextualize our approach
within the broader landscape of medical imaging and AI, demonstrating the integrated
strategy employed to improve early breast cancer detection and diagnosis.

2.1. Preprocessing

Preprocessing is a crucial step in medical imaging, enhancing the quality and con-
sistency of input data, regardless of its source. Through the application of standardized
preprocessing techniques, such as noise reduction, contrast enhancement, and normal-
ization, the variability inherent in images from different sources can be minimized. This
standardization is vital for improving the robustness and generalizability of AI models, as
it allows them to focus on diagnostically relevant features, rather than extraneous varia-
tions introduced via differing imaging conditions or equipment. Kumar and Nachamai [7]
underscore the importance of these techniques, demonstrating that filters like the Wiener
filter effectively mitigate common noise types, such as Gaussian and speckle, prevalent in
medical images. This not only enhances image clarity but also ensures that the images meet
a consistent quality standard, which is essential for accurate classification and segmentation,
ultimately supporting the reliable performance of AI models in medical diagnostics.
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Fan et al. [8] explore the progression of image denoising techniques, from classical
approaches to deep learning-based methods, and underscore the distinct strengths of
each. Spatial filters, such as Wiener filtering, are shown to effectively reduce noise while
preserving a balance between noise suppression and detail retention, which is demonstrated
in Figure 1. The figure also illustrates that collaborative filtering techniques like BM3D
excel in maintaining edges while reducing noise. In Figure 2, the performance of total
variation (TV) regularization is highlighted, showcasing its capability to preserve edges
and structural details, though it may occasionally introduce minor texture artifacts. This
figure also compares the outcomes of non-local means (NLM) and low-rank-based methods,
illustrating their strengths in handling noise across various image structures. These visual
comparisons elucidate the differential performance of various denoising techniques, thereby
reinforcing the rationale for selecting methods tailored to specific image properties and
noise characteristics.

In Fig. 3, the visual evaluation shows that the denois-
ing result of the TV-based regularization [28] smooths
the textures and generates artifacts. Although the R-NL
[56] and NLM [38] methods can obtain better perfor-
mances, these two methods have difficulty restoring
tiny structures. Meanwhile, we find that the representa-
tive low-rank-based methods (WNNM [58], LRA_SVD
[78]) and the sparse coding scheme NCSR [66] produce
better results in homogenous regions because the
underlying clean patches share similar features, so they

can be approximated by a low-rank or sparse coding
problem.

Comparison of CNN-based denoising methods
Here, we compare the denoising results of the CNN-
based methods (DnCNN [106] and FFDNet [107])
with those of several current effective image denoising
methods, including BM3D [55] and WNNM [58]. To
the best of our knowledge, BM3D has been the most
popular denoising method over recent years, and

Fig. 3 Visual comparisons of denoising results on Boat image corrupted by additive white Gaussian noise with standard deviation 50: a TV-based
regularization [28] (PSNR = 22.95 dB; SSIM = 0.456); b NLM [38] (PSNR = 24.63 dB; SSIM = 0.589); c R-NL [56] (PSNR = 25.42 dB; SSIM = 0.647); d NCSR
model [66] (PSNR = 26.48 dB; SSIM = 0.689); e LRA_SVD [78] (PSNR = 26.65 dB; SSIM = 0.684); f WNNM [58] (PSNR = 26.97 dB; SSIM = 0.708)

Fig. 2 Visual comparisons of denoising results on Lena image corrupted by additive white Gaussian noise with standard deviation 30: a Wiener
filtering [16] (PSNR = 27.81 dB; SSIM = 0.707); b Bilateral filtering [10] (PSNR = 27.88 dB; SSIM = 0.712); c PCA method [87] (PSNR = 26.68 dB; SSIM =
0.596); d Wavelet transform domain method [89] (PSNR = 21.74 dB; SSIM = 0.316); e Collaborative filtering: BM3D [55]
(PSNR = 31.26 dB; SSIM = 0.845)
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Figure 1. Visual comparison of denoising methods using the Lena image with Gaussian noise
(σ = 30): (a) Wiener filter (PSNR: 27.81; SSIM: 0.707); (b) bilateral filter (PSNR: 27.88; SSIM: 0.712);
(c) PCA (PSNR: 26.68; SSIM: 0.596); (d) wavelet transform (PSNR: 21.74; SSIM: 0.316); (e) BM3D
(PSNR: 31.26; SSIM: 0.845) [8].
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Figure 2. Visual comparison of denoising methods on the Boat image with Gaussian noise (σ = 50):
(a) TV regularization (PSNR: 22.95; SSIM: 0.456); (b) NLM (PSNR: 24.63; SSIM: 0.589); (c) R-NL (PSNR:
25.42; SSIM: 0.647); (d) NCSR (PSNR: 26.48; SSIM: 0.689); (e) LRA_SVD (PSNR: 26.65; SSIM: 0.684);
(f) WNNM (PSNR: 26.97; SSIM: 0.708) [8].

Calvo et al. [9] employed the intensity and edge-based adaptive unsharp mask (AUM)
filter in the preprocessing stage to classify breast tumors in histopathological images.
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Unlike the traditional unsharp mask (USM) filter, the AUM filter features an iterative
process in which the gain factor is continuously updated, enhancing image sharpening
while minimizing over-enhancement risks. The study found that the AUM filter decreased
accuracy in DenseNet and SqueezeNet across all test cases, likely due to removing key
image characteristics. Conversely, the five-layer CNN architecture showed improved
results, as simpler convolutional architectures benefit from this preprocessing stage and are
less likely to learn the filter behavior by themselves. This suggests that smaller and simpler
convolutional neural networks can take more advantage of and benefit from filters than
complex architectures.

Murcia-Gomez D et al. in [10] performed a statistical analysis using ANOVA to eval-
uate the performance of 50 combinations of five deep learning models (VGG16, VGG19,
ResNet50, MobileNet, and DenseNet121) and ten image preprocessing methods (e.g.,
CLAHE, Edge Enhance, HE). The study measured the impact on metrics such as accuracy,
precision, recall, and AUC. The ANOVA results revealed that, while different preprocess-
ing filters had similar impacts on accuracy, the choice of deep learning architecture was
statistically significant, as shown in Figure 3. The study concluded that the architecture of
the deep learning models primarily influenced system accuracy, whereas preprocessing
filters had no significant effect, highlighting the importance of model selection in future
performance optimization efforts.
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Beeravolu et al. [11] developed advanced pre-processing techniques to enhance deep
convolutional neural networks (D-CNNs) for mammographic image analysis, addressing
the limitations of traditional machine learning methods that often yield false positives
and negatives. The study proposes background and pectoral muscle removal methods,
noise addition, and image enhancements. Specifically, the “Rolling Ball Algorithm” and
“Huang’s Fuzzy Thresholding” achieve 100% background removal. Figure 4 shows the
background removal treatment before and after comparison. Meanwhile, “Canny Edge
Detection” and “Hough Line Transform” remove pectoral muscles in 99.06% of images.

Figure 4. Final images after background removal process [11].

Additionally, image enhancements using “Invert”, “CTI_RAS”, and “ISOCONTOUR”
lookup tables (LUTs) effectively delineate Regions of Interest (ROIs), and the enhancement
effect is shown in Figure 5. These pre-processing techniques create high-quality, representative
training data, improving the efficiency and accuracy of D-CNNs in real-world applications.

(a) Invert LUT (b) CTI_RAS LUT (c) ISOCONTOUR LUT

Figure 5. Image enhancement technology applications [11].

2.2. Breast Cancer Detection

The early detection and precise diagnosis of breast cancer are paramount for effective
treatment. Various breast screening methods have been developed to enhance detection,
including mammography, breast ultrasound (BU), magnetic resonance imaging (MRI),
computed tomography (CT), thermography, and biopsy. Mammography, the gold standard
for early detection, utilizes X-ray images to identify abnormalities in the breast. Ultrasound,
while non-invasive and suitable for patients with dense breast tissue, suffers from poor
resolution and limited coverage. MRI offers high sensitivity in detection but is costly and



Electronics 2024, 13, 3575 7 of 45

less specific. Histopathology, although definite, requires large image sizes. Each modality’s
distinct advantages and limitations underscore the critical importance of a multifaceted
approach to the early detection of breast cancer [12].

Kandlikar and Satish G et al. in [13] indicate that microcalcifications (MCs) are essen-
tial indicators for detecting breast cancer in mammograms. Clustered MCs characterize
malignant breast cancer with a linear branching pattern involving more than three MCs,
each less than 0.5 mm in diameter. In contrast, benign conditions typically present as
individual MCs. Figure 6 illustrates various common microcalcifications (MCs) identified
in mammographic images, highlighting their diverse morphological characteristics.

(a) Typical skin calcifications indicated using
an arrow

(b) Vascular calcification (long arrows for
early stage)

(c) Popcorn-type calcifications typical of
fibroadenomas shown by arrow

(d) Diffuse large, rod-like calcifications

Figure 6. Several common types of MCs observed in mammograms [14].

Breast lumps or masses are often indicative of breast cancer. Compared to normal or
benign tissue, cancerous breast tissue is generally firmer. These lumps can be mobile but
are usually fixed, meaning they feel attached to the skin or nearby tissue and cannot be
moved by pressing them. They are typically painless, although pain may be present in
some cases [15].

Zhang, Ya-nan and Xia, Ke-Rui et al. in [1] emphasize that early breast cancer detection
can be enhanced by identifying tumor markers, which are substances released from tumor
cells during their growth. Once these markers reach a detectable level, they can be extracted
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from breast images. Techniques such as the scale-invariant feature transform (SIFT) or the
histogram of oriented gradients (HOG) can extract and analyze these early feature values,
thereby supporting early diagnosis and potentially improving patient outcomes.

2.3. Image Segmentation

Segmentation is performed after classification to improve the interpretability and
localization of anomalies detected within breast images, serving as a crucial step for
the precise boundary delineation of lesions. While classification identifies the presence
of abnormalities, segmentation delineates the exact contours of these lesions, thereby
enhancing the granularity and specificity of the analysis. This process enables a more
targeted approach to diagnostic decision-making by ensuring that the detected regions align
accurately with the actual areas of clinical concern. The precision offered via segmentation
is essential not only for subsequent clinical evaluations but also for treatment planning, in
which accurately localized information can directly impact therapeutic outcomes.

Michael E et al., in [16], divide classical segmentation theory into three primary
categories: region methods (RMs), threshold methods (TMs), and edge methods (EMs),
as shown in Table 1. Region methods offer robust segmentation in structured images but
are less effective with noise. Threshold methods are computationally efficient but struggle
with varying image conditions. Edge methods excel at boundary detection but may fail
with weak or irregular edges. Overall, selecting a segmentation method depends on the
specific characteristics and requirements of the mammogram images being analyzed.

Table 1. Summary of merits and demerits of mammograms’ classical segmentation methods [16].

Category Merits Demerits

Works well - Sensitivity to noise
when an edge is prominent - Reduces overall contrast in mammograms

Edge-based - Produces unsatisfactory results
Easy to find when it detects fake and weak edges

in mammograms
segmentation methods locally edge orientation - Not suitable for mammogram images

having smooth edges
Simple and easy to implement - It is not applicable if the tumor area

ratio is unknown Sensitive to noise in
mammograms

Threshold-based Inexpensive - Gives poor results when mammograms
have low contrast

segmentation methods - Difficulties in fixing the threshold value
if the number of regions increases

Connected regions - Causes oversegmentation if mammograms
are guaranteed are noisy

- Cannot distinguish the shading of the
real mammograms

Region-based Multiple criterion and - Time-consuming due to the high
gives good results resolution of mammograms

segmentation with less noise - Not suitable for noisy mammograms
Seed point must be selected

Gu P et al., in [17], address the challenge of accurately segmenting three-dimensional
(3D) ultrasound images for breast cancer diagnosis, emphasizing the need for automated
methods due to the impracticality and inconsistency of manual segmentation. The proposed
solution involves a three-stage process: morphological reconstruction to reduce speckle
noise and enhance image features, Sobel operator-based image segmentation to delineate
tissue boundaries, and region classification based on size and mean intensity to categorize
tissues into fat, fibroglandular, and cyst/mass types.
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The main processing steps are shown in Figure 7. Figure 7a: A grayscale image
slice. The top yellow arrow shows the position of a cyst. The bottom yellow arrow
indicates a shadow artifact. The following operations are performed in 3D; these images
are only one slice of the whole image stack. Figure 7b: Morphological reconstruction in 3D
space. Figure 7c: Application of a 3D Sobel operator on the images. Figure 7d: Watershed
segmentation in 2D image space. The two arrows are in the same positions as in Figure 7a,
showing that the artifact is distinguished from the cyst during pre-processing. Figure 7e:
Magnified view of watershed boundaries. White pixels are the boundaries of individual
watershed regions. Figure 7f: Tissue-specific region classification result.

Figure 7. Main stages of the proposed method [17].

Automated segmentation shows good congruence with manual segmentation while
conserving detailed structures; a sample comparison diagram is shown in Figure 8. The
red contours are from manual segmentation, and the blue contours are from automated
segmentation.

Experimental results using 21 breast ultrasound cases demonstrated an accuracy
of 85.7% and an overlap ratio of 74.54% with manual segmentation. Despite its effectiveness,
limitations include challenges with shadow artifact handling, the occasional need for
manual correction, and validation on a small dataset. Overall, the automated method
shows promise for improving consistency and accuracy in breast cancer diagnosis, but it
requires further research to enhance its robustness and applicability.

Figure 8. Comparison of manual and automated segmentation of fibroglandular tissues [17].
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Xu Y et al., in [18], again address the challenge of segmenting three-dimensional (3D)
breast ultrasound images for breast cancer diagnosis using machine learning, highlighting
the limitations of manual segmentation due to its subjectivity and time consumption.
The proposed method employs convolutional neural networks (CNNs) for automatic
segmentation into four major tissue types: skin, fibroglandular tissue, mass, and fatty
tissue. The methodology involves training CNNs on manually annotated data to classify
tissue types based on pixel-centric patches from orthogonal image planes.

The segmentation process is shown in Figure 9, where an eight-layer CNN (CNN-I)
was designed for pixel-level patch classification with 128 × 128 image patches as input. The
network processes the input through three convolutional layers, three pooling layers, one
fully connected layer, and one softmax layer, and it uses the ReLU activation function after
each convolutional and each fully connected layer. For a comprehensive evaluation of target
pixel classification, a smaller CNN (CNN-II) was developed. CNN-II takes the output of
CNN-I as input and processes it through one convolutional layer, one fully connected layer,
and one soft-maximum layer to arrive at the final classification result of the target pixel.
Evaluation metrics, including accuracy, precision, recall, and F1-measure, all exceeded
80%, with the Jaccard similarity index (JSI) reaching 85.1%, outperforming the previous
watershed algorithm study, which achieved 74.54%. Despite its effectiveness, challenges
remain, such as handling ultrasound artifacts and improving computational efficiency.

network to obtain the outputs. Then the outputs are compared with the
corresponding ground truth to calculate the errors using the loss
function. At the stage of error back propagation, parameters of the
network are gradually updated with a gradient descent algorithm. In
this work, both CNN-I and CNN-II took the cross entropy as the loss
function, which can be calculated by the following equation:∑= −H y y y( ) log( ),y

i
i i
'

'
(2)

where y is the predicted probability distribution, and y' is the actual
distribution. Cross entropy of every 100 samples was used for error
back propagation to avoid the randomness of using one sample. The
weight and bias parameters were gradually updated with the gradient
descent algorithm named adaptive moment estimation (Adam) opti-
mization algorithm. Dropout methods were applied in training to pre-
vent over-fit. As the input size discussed in Section 2.3.1, the selections
of the training hyper-parameters, such as learning rate, were de-
termined experimentally.

3. Experiments and analysis

3.1. Experiment setup

In our experiments, breast ultrasound image segmentation was
realized by a pixel classification CNN, where the input was an image
block of size ×128 128, and the output is the class of the block’s central
pixel including fibroglandular tissue, tumor, skin, and subcutaneous fat.
Since we have 2D image slices stitched together to form 3D breast
images, blocks were extracted from three orthogonal planes for each
pixel. By minimizing the loss function with the Adam optimizer, the
CNN parameters were trained using corresponding manually segmented
ground truth. When the CNNs are trained to convergence, it can be
tested to segment the breast ultrasound images. As shown in Fig. 6,
three image blocks around the pixel are calculated throughout the CNN-
Is separately, where the parameters were trained with data from cor-
responding planes. Then the generated distributions are fed as the input
of CNN-II for comprehensive analysis to obtain the final 4-way output.
The index of the maximum value in the output indicates the predicted

classification of the target pixel. The segmentation results are visualized
by coloring pixels from different classes.

3.2. Quality assessment

3.2.1. Region-based assessment method
In order to measure the image segmentation performance quanti-

tatively, four region-based assessment metrics: Accuracy, Precision,
Recall, and F1measure are used in our study. They can be calculated based
on the region overlap between manually and automatically segmented
results. Taking the tumor segmentation as an example and as explained
in Table 3, TP, FP, FN and TN are the numbers of pixels corresponding
to the four categories listed in the table below.

According to Table 3, Accuracy, Precision, Recall, and F1measure are
defined as:

= = ++ + +Accuracy thenumberofcorrectpredictedpixels
thetotalnumberofpixelsintheimage

TP TN
TP FP FN TN

,

(3)

= = +Precision thenumberofcorrectpredictedtumorpixels
thetotalnumberofpredictedtumorpixels

TP
TP FP

,
(4)

= = +Recall thenumberofcorrectpredictedtumorpixels
thetotalnumberofactualtumorpixels

TP
TP FN

,
(5)

= × ×+F Pricision Recall
Pricision Recall

1 2 .measure (6)

These evaluation metrics comprehensively evaluate the segmenta-
tion performance from different aspects. All of them are values between
0 and 1. In addition, we use Jaccard similarity index (JSI) mentioned in
the work by Gu et al [24] to measure the general accuracy of the mass
segmentation:

= ∩∪ = + +Segmentation Segementation
Segmentation Segementation

TP
TP FP FN

JSI .Manual Automated

Manual Automated

(7)
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xz

yz
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Fig. 5. CNN-II architecture.

Fig. 6. Segmenting process.
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Figure 9. The segmentation process in convolutional neural networks [18].

2.4. Machine Learning

Sadoughi F et al. [19] provide a comprehensive review of AI methods applied to breast
cancer diagnosis, focusing on the high accuracy achieved using support vector machines
(SVMs) across various imaging techniques, including ultrasound, mammography, and
thermography. They underscore the role of AI in reducing false positives and enhancing
radiologists’ efficiency in detecting breast abnormalities.

Mehdy M et al. [20] highlight the role of artificial neural networks (ANNs) in automat-
ing the classification of breast cancer images, which significantly reduces the time required
for manual diagnosis and improves specificity and sensitivity. Their review of recent
literature demonstrates the versatility of ANNs in various medical imaging applications,
particularly in distinguishing between benign and malignant patterns.

Sahni and Mital [21] explored image processing techniques such as edge detection
and thresholding in mammograms and MRI to improve tumor detection accuracy. They
emphasize the critical role of early detection in improving treatment outcomes and reduc-
ing the complexity of medical interventions. Sadhukhan S et al. [22] propose a texture
segmentation-based approach to analyzing digital mammograms, effectively distinguish-
ing early-stage tumors using machine learning techniques and clustering algorithms. This
method enhances the detection of masses and microcalcifications, which are crucial for
early diagnosis.

Robertson S et al. [23] review the evolution of digital image analysis in breast pathol-
ogy, particularly the transformative impact of AI and deep learning. They highlight how
these technologies have improved diagnostic precision, facilitated personalized treatment,
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and addressed the increasing complexity of cancer pathology. The digitization of pathology
data has enabled faster, more reproducible, and more accurate diagnoses, essential for
guiding breast cancer treatment. It compares traditional medical image recognition and
deep learning-based techniques, as shown in Figure 10.

Figure 10. Deep learning vs. traditional machine learning. (A) Traditional paradigm with several
steps requiring expert human knowledge to recognize cancer in images. (B) Deep learning as an
end-to-end approach from raw input image to classified image [23].

Atban F et al., in [24], address the problem of the accurate and early diagnosis of
breast cancer through histopathological image classification, a critical challenge in the
medical field due to the vast number of medical images and the complexity of manual
classification. The study proposes a novel approach that combines transfer learning with
meta-heuristic algorithms to optimize deep features for better representation and classifi-
cation. The methodology involves using the ResNet18 architecture (Figure 11) for initial
feature extraction, followed by the application of particle swarm optimization (PSO), atom
search optimization (ASO), and equilibrium optimizer (EO) algorithms to select the most
representative features. The optimized features are then classified using traditional ma-
chine learning algorithms like support vector machine (SVM), K-nearest neighbor (KNN),
and decision trees (DTs). The approach is validated on the BreakHis dataset, achieving
an F-score of 97.75% with ResNet18-EO and SVM and significantly improving classifica-
tion performance.

Chen H et al., in [25], establish predictive models based on algorithms like XGBoost,
random forest, logistic regression, and K-nearest neighbor (KNN) to classify and predict
breast cancer. The methodology involves data standardization to mitigate the impact of
different data dimensions, feature selection using the Pearson correlation coefficient, and
stratified sampling to handle the imbalance in positive and negative samples. The models
are evaluated using metrics such as accuracy, precision, recall, and F1-score, with recall
being the primary focus due to its significance in medical diagnostics. This paper compares
the performance of each model when the dataset is split into training and testing sets with
proportions of 8:2 (Table 2) and 7:2 (Table 3), respectively. The study finds that the XGBoost
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model, with an 8:2 training–test set division, performs the best, achieving a recall of 1.00
and an F1-score of 0.980.

Figure 11. ResNet18 architecture.

Table 2. The model effect of dividing the dataset by 8:2 [25].

Accuracy Precision Recall F1-Score

XGBoost 0.974 0.960 1.00 0.980
RF 0.965 0.947 1.00 0.973
LR 0.947 0.923 1.00 0.960

KNN 0.912 0.888 0.986 0.934

Table 3. The model effect of dividing the dataset by 7:3 [25].

Accuracy Precision Recall F1-Score

XGBoost 0.959 0.946 0.991 0.968
RF 0.953 0.946 0.981 0.963
LR 0.947 0.922 1.00 0.960

KNN 0.930 0.906 0.991 0.946

2.5. Deep Learning

Researchers have recently integrated machine learning methods with feature selection
techniques to evaluate their effectiveness in classification and segmentation tasks. For
breast cancer detection and early diagnosis, Zheng et al. [26] propose a deep learning-
assisted AdaBoost method. By using convolutional neural networks, the ensemble classifier
significantly enhances system performance, showing potential for rapid adoption and
improved predictive results. [27] presents a method for breast cancer classification and
detection that integrates machine learning and image processing techniques. The method
involves image preprocessing using a geometric mean filter, feature extraction with AlexNet,
and feature selection with the relief algorithm. For classification and detection, the model
employs various machine learning algorithms, including a least squares support vector
machine (LSSVM), k-nearest neighbors (KNN), random forest (RF), and naive Bayes (NB).
Experimental studies demonstrate that this method excels in accurately identifying breast
cancer through image analysis.

Ho DJ et al., in [28], address the problem of accurate multi-class tissue segmentation
in whole slide images (WSIs) of breast cancer, an essential step for effective diagnosis
and treatment planning. The proposed solution is a deep multi-magnification network
(DMMN) that integrates patches from multiple magnifications (20×, 10×, and 5×) to enhance
segmentation accuracy by capturing both cellular details and architectural patterns, as
shown in Figure 12. The methodology involves the partial annotation of WSIs to reduce
labeling efforts, the extraction of multi-magnification patches, and class balancing using
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elastic deformation to ensure sufficient training data for rare classes. The DMMN architec-
ture features multiple encoders and decoders with intermediate layer concatenations to
fully utilize feature maps from different magnifications. This approach outperforms single
magnification networks and other multi-magnification methods by achieving a higher
mean intersection-over-union (mIOU), as well as higher recall and precision. However,
the model’s performance is limited when segmenting well-differentiated carcinomas due
to their absence from the training dataset, highlighting the need for more comprehensive
training data to cover diverse cancer morphologies.

Figure 12. Introduction of a deep single-magnification network (DSMN) and a deep multi-
magnification network (DMMN) for the tissue segmentation of whole slide images [28].

Jiang J et al., in [29], address the challenge of accurate breast cancer detection and
classification in mammograms, aiming to improve diagnostic efficiency and reduce false
positives. Their paper introduces a three-stage deep learning framework utilizing a prob-
abilistic anchor assignment (PAA) algorithm, as shown in Figure 13. The methodology
involves a PAA-based detector to identify suspicious lesions, followed by a two-branch ROI
detector to reduce false positives. Finally, classifiers are used to determine whether lesions
and whole mammograms are benign or malignant. The framework combines local-ROI
and global-image features to enhance accuracy. However, the model faces limitations in
handling dense breast tissues, and it requires further optimization for post-processing
algorithms. Additionally, multi-view inputs could potentially improve performance.

Yan et al., in [30], address the critical issue of accurately classifying breast cancer via
deep learning techniques applied to breast ultrasound (BUS) images. The study proposes a
sophisticated computer-aided diagnosis (CAD) framework named the Multistage Feature
Distillation Network (MFD-Net). This framework leverages a convolutional neural net-
work (CNN) to extract multilevel features from BUS images through depthwise separable
convolution, enhancing fine-grained image feature distillation. The MFD-Net incorporates
an innovative attention module with channel and spatial attention (Figure 14), improv-
ing classification accuracy by focusing on key image regions. The results showed that
MFD-Net outperformed ten state-of-the-art models, achieving superior precision, recall, F1
scores, and accuracy. However, the reliance on a single dataset and potential variability in
immunohistochemical results due to physician expertise are noted limitations.
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Figure 13. The framework for our proposed three-stage deep learning model [29].

Figure 14. Overall structure diagram of the ESCA attention mechanism [30].

3. Proposed Methods

In this section, we focus on the research techniques we chose, explaining each method
from the perspectives of principles, the reasons for their selection, and their advantages,
and we demonstrate how each method addresses the project’s concerns. Here, we list
the datasets we plan to use, which include multiple types of imagery. We then introduce
traditional image processing models, discussing image quality assessment methods, Wiener
filtering, and total variation filtering. This lays the groundwork for a further exploration of
how traditional processing can enhance the early diagnostic performance of artificial intelli-
gence algorithms. Finally, we transition to artificial intelligence algorithms, introducing the
latest Kolmogorov–Arnold network (KAN) architecture. We then discuss the challenges of
early breast cancer diagnosis in terms of classification and image segmentation, introducing
the Vit model and the Unet model and exploring the potential of combining the Unet model
with the latest KANs framework to achieve superior performance. This combination is
expected to yield improved results. For a detailed technical roadmap, refer to Figure 15.



Figure 15. Proposed methods’ workflow diagram.
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3.1. Work Dataset Presentation

In this section, we detail the datasets utilized in our project aimed at AI-based early
breast cancer detection and classification. The success of such a project heavily relies
on the availability and diversity of relevant medical image datasets. Previous studies
have highlighted a significant limitation in current AI-based early breast cancer diagnosis
models, specifically their dependence on a single type of medical image, which leads to
weak generalization across different datasets. To address this issue, we propose analyz-
ing and training models using multiple datasets comprising multimodal medical images.
The datasets employed in this research are shown in Table 4, including the Breast Ultra-
sound Images Dataset [31], MIAS Mammography [32], Mini-DDSM [33], BreakHis [34],
and BreastDM [35]. These datasets encompass four mainstream medical image types: ul-
trasound, mammography, histopathological images, and DCE-MRI. By leveraging these
diverse datasets, we aim to enhance the robustness and generalizability of AI models in
early breast cancer detection and classification.

Table 4. Selected dataset.

DataSet Image Type Example Images

Breast Ultrasound Images
Dataset [31]

Ultrasound

MIAS Mammography
[32]

Mammography

Mini-DDSM [33] Mammography

BreakHis [34] Histopathological
Images

BreastDM [35] DCE-MRI

The selection of the five datasets—BreastDM, BUSI, MIAS, BreakHis, and DDSM—was
implemented to comprehensively evaluate the proposed AI models across a wide range of
imaging modalities and clinical scenarios in breast cancer detection. The BreastDM dataset,
with 232 cases focused on the DCE-MRI domain, provides a robust foundation for both
segmentation and classification tasks, offering a unique emphasis of MRI, which is critical
for detecting tumors in dense breast tissue. The BUSI dataset introduces the challenges of
ultrasound imaging, such as speckle noise and lower resolution, ensuring that the models
are tested on imaging modalities where mammography might be less effective. The MIAS
and DDSM datasets, both containing mammographic images with various abnormalities
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and tissue densities, are pivotal for assessing the models’ performance in one of the most
widely used breast cancer screening methods. BreakHis, with its histopathological images,
adds another layer of complexity by requiring the models to differentiate between benign
and malignant tissues at the cellular level. By leveraging these datasets, the study not only
covers a diverse spectrum of imaging types—each with its specific challenges—but also
ensures that the models are robust, generalizable, and applicable across different clinical
contexts, ultimately enhancing their potential utility in real-world breast cancer diagnostics.

3.2. Restoration Image Modeling

In medical imaging, the phenomenon of image degradation refers to the deterioration
in the quality and clarity of images, which can adversely affect diagnostic accuracy. This
degradation arises from various factors, including motion artifacts caused by patient move-
ment, the technical limitations of imaging equipment, and noise from electronic interference
or low signal strength. Additional factors include beam hardening in CT imaging, in which
X-ray beams passing through denser tissues lead to artifacts and reduced contrast, and the
partial volume effect, in which voxels containing multiple tissue types produce blurred
images. The attenuation and scattering of signals in modalities such as ultrasound and MRI
further contribute to degradation. The manifestations of these issues are evident in blurring,
artifacts, noise, and contrast reduction, all of which impair the visibility and differentiation
of anatomical structures. Understanding these causes and manifestations is essential for
enhancing image acquisition techniques and developing methods to mitigate degradation,
thereby improving the diagnostic utility of medical imaging.

To address the degradation caused by blurring, distortion, and noise in images, it is
necessary to perform image restoration. Image restoration aims to recover the original
appearance of a degraded image as closely as possible. This process involves reversing
the degradation effects, which means that, if we know the specific processes that led to
the degradation, we can restore the image by applying the inverse of these processes. The
process of image degradation is shown on the left side of Figure 16.

Figure 16. The general model for image restoration.

As illustrated in Figure 16, the image degradation model can be represented by
Equation (1): The input image is convolved with the degradation function and subsequently
linearly superimposed with noise to yield the degraded image. Through the application of
a Fourier transform to this equation, the image degradation model can be expressed in the
frequency domain as Equation (2).

g(x, y) = f (x, y) ∗ h(x, y) + η(x, y). (1)

G(u, v) = F(u, v)H(u, v) + N(u, v). (2)

where:

• f (x, y) is the input image.
• h(x, y) is the point spread function (PSF) that represents the blurring effects and other

imperfections.
• η(x, y) is the noise added to the image.
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• g(x, y) is the resulting degraded image.
• F(u, v), H(u, v), and N(u, v) are the Fourier transforms of f (x, y), h(x, y), and η(x, y),

respectively.
• G(u, v) is the Fourier transform of the degraded image g(x, y).

In the initial analysis of the image recovery model, it becomes evident that different
types of noise or blurring possess distinct functional expressions. Consequently, the
effectiveness of various recovery filters varies, depending on the type of noise encountered.
Understanding the characteristics of different types of noise is, therefore, crucial in selecting
the appropriate image processing methods.

Article [36] provides a detailed explanation of the common types of noise found in
medical imaging. Gaussian noise arises from atomic thermal vibrations and intermittent
radiation from hot objects, as well as sensor noise due to temperature or brightness varia-
tions. Salt noise consists of randomly bright pixels (value 255), while pepper noise involves
random dark pixels (value 0). Speckle noise, inherent in ultrasound images, is multiplica-
tive and degrades diagnostic quality by reducing contrast and resolution. Poisson noise,
resulting from the quantized nature of electromagnetic waves like gamma rays, X-rays, and
visible light, introduces signal-dependent fluctuations as photons interact with the body.
Thus, traditional additive noise removal techniques are ineffective for Poisson noise. The
specific expressions are summarized in Table 5.

Table 5. Common noise functions for medical imaging.

Noise Type Probability Density Function (PDF) Description

Gaussian noise P(x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
µ is the mean; σ2 is the variance.

Salt and pepper noise P(z) =


Pa z = a
Pb z = b
0 otherwise

Here, for an 8-bit image, a = 0 is the pixel
value (black), and b = 255 is the pixel

value (white).

Poisson noise P(X = k) =
λke−λ

k!

λ is the average rate of events; k is the
number of occurrences.

Speckle noise F(x) =
xα−1e−x/β

βαΓ(α)

α is the shape parameter, β is the scale
parameter, and Γ(α) is the gamma

function.

3.3. Image Quality Assessment

Image quality assessment (IQA) ensures that medical images meet the standards for
accurate diagnosis and effective treatment, especially in early breast cancer detection. The
three main types of IQA are Full-Reference (FR-IQA), Reduced-Reference (RR-IQA), and
No-Reference (NR-IQA). Our research focuses on using appropriate IQA standards to
evaluate the quality of our image processing results, aiming to obtain reliable, high-quality
medical images for further analysis to improve the accuracy and sensitivity of early breast
cancer diagnosis.

FR-IQA methods, such as the mean squared error (MSE), peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM), require a pristine reference image for
comparison. MSE measures the average squared differences between the original and
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distorted images, while PSNR provides a logarithmic scale of these differences. SSIM
evaluates image quality based on structural information, luminance, and contrast, aligning
closely with human visual perception. RR-IQA methods use partial information from the
reference image to assess quality, balancing the need for reference data with evaluation
accuracy. These techniques extract and compare specific features from both the reference
and distorted images. NR-IQA, or blind IQA, is particularly valuable in medical imaging,
for which reference images are often unavailable. The Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) is a prominent NR-IQA metric that assesses image quality
based on natural scene statistics, operating in the spatial domain to quantify deviations
from expected natural statistics.

Chow, Li Sze and Paramesran, Raveendran, in [37], mention that, in real-time medical
imaging, there is no original or perfect reference image to evaluate. Therefore, NR-IQA
becomes the most suitable method to evaluate medical images. Among NR-IQA methods,
the BRISQUE method does not require the computation of specific distortion features;
instead, it utilizes scene statistics of locally normalized luminance coefficients to quantify
potential losses in the image’s ‘naturalness’. In terms of statistical performance, this method
surpasses PSNR and SSIM, and it demonstrates high competitiveness and computational
efficiency compared to other NR-IQA methods. Therefore, in this study, several evaluation
criteria are employed: MSE, PSNR, SSIM, standard deviation (STD), and BRISQUE. MSE
and PSNR provide foundational error measurements, while SSIM offers a perceptually
aligned evaluation. STD captures image variability, and BRISQUE excels in scenarios
lacking reference images. This comprehensive approach ensures rigorous and versatile
IQA, providing reliable, high-quality medical images for further analysis to enhance the
accuracy and sensitivity of early breast cancer diagnosis.

3.4. Wiener Image Filtering

The objective of image restoration is to estimate the original image F(u, v) from the
observed degraded image G(u, v) and the degradation function H(u, v), along with any
available information about additive noise. The simplest approach to restoring an image
could be implemented in the absence of noise, as follows:

F̂(u, v) =
G(u, v)
H(u, v)

. (3)

This direct and simple method is known as inverse filtering, where F̂(u, v) is the
Fourier transform of the estimated image. In practical scenarios, due to the presence of
noise, directly applying this formula often results in the amplification of noise, leading to
poor restoration. Therefore, according to Equation (2), Equation (3) can be modified under
the condition of considering noise, giving the following:

F̂(u, v) =
G(u, v)− N(u, v)

H(u, v)
. (4)

When performing inverse filtering, if H(u, v) is very small or zero in certain areas
while N(u, v) is not zero and relatively large, the second term in the equation can become
significantly larger than the first term, leading to substantial errors. The Wiener filter is
highly effective for this problem, as it is a form of linear minimum mean square error
(LMMSE) estimation. Linear indicates that the estimation is linear in nature, while minimum
variance refers to the optimization criterion used in constructing the filter. Specifically,
it aims to minimize the variance of the error between the actual signal and the estimate
(Equation (5)). The goal of the Wiener filter is to design a filter such that the output signal,
obtained via filtering the observed signal, is the minimum mean square error estimate of
the actual signal.

e2 = E
{
( f − f̂ )2

}
. (5)
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The Wiener filter, in its many variations, can be single-input–output or multiple-input–
output, depending on the issue at hand with the image. However, the basic idea of Wiener
filtering is still the same. A signal can be extracted from a mixture of signal and noise via
filtering (in the form of a matrix or other model). So, the core of Wiener filtering is used to
compute this filter (the parameters of the matrix r or model), thus solving the Wiener–Hopf
equation. To facilitate the derivation of its principle, when assuming that the system is a
single-input–output type and considering only finite-length filtering (i.e., considering that
the signal at the current moment is only correlated with the signal at the previous finite
number of time points), it can be seen from Figure 16 that, at this time, the output of the
Wiener filter is as follows:

f̂ (n) = g(n) ∗ r(n) = (s(n) + η(n)) ∗ r(n). (6)

Following the derivation process detailed in Appendix A, we obtain the fundamental
formula for the simplest single-input, single-output Wiener filter:

E{e2(n)} = Rss(0)−
N−1

∑
m=0

r(m)Rss(m). (7)

3.5. Total Variational Filtering

The previous subsection revealed that the Wiener filter is based on frequency-domain
filtering, using the known noise and signal power spectrum. De-noising and de-blurring
are achieved through inverse convolution, focusing on global noise suppression and blur
correction, making it more suitable for dealing with linear and smooth noise. The total
variation filter is based on the variational method. It focuses on retaining the edges
by minimizing the total variation in the image in order to achieve denoising. Through
the spatial domain of the iterative optimization of denoising and solving the nonlinear
optimization problem, the noise can effectively be removed while retaining the edges.

Here is the simple derivation of the equation. The total variation filter constitutes an
anisotropic model leveraging gradient descent to achieve image smoothing, with a primary
objective of maximizing smoothness across the image domain by minimizing discrepancies
between adjacent pixels while concurrently preserving edges to the utmost extent feasible.
The term “variation” refers to | f (x + ∆x)− f (x)|, where ∆x approaches 0 for continuous
functions. Total variation pertains to intervals defined for functions, where variations
accumulate over the interval. Thus, by observing the definitions of the variation and the
total variation of continuous real functions, we can derive equations for their discrete forms,
specifically the total variation equation of one-dimensional discrete signals. For a discrete
signal sequence {yi}, i = 1, . . . , n, the total variational form of the one-dimensional discrete
signal is given by Equation (8).

V(y) =
n

∑
i=1

|yi+1 − yi|. (8)

Upon obtaining the observed signal x, the objective is to smooth x, effectively de-
noising it. An intuitive approach is to minimize the total variation of the signal, which
corresponds to the physical meaning of the input signal’s smoothness. Let the recovered
signal be y, which should satisfy two conditions: y should not deviate significantly from the
observed signal x (expressed as Equation (9)), and the total variation of y should be small.
Under these constraints, y can be represented as in Equation (10), where the parameter λ is
a positive constant used to balance the influence of the two constraints.

E(x, y) =
1
2 ∑

i
(xi − yi)

2, (9)

min
y

E(x, y) + λV(y). (10)
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As early as 1992, Rudin et al. proposed the total variation equation for two-dimensional
discrete signals (images) in Article [38], as shown in Equation (11). Solving this equation of
total variation is relatively difficult; therefore, there is another commonly used definition
for two-dimensional total variation (Equation (12)). The minimization problem of this
equation is relatively simple to solve.

V(y) = ∑
i,j

√
|yi+1,j − yi,j|2 + |yi,j+1 − yi,j|2, (11)

V(y) = ∑
i,j

√
|yi+1,j − yi,j|2 +

√
|yi,j+1 − yi,j|2

= ∑
i,j

|yi+1,j − yi,j|+ |yi,j+1 − yi,j|.
(12)

In this paper, we selected Wiener filtering and total variation (TV) filtering as our
primary preprocessing techniques due to their complementary capabilities in addressing
the dual challenges of noise reduction and edge preservation in breast cancer imaging.
Wiener filtering was chosen for its effectiveness in mitigating Gaussian noise, which is a
common issue across medical imaging modalities such as DCE-MRI and ultrasound. Its
adaptive approach, based on the local mean and variance estimation, allows for significant
noise reduction while preserving critical image details, making it particularly useful for
enhancing the visibility of subtle tumor features.

To complement this, total variation filtering was employed in order to maintain the
integrity of edge information, which is crucial for accurate tumor delineation in modalities
like mammography and histopathology. TV filtering minimizes noise while preserving
sharp transitions in an image, ensuring that essential structural details are retained.

Both filters were carefully optimized to align with the specific characteristics of each
dataset. For Wiener filtering, the noise-to-signal ratio was fine-tuned to balance noise
reduction with the preservation of tissue contrast, which is especially important in DCE-
MRI and ultrasound. Similarly, the regularization parameter in TV filtering was adjusted
to prioritize edge preservation while achieving effective noise suppression, particularly in
datasets in which clear tumor boundaries are critical.

The strategic combination and optimization of these two filtering techniques enhance
the overall image quality, providing the AI models with superior input data that supports
improved performance and generalizability across diverse imaging modalities.

3.6. Kolmogorov–Arnold Networks

Traditional multilayer perceptrons (MLPs) have achieved significant success in ma-
chine learning but face challenges such as large parameter counts and limited interpretabil-
ity. To address these issues, Liu and Wang et al., in the article [39], propose the Kolmogorov–
Arnold network (KAN), a novel neural network architecture designed to enhance model
flexibility and expressiveness while maintaining interpretability.

KAN’s design is inspired by the Kolmogorov–Arnold representation theorem, as
shown in Equation (13), which posits that a multivariate, continuous function can be
decomposed into a finite composite of univariate continuous functions and binary addi-
tive operations. Instead of using fixed activation functions at the nodes, KAN employs
learnable activation functions at the network’s edges. This allows each weight parameter
to be replaced with a univariate function, typically parameterized as a spline function.
By applying learnable activation functions to the weights, KAN can more flexibly and
accurately capture complex relationships in input data.

f (x) = f (x1, · · · , xn) =
2n+1

∑
q=1

Φq

(
n

∑
p=1

ϕq,p(xp)

)
. (13)
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Figure 17 illustrates a structural comparison between multilayer perceptrons (MLPs)
and Kolmogorov–Arnold networks (KANs). The primary distinction lies in the sequence of
operations: MLP applies linear combinations followed by nonlinear activations, whereas
KAN employs nonlinear activations for each input prior to the linear combinations. Cru-
cially, KAN features parameterizable and learnable activation functions, unlike fixed func-
tions like Sigmoid or ReLU in MLP. This adaptability enables KAN to represent complex
curves with greater efficiency, thereby achieving higher accuracy with fewer parameters.

Figure 17. Comparison of MLP and KAN structure.

Theoretically, two KAN layers (one representing the inner function and one learning
the outer function) are sufficient to model various supervised learning tasks over the
real number domain. This is analogous to the Kolmogorov–Arnold (KA) representation
theorem. However, the activation functions in KANs can sometimes become very non-
smooth, making it difficult to approximate any function using smooth splines in practice.
Hence, the necessity for multi-layer KANs arises. Unlike the KA theorem, which restricts
each input to produce 2n + 1 nonlinear activations, as indicated in Equation (13), KANs
can be more flexible and stacked to form deeper networks, resulting in more practical
activation functions. The essence of deep learning is representation learning, which involves
composing simple modules to learn complex functions. Therefore, extending KANs to
multiple layers aligns with this principle. In article [39], a KAN layer with Nin-dimensional
inputs and Nout-dimensional outputs is defined as a matrix of one-dimensional functions
using the following equation:

Φ = {ϕq,p}, p = 1, 2, · · · , nin q = 1, 2, · · · , nout. (14)

To further compute xl+1,j, we can use the Equation (15); each value from the l-th layer
corresponds to an activation function ϕl,j,i for i = 1, 2, . . . , nl . After processing each value
through the corresponding activation function, we simply sum them up to get xl+1,j.
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xl+1,j =
nl

∑
i=1

x̃l,j,i =
nl

∑
i=1

ϕl,j,i(xl,i), j = 1, · · · , nl+1. (15)

As shown in Figure 18, the two-layer KANs in the article [39] have the 0-th layer
(bottom) representing the inner function, changing the variable dimensionality from n to
2n + 1. The first layer represents the outer function, changing the dimensionality from
2n + 1 to 1 and resulting in a real number. Extending the basic two-layer KANs to a
general form,

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0)x. (16)

Figure 18. Two-layer KANs [39].

3.7. U-Net

The UNet algorithm is a convolutional neural network (CNN) architecture for image
segmentation. It was proposed by Olaf Ronneberger et al. in [40], and it is mainly used
to solve the problem of medical image segmentation. The key innovation of UNet is its
U-shaped architecture, which allows for high segmentation accuracy even with a limited
number of training images.

UNet is a fully convolutional neural network for image segmentation, comprising
an encoder and a decoder. The encoder extracts features using convolutional layers and
pooling operations, reducing spatial resolution while capturing crucial details. The de-
coder then upsamples these low-resolution, high-level feature maps, combining them
with corresponding encoder feature maps via skip connections. This technique enhances
segmentation accuracy and detail preservation by utilizing both high-level abstract and
low-level detailed features.

In the final stage, two convolutional layers generate feature maps, followed by 1 × 1 con-
volutions to produce class-specific heatmaps. The softmax function processes these heatmaps
to compute probabilities, which are then used for loss calculation and backpropagation.

The UNet algorithm excels in segmentation and is well suited to small-sample learning,
but it demands high computational resources and faces challenges with data imbalance
and large image processing. The article [41] notes that, despite various innovative en-
hancements incorporating transformers or MLPs, these networks remain constrained due
to linear modeling paradigms, and they lack sufficient interpretability. To address these
problems, Li, Chenxin, Liu, Xinyu, et al. proposed the U-KAN architecture, as illustrated
in Figure 19. This design incorporates elements from KANs, which are renowned for its
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high accuracy and interpretability. KANs transform neural network learning by incorpo-
rating nonlinearly learnable activation functions derived from the Kolmogorov–Arnold
representation theorem.

Figure 19. U-KAN architecture [41].

The U-KAN architecture consists of a two-phase encoder–decoder structure. The
encoder phase starts with three convolutional blocks that progressively reduce the fea-
ture map resolution, followed by two tokenized Kolmogorov–Arnold network (Tok-KAN)
blocks. Conversely, the decoder phase includes two Tok-KAN blocks and three convolu-
tional blocks that restore the feature map resolution. Skip connections link corresponding
blocks in the encoder and decoder to facilitate feature reuse. Channel counts for the con-
volution and Tok-KAN phases are defined by hyperparameters C1 to C3 and D1 to D2,
respectively. This architecture effectively integrates convolutional and tokenized KAN
blocks, enhancing segmentation accuracy and interpretability and setting it apart from
conventional UNet designs.

3.8. Vision Transformer

The vision transformer (ViT), developed by Google, repurposes the transformer ar-
chitecture for computer vision tasks using an attention mechanism. While CNNs have
traditionally been the cornerstone for computer vision, transformers are primarily used
in NLP for tasks such as translation and text generation. Researchers have adapted the
transformer’s multi-head self-attention to vision tasks in order to address the limitations of
CNNs in capturing long-range dependencies. ViT has proven effective in image classifica-
tion, object detection, and segmentation by leveraging its capability to process images of
varying scales and resolutions and capture global contextual information.

The vision transformer (ViT) architecture (Figure 20), designed for computer vision
tasks, consists of three main modules. The Linear Projection of Flattened Patches module
converts input images into a serialized format suitable for the transformer encoder using
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the incorporating patch, position, and learnable embeddings. The transformer encoder,
the core component, utilizes multi-head self-attention and feed-forward neural networks
to capture global information and learn feature representations. Finally, the MLP head
processes the output from the transformer encoders using a multi-layer perceptron for
classification or other vision tasks.

Figure 20. Vision transformer architecture. In order to perform classification, the standard approach
of adding an extra learnable “classification token” to the sequence is used (shown by ∗) [42].

The ViT model starts by segmenting an input image into fixed-size patches, which
are then linearly transformed into lower-dimensional patch embeddings. Positional and
learnable embeddings are added to retain spatial and global information. These embed-
dings are input to multiple layers of transformer encoders, which apply self-attention to
extract features. The final output vectors are processed through a fully connected layer for
classification. By converting image data into a sequence format, ViT effectively leverages
the transformer’s attention mechanisms for efficient image analysis and classification.

3.9. Comparative Analysis with Previous Works

The application of machine learning and deep learning techniques to breast cancer
detection has been extensively explored, yet challenges related to generalizability across
different imaging modalities remain significant. Previous methods, such as those proposed
in [21], focused on specific imaging modalities like mammography and MRI and on em-
ploying traditional image processing techniques such as edge detection and thresholding.
These methods have shown efficacy within their targeted applications; however, their
adaptability to other imaging modalities is limited. For instance, while edge detection may
work effectively in mammography by highlighting distinct boundaries, it often fails to cap-
ture the more nuanced variations present in ultrasound images, where tissue interfaces are
less clear. Similarly, thresholding techniques that perform well in MRI may not adequately
handle the complex textures seen in histopathological images, where contrasts between
different tissue types can be subtle and varied.

In contrast, studies like [10] examined a broad range of deep learning architectures
combined with various preprocessing techniques, placing significant emphasis on the archi-
tecture’s influence on model accuracy. However, these studies did not sufficiently explore
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how different preprocessing techniques affect performance across various imaging modali-
ties, leading to limited generalizability. Our approach differs by systematically applying
preprocessing techniques, specifically Wiener filtering and total variation filtering, across
multiple modalities, including DCE-MRI, ultrasound, mammography, and histopathol-
ogy. This strategic use of preprocessing enhances image quality uniformly across different
datasets, thereby improving the overall performance and generalizability of AI models,
which is an area where previous studies have often fallen short.

Moreover, by systematically applying image processing techniques, we are able to
enhance the generalizability of AI models. Traditional approaches often rely on a one-
size-fits-all strategy for preprocessing, which may not account for the nuanced differences
between imaging modalities. Our method diverges from this by optimizing the filtering
parameters for each dataset, ensuring that the preprocessing is tailored to the specific
characteristics of the imaging data. This tailored approach not only improves the diagnostic
accuracy within each modality but also enhances the robustness of the models when applied
to diverse datasets.

Overall, the proposed method addresses the ongoing challenge of developing gener-
alizable and robust diagnostic models applicable across multiple imaging modalities. By
strategically applying advanced preprocessing techniques and integrating state-of-the-art
AI models, this study seeks to offer an approach that navigates some of the limitations
observed in previous methodologies. While further validation and exploration are needed,
the findings presented here contribute to the ongoing dialog in the field, with the potential
to inform future developments in breast cancer diagnostics.

3.10. Highlight of the Proposed Methods

The proposed method distinguishes itself through a comprehensive approach that
integrates advanced preprocessing techniques with cutting-edge AI models. Key aspects
include the following:

1. Multimodal dataset utilization: Unlike previous approaches that primarily focus on
single-modality datasets, our method leverages a diverse range of medical imaging
datasets. This strategy ensures that the AI models developed are robust and general-
izable across various imaging conditions, enhancing their applicability in different
clinical scenarios.

2. Advanced image processing techniques: By systematically comparing and inte-
grating Wiener filtering with total variation filtering, our approach is designed to
tackle specific challenges inherent to medical imaging, such as noise reduction and
edge preservation. These challenges are crucial for improving image quality before
applying AI models. Additionally, we tailor filtering parameters to the characteristics
of each specific dataset, thereby enhancing the adaptability and performance of the
models across different imaging modalities.

3. Integration of ViT and U-KAN models: The incorporation of vision transformer
(ViT) and U-KAN models represents an innovative application in the context of
breast cancer detection. These models have demonstrated superior performance
in both classification and segmentation tasks when compared to traditional CNN-
based models. Their integration provides a more robust and interpretable framework
capable of being effectively applied across a variety of imaging modalities.

4. Experimental Results and Discussion
4.1. Results of Image Filtering

Assuming that the degraded features in the mammographic images of the dataset are
due to Gaussian blur, this study utilized specific Python modules to estimate the Gaussian
blur kernel and employ a Wiener filter to deblur the images. The implementation of this
functionality requires a manual estimation of the Gaussian kernel. The Gaussian blur
kernel function in image processing is defined by two primary variables: kernel size and
standard deviation. The kernel size, represented as a pair of integers (k_width, k_height)
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or a single integer for square kernels, specifies the dimensions of the Gaussian kernel and
determines the number of pixels considered around each target pixel when applying the
blur. A larger kernel size results in a more extensive blur by averaging values over a wider
area. The standard deviation sigma controls the spread or width of the Gaussian function,
influencing the degree of blur. It dictates how much neighboring pixels affect the center
pixel, with a larger sigma producing a broader, smoother blur and a smaller sigma resulting
in a sharper, more localized blur. Often, a single standard deviation value is used for both
the x and y directions to maintain a uniform blur effect. The setting of the Gaussian kernel
is closely related to the final deblur effect.

In order to realize the subsequent early classification and diagnosis research, we set the
parameters to an interval range, taking the Gaussian kernel size to be 3–9 with a step size
of 2 and sigma to be 0.5–3.0 with a step size of 0.25. We calculated the optimal parameter
selection under the current image database through image quality assessment (IQA) for
subsequent research. This section demonstrates the processed images, all based on the
MIAS database (https://www.mammoimage.org/databases/ (accessed on 20 July 2024)).

The processing effect of the Wiener filter under different variables is shown in Figure 21.
We calculated the image quality evaluation metrics PSNR, SSIM, MSE, and BRISQUE to find
the better variable settings under this dataset.

Figure 21. Examples of Wiener filtering effects with partial variable combinations.

In Figures 22–26, the Wiener filter’s performance across various image quality met-
rics—PSNR, SSIM, MSE, STD, and BRISQUE—reveals that the choice of kernel size and
sigma significantly influences the quality of the denoised images. Optimal image qual-
ity, indicated by higher PSNR and SSIM values and lower MSE and BRISQUE scores, is
generally achieved with smaller kernel sizes (3 to 4) and lower sigma values (0.5 to 1.0).
Under these conditions, the filter effectively reduces noise while preserving structural
details and minimizing deviations from the original image. As the kernel size and sigma

https://www.mammoimage.org/databases/
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increase, there is a noticeable decline in PSNR (from around 23 dB to 15 dB) and SSIM (from
approximately 0.55 to 0.2), reflecting a loss of detail and structural fidelity. Concurrently,
MSE values escalate (from around 250 to over 2250), highlighting increased error due to
excessive smoothing.

Furthermore, the standard deviation (STD) and BRISQUE metrics show a similar trend,
where larger kernels and higher sigma values lead to increased uniformity and perceived
quality degradation. The STD values rise from 62.5 to 65.5, indicating a reduction in texture
variability, while BRISQUE scores increase from 12 to 72, suggesting diminished visual
quality. These findings suggest that, while larger kernels and higher sigma values may be
effective for noise reduction, they also introduce substantial over-smoothing, resulting in
a loss of crucial image details and texture. Therefore, the careful selection of kernel size
and sigma is essential for optimizing image quality, particularly in applications requiring a
balance between noise suppression and the preservation of fine details for accurate early
classification and diagnosis.

Figure 22. PSNR assessment of Wiener-filtered images.

Figure 23. SSIM assessment of Wiener-filtered images.
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Figure 24. MSE assessment of Wiener-filtered images.

Figure 25. STD assessment of Wiener-filtered images.

Figure 26. BRISQUE assessment of Wiener-filtered images.
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The analysis of the contour map of BRISQUE values in relation to kernel size and sigma
parameters for Wiener-filtered images reveals distinct patterns. Smaller kernel sizes (3–5)
are highly sensitive to variations in the sigma parameter, whereas larger kernel sizes (7–9)
exhibit greater stability. Within the tested parameter range, a kernel size of 8 and a sigma
value of 1.25 yield the best image quality, indicated by lower BRISQUE scores of 13.47. This
combination effectively balances noise reduction and detail preservation. As shown in
Figure 26, this specific combination results in the lowest BRISQUE score. Therefore, within
the established range, these parameters are optimal for processing images in the current
dataset. Through this method, we can determine the relatively optimal points within the
assumed range of the dataset. The average evaluation metrics for the relatively optimal
points within the parameter ranges of all used datasets are shown in Table 6. The optimal
parameter sets for each dataset are as follows: for BreastDM, the optimal parameters (Size,
Sigma) are (4, 3); for BreakHis, they are (5, 2.5); for DDSM, they are (5, 1.5); and for BUSI,
they are (7, 1).

Table 6. Assessment of Wiener filtering by IQA.

IQA MIAS BreastDM BreakHis DDSM BUSI

PSNR 17.68 23.06 19.69 17.14 20.09
SSIM 0.30 0.79 0.73 0.55 0.35
MSE 1114.22 341.72 697.58 1267.13 637.35

BRISQUE 13.47 28.88 15.12 63.71 26.23

In addition, total variation filtering was applied to five datasets, with specific IQA
parameters detailed in Table 7. It can be observed that, compared to Wiener filtering,
the performance of total variation filtering is inferior. This is particularly evident in the
BRISQUE parameter, which will likely significantly impact deep learning models. The
substantial increase in BRISQUE values indicates a notable decline in image quality.

Table 7. Assessment of total variation filtering by IQA.

IQA MIAS BreastDM BreakHis DDSM BUSI

PSNR 19.37 19.48 19.44 19.49 19.44
SSIM 0.47 0.67 0.60 0.68 0.60
MSE 825.34 871.96 854.79 875.35 855.36
BRISQUE 21.33 87.01 62.82 91.79 63.62

Wiener filtering and total variation filtering are complementary in dealing with noise
and preserving details. Wiener filtering is very effective in reducing Gaussian noise, while
total variation filtering excels in preserving edges and details. Therefore, we processed
images by applying total variation filtering to both the original dataset and the Wiener-
filtered dataset and then evaluated the quality of the images, expecting that the processed
images would lead to superior performance in early diagnosis for AI.

Table 8 shows the sample filtering effects for each dataset (the experimental settings
are the same as the MIAS dataset, both assuming that the images are Gaussian blurred).
Similar to the Wiener filter, the total variation filter has a different setup with the variable
regularization parameter (λ), which controls the strength of the filtering and determines the
balance between noise reduction and detail retention. Following the Wiener filter treatment,
we explored the relatively optimal combination of parameters. Table 9 shows the evaluation
metrics for each dataset under the relatively optimal parameters of the combined filters.
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Table 8. Comparison of filter processing effects in different datasets.

Types of Medical
Imaging DataSet Original Image Wiener Filter Total Variation

Filter Combined Filter

Mammography

MIAS

Mini-DDSM

Ultrasound BUSI

DCE-MRI BreastDM
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Table 8. Cont.

Types of Medical
Imaging DataSet Original Image Wiener Filter Total Variation

Filter Combined Filter

Histopathology BreakHis

Table 9. Assessment of combined filtering by IQA.

IQA MIAS BreastDM BreakHis DDSM BUSI

PSNR 16.88 23.10 19.56 17.01 19.86
SSIM 0.21 0.75 0.71 0.51 0.44
MSE 1334.17 318.49 718.58 1297.58 671.75

BRISQUE 16.87 70.62 55.67 82.47 44.80

Figures 27–29 use image quality assessment (IQA) metrics to compare the effects of
different filtering techniques on various datasets. These datasets include MIAS (benign:
64 images; malignant: 51 images; normal: 207 images), BreakHis (benign: 2480 images;
malignant: 5429 images), BUSI (benign: 437 images; malignant: 210 images; normal:
133 images), BreastDM (benign: 88 images; malignant: 147 images), and Mini-DDSM
(benign: 671 images; malignant: 679 images, normal: 602 images). The metrics used are
PSNR, SSIM (scaled by 102), MSE (scaled by 10), and BRISQUE. These figures clearly
illustrate the differences in image quality across different filtering methods, with particular
emphasis on the BRISQUE metric, which indicates significant variations in image quality.
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Figure 27. Assessment of Wiener filtering by IQA.
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Figure 28. Assessment of total variation filtering by IQA.
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Figure 29. Assessment of combined filtering by IQA.

4.2. AI Diagnostic Results

Evaluated using IQA metrics alone, Table 9 shows that the combined filter-treated
images are degraded in all parameters. However, to draw accurate conclusions and validate
whether Wiener filtering improves AI early diagnostic performance, we used five datasets,
each subjected to three different treatments (including the original images), resulting in
15 different combinations for deep learning training. The primary task in the early diagnosis
of breast cancer is to classify medical images to determine whether the condition is benign
or malignant for targeted treatment. For the classification task, training was conducted
using the VisionTransformer framework with a fixed 15 epochs for all datasets, a learning
rate of 0.001, and a learning rate factor of 0.01. The performance of the same dataset under
different treatments was compared and analyzed. Figure 30 illustrates the model training
process data for the BUSI dataset.
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In Table 10, we analyzed the performance results of five different datasets after ap-
plying Wiener filtering and total variation filtering. It is evident that the performance
varies significantly across different datasets, depending on the filtering technique used.
For instance, in the Mini-DDSM dataset, although the performance of Wiener filtering and
total variation filtering are relatively similar, the raw images perform the worst. However,
the Breakhis dataset shows a significant performance improvement after applying Wiener
filtering, particularly in accuracy, recall, and AUC.

Further analysis reveals that the BreastDM dataset achieves the best results after
applying Wiener filtering, with all performance metrics reaching their highest values. This
indicates that our chosen range of parameters and parameter combinations are well suited
to this dataset. The BUSI dataset exhibits excellent performance with both Wiener and total
variation filtering, although Wiener filtering performs slightly better, suggesting that the
effectiveness of different filtering methods varies across specific datasets.

Overall, these results indicate that filtering can significantly improve model perfor-
mance in some cases but may have negative effects on certain datasets. Therefore, in
practical applications, it is crucial to select the most appropriate image processing method
based on the characteristics of the specific dataset to achieve optimal performance.

Table 10. Performance of five datasets with different treatments in the vision-transformer framework.

DataSet Accuracy Precision Recall Specificity AUC

Mini-ddsm-Combined filter 0.877 0.878 0.877 0.938 0.970
Mini-ddsm-Wiener filter 0.873 0.873 0.873 0.937 0.962
Mini-ddsm-TV filter 0.833 0.834 0.833 0.917 0.936
Mini-ddsm-Raw image 0.787 0.788 0.787 0.893 0.910
MIAS-Combined filter 0.651 0.217 0.333 0.667 0.558
MIAS-Wiener filter 0.667 0.554 0.367 0.682 0.479
MIAS-TV filter 0.667 0.553 0.361 0.682 0.545
MIAS-Raw image 0.651 0.217 0.333 0.667 0.439
Breakhis-Combined filter 0.896 0.881 0.875 0.819 0.950
Breakhis-Wiener filter 0.904 0.899 0.874 0.794 0.955
Breakhis-TV filter 0.896 0.884 0.870 0.802 0.953
Breakhis-Raw image 0.937 0.935 0.917 0.863 0.970
BreastDM-Combined filter 0.993 0.996 0.983 0.954 0.969
BreastDM-Wiener filter 0.969 0.972 0.967 0.933 0.954
BreastDM-TV filter 0.938 0.947 0.933 0.867 0.965
BreastDM-Raw image 0.906 0.906 0.908 0.933 0.937
BUSI-Combined filter 0.832 0.811 0.792 0.900 0.938
BUSI-Wiener filter 0.980 0.988 0.966 0.985 0.998
BUSI-TV filter 0.845 0.856 0.802 0.898 0.946
BUSI-Raw image 0.716 0.748 0.616 0.803 0.864

Further predictions using the trained model reveal more diverse performance out-
comes. Figure 31 shows that, while the model can correctly classify images in the BreakHis
dataset, there is a decrease in the likelihood of correctly classifying benign images post-
processing, whereas the likelihood increases for malignant images. Figures 32 and 33
demonstrate that filtered images significantly improve classification probabilities for the
BreastDM and BUSI datasets. However, Figure 34 indicates that, despite improved accu-
racy and probability in processed images, the model misclassifies original DDSM images,
which is critical in real diagnostics; specifically, a malignant image is diagnosed as benign
with a probability of 0.504. Figure 35 illustrates a more severe issue in the MIAS dataset,
where the model misclassifies benign images as normal with a probability of 0.421 (benign
prob: 0.337; malignant prob: 0.242) and malignant images as normal with a probability
of 0.526 (benign prob: 0.191; malignant prob: 0.283) after combined filtering. Image process-
ing degraded the model’s classification performance with MIAS, and the original dataset’s
classification probabilities were already low, indicating that the model is not well suited to
the MIAS dataset.
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(a) Train accuracy in BUSI. (b) Train loss in BUSI.

(c) Train AUC in BUSI. (d) Train precision in BUSI.

(e) Train recall in BUSI. (f) Train specificity in BUSI.

Figure 30. Comparison of the training process of the BUSI dataset with different treatments.
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Figure 31. Classification results in Breakhis.

Figure 32. Classification results in BreastDM.
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Figure 33. Classification results in BUSI.

Figure 34. Classification results in Mini-DDSM.
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Figure 35. Classification results in MIAS.

Table 11 presents a comparison between the mask images generated using three
different frameworks and the ground truth masks for image segmentation. In Table 12,
the performance comparison of various models on the BUSI and BreastDM datasets is
presented, emphasizing their respective performance metrics. The methods for calculating
performance metrics are detailed in Appendix A.

For the BUSI dataset, the U-KAN model demonstrates superior performance across
most metrics relative to U-Net and U-Net++. Specifically, U-KAN achieves the highest
accuracy (0.933), precision (0.754), and F1 score (0.747). Additionally, it records the highest
specificity (0.963) and AUC (0.935), although its recall (0.740) is marginally lower than
that of U-Net++ (0.749). These results indicate that U-KAN offers balanced and robust
performance, excelling particularly in accuracy and specificity, which are critical for reliable
image segmentation.

Regarding the BreastDM dataset, all three models exhibit high accuracy, yet U-
KAN again shows the best overall performance. U-KAN achieves the highest accuracy
(0.986), recall (0.870), F1 score (0.728), specificity (0.993), and AUC (0.838). In comparison,
U-Net++ demonstrates slightly lower performance with an accuracy of 0.985 and an AUC
of 0.822, while U-Net exhibits an accuracy of 0.983 and an AUC of 0.815.

These findings suggest that U-KAN is particularly effective for image segmentation
tasks, especially in the context of early breast cancer diagnosis. It provides superior
accuracy, specificity, and balanced performance across other metrics compared to U-Net
and U-Net++, thus offering enhanced capabilities for detecting early-stage breast cancer
lesions. Consequently, U-KAN’s advanced performance metrics underscore its potential as
a reliable model for clinical applications in breast cancer detection.
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Table 11. Comparison of different models using datasets.

Dataset Raw Image Real Mask UNet UNet++ U-KAN

BUSI

BreastDM

Table 12. Comparison of different models using datasets.

DataSet Methods Accuracy Precision Recall F1-Score Specificity AUC

U-Net 0.896 0.683 0.708 0.672 0.941 0.925
BUSI U-Net++ 0.894 0.653 0.749 0.680 0.930 0.931

U-KAN 0.933 0.754 0.740 0.747 0.963 0.935

U-Net 0.983 0.579 0.845 0.688 0.984 0.815
BreastDM U-Net++ 0.985 0.577 0.859 0.692 0.973 0.822

U-KAN 0.986 0.626 0.870 0.728 0.993 0.838

5. Conclusions

This study systematically explored the effects of various image processing techniques
and AI models on the performance of early breast cancer diagnostic systems. Experiments
were conducted on multiple datasets, including BreastDM, BUSI, MIAS, BreakHis, and
DDSM, ensuring a comprehensive evaluation across diverse medical image types. The
results provided critical insights into the effectiveness of these techniques and models.

The application of Wiener filtering produced distinct image quality metrics across
various datasets, as evidenced by measures such as the peak signal-to-noise ratio (PSNR),
the structural similarity index measure (SSIM), the mean squared error (MSE), and the
Blind/Referencel-ess Image Spatial Quality Evaluator (BRISQUE). With the BreastDM
dataset, Wiener filtering achieved a PSNR of 23.06 dB, an SSIM of 0.79, and an MSE of
341.72, indicating effective noise suppression and good structural preservation, with a
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BRISQUE score of 28.88. For the BUSI dataset, Wiener filtering resulted in an SSIM of 0.35,
a PSNR of 20.09 dB, and an MSE of 637.35, demonstrating moderate structural preservation
and reasonable perceptual quality with a BRISQUE score of 26.23. In the MIAS dataset,
Wiener filtering showed significant noise reduction with an MSE of 1114.22, a PSNR of
17.68 dB, and an SSIM of 0.30, maintaining perceptual quality with a BRISQUE score of
13.47. For the DDSM dataset, Wiener filtering achieved a PSNR of 17.14 dB, an SSIM of 0.55,
and an MSE of 1267.13, reflecting moderate improvements and challenges in balancing
noise reduction and perceptual quality with a BRISQUE score of 63.71. In the BreakHis
dataset, Wiener filtering showed a PSNR of 19.69 dB, an SSIM of 0.73, and an MSE of 697.58,
indicating good noise reduction and structural preservation, with a BRISQUE score of 15.12,
suggesting good perceptual quality.

Combined filtering techniques produced mixed results that were highly dependent
on the dataset. To evaluate their relative performance, these methods were compared
against Wiener filtering. In the MIAS dataset, combined filtering decreased SSIM values
from 0.30 (Wiener) to 0.21, reflecting potential over-enhancement issues. Additionally, MSE
increased from 1114.22 (Wiener) to 1334.17 (combined), indicating slightly less effective
noise reduction. The BRISQUE score increased from 13.47 (Wiener) to 16.87 (combined),
suggesting a decrease in perceptual quality. Conversely, in the BUSI dataset, combined
filtering significantly improved perceptual quality, as evidenced by a decrease in BRISQUE
scores from 26.23 (Wiener) to 44.80 (combined). PSNR was slightly lower for combined
filtering (19.86 dB) than Wiener filtering (20.09 dB) but still acceptable. SSIM improved
from 0.35 (Wiener) to 0.44 (combined), indicating better structural preservation. This com-
parison indicates that, while Wiener filtering generally enhances image quality, combined
filtering methods can offer additional benefits in specific contexts, especially for perceptual
quality in datasets like BUSI.

The use of the vision transformer (ViT) framework provided a robust approach to
evaluating the impact of different preprocessing techniques on AI diagnostic performance,
particularly in the BreastDM and BUSI datasets. For the BreastDM dataset, the Wiener filter
treatment achieved an accuracy of 96.9%, a precision of 97.2%, a recall of 96.7%, a specificity
of 93.3%, and an AUC of 0.954. In comparison, the combined filter treatment yielded an
accuracy of 99.3%, a precision of 99.6%, a recall of 98.3%, a specificity of 95.4%, and an
AUC of 0.969, demonstrating superior performance. The raw image treatment showed
lower metrics with an accuracy of 90.6%, a precision of 90.6%, a recall of 90.8%, a specificity
of 93.3%, and an AUC of 0.937. For the BUSI dataset, the Wiener filter treatment resulted
in an accuracy of 98.0%, a precision of 98.8%, a recall of 96.6%, a specificity of 98.5%, and
an AUC of 0.998. The combined filter treatment had an accuracy of 83.2%, a precision
of 81.1%, a recall of 79.2%, a specificity of 90.0%, and an AUC of 0.938, whereas the raw
image treatment exhibited significantly lower performance with an accuracy of 71.6%, a
precision of 74.8%, a recall of 61.6%, a specificity of 80.3%, and an AUC of 0.864. These
results highlight the effectiveness of the ViT framework, particularly when combined with
appropriate preprocessing techniques, in enhancing diagnostic accuracy and reliability.

The U-KAN model consistently outperformed the U-Net and U-Net++ models in
breast cancer lesion segmentation across the datasets used. In the BUSI dataset, U-KAN
achieved an accuracy of 93.3%, with a precision of 75.4%, a recall of 74.0%, an F1-score
of 74.7%, a specificity of 96.3%, and an AUC of 0.935. These results indicate U-KAN’s
robustness in accurately segmenting breast cancer lesions. Notably, with the BreastDM
dataset, U-KAN maintained high segmentation accuracy with an accuracy of 98.6%, a
precision of 62.6%, a recall of 87.0%, an F1-score of 72.8%, a specificity of 99.3%, and an
AUC of 0.838 despite the presence of noise and variability in image quality. Furthermore,
the U-KAN model’s ability to maintain high-performance metrics across these datasets
underscores its adaptability and robustness.

In conclusion, this study underscores the importance of tailored preprocessing tech-
niques for different datasets, given the variability in image quality and characteristics.
Wiener filtering emerged as generally effective, particularly for datasets with significant
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noise, such as BreastDM. However, the choice of filtering techniques should be guided by
the specific noise characteristics and diagnostic requirements of each dataset; for instance,
combined filtering methods were more suitable in enhancing image clarity and feature
preservation in the BUSI dataset. Integrating advanced AI models like ViT and U-KAN
with optimal preprocessing techniques has proven to enhance diagnostic performance. The
superior performance of the U-KAN model across various metrics suggests that combining
innovative network architectures with tailored preprocessing can significantly improve
early breast cancer detection. These findings highlight the need for further research to
refine and validate these methods across larger and more diverse datasets.

Future work should address the challenge of selecting optimal parameters for different
datasets, which remains difficult even when choosing a parameter range to find the best
values. Integrating image processing with deep learning may offer a solution to this
problem. By training models with various parameter combinations, it may be possible to
achieve the adaptive selection of the optimal processing parameters. This approach could
significantly enhance the performance of deep learning applications in early breast cancer
detection, leading to more accurate and reliable diagnostic outcomes.
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Appendix A. Some Theoretical Definitions

Appendix A.1. Wiener Filter

In order to ensure that the difference between the output, y, and the real signal, s,
is minimized, and since y and s are temporal signals, it is important to ensure that the
mean-square error is minimized for both of them, so the following is used:

E{e2(n)} = E{( f̂ (n)− s(n))2} = E{(g(n) ∗ r(n)− s(n))2} (A1)

To find the h that minimizes Equation (A1), taking the partial derivative of Equation (A1)
with respect to h yields the following:

∂E{e2(n)}
∂r

= 2E{e(n) ∗ ∂e(n)
∂r

} = 0 (A2)

∂E{e2(n)}
∂r

= 2
N−1

∑
m=1

r(m)E{g(n − j)g(n − m)} − 2E{s(n)g(n − j)} = 0, j = 0, 1, . . . , N − 1 (A3)

Setting the correlation coefficient between g and s is Rgs:

Rgs(j) =
N−1

∑
m=0

r(m)Rgg(j − m), j = 0, 1, . . . , N − 1 (A4)

where Rgg(j − m) denotes the correlation coefficient between g(n − j) and g(n − m). Here,
m is fixed, and j is varying, m >= 0, Rgs(j) denotes the correlation coefficient of g(n − j),
and s(n). In the above equation, n denotes the time point in the sequence signal.
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According to Equation (A4), the N-dimensional linear equation can be obtained:

Rgs(0) = r(0)Rgg(0) + r(1)Rgg(1) + . . . + r(N − 1)Rgg(N − 1)

Rgs(1) = r(1)Rgg(1) + r(0)Rgg(0) + . . . + r(N − 1)Rgg(N − 2)

. . .

Rgs(N − 1) = r(N − 1)Rgg(N − 1) + r(N − 2)Rgg(N − 2) + . . . + r(0)Rgg(0)

(A5)

Its matrix form is as follows:

RggR = Rgs (A6)

From the previous model, it is known that the H matrix is the required filter parameter,
which, in turn, leads to R = R−1

gg Rgs. At this time, the mean square error of the image is the
smallest. According to Equations (A1) and (A4), we can obtain the following:

E{e2(n)} = E{(s(n)−
N−1

∑
m=0

r(m)g(n − m))2}

E{e2(n)} = Rss(0)− 2
N−1

∑
m=0

r(m)Rgs(m) +
N−1

∑
m=0

r(m)
N−1

∑
j=0

r(j)Rgg(m − j)

E{e2(n)} = Rss(0)−
N−1

∑
m=0

r(m)Rgs(m)

(A7)

When signal s and noise n are independent of each other,

Rsn = Rns = 0; Rgs = Rss + Rns = Rss (A8)

By substituting Equation (A7), we can obtain the basic formula of the simplest Wiener
filter with a single input and output:

E{e2(n)} = Rss(0)−
N−1

∑
m=0

r(m)Rss(m) (A9)

Appendix A.2. Image Quality and Classification Performance Metrics

• Peak signal-to-noise ratio (PSNR)

PSNR = 10 · log10

(
MAX2

I
MSE

)
(A10)

where MAXI is the maximum possible pixel value of the image, and MSE is the mean
squared error.

• Structural similarity index (SSIM)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(A11)

where µx and µy are the mean values of images x and y, σ2
x , and σ2

y are the variances,
σxy is the covariance, and c1 and c2 are constants for stabilization.

• Mean squared error (MSE)

MSE =
1

mn

m

∑
i=1

n

∑
j=1

[I(i, j)− K(i, j)]2 (A12)
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where I and K represent the pixel values of the original and compressed images,
respectively, and m and n are the dimensions of the images.

• Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)

BRISQUE = f (NSS features) (A13)

where f is a function mapping Natural Scene Statistics (NSS) features to a quality score.
• Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
(A14)

where TP, TN, FP, and FN represent true positives, true negatives, false positives,
and false negatives, respectively.

• Precision

Precision =
TP

TP + FP
(A15)

• Recall

Recall =
TP

TP + FN
(A16)

• Specificity

Specificity =
TN

TN + FP
(A17)

• Area under the curve (AUC)

AUC =
∫ 1

0
TPR(FPR) d(FPR) (A18)

where TPR is the true positive rate, and FPR is the false positive rate.
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