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Abstract: Existing etch endpoint detection (EPD) methods, primarily based on single wavelengths,
have limitations, such as low signal-to-noise ratios and the inability to consider the long-term
dependencies of time series data. To address these issues, this study proposes a context of time series
data using long short-term memory (LSTM), a kind of recurrent neural network (RNN). The proposed
method is based on the time series data collected through optical emission spectroscopy (OES) data
during the SiO; etching process. After training the LSTM model, the proposed method demonstrated
the ability to detect the etch endpoint more accurately than existing methods by considering the
entire time series. The LSTM model achieved an accuracy of 97.1% in a given condition, which shows
that considering the flow and context of time series data can significantly reduce the false detection
rate. To improve the performance of the proposed LSTM model, we created an attention-based LSTM
model and confirmed that the model accuracy is 98.2%, and the performance is improved compared
to that of the existing LSTM model.

Keywords: plasma etch; endpoint detection; machine learning

1. Introduction

Over the past decade, 3D-NAND flash memory technology has rapidly enhanced
the bit storage density per unit area by increasing the number of vertically stacked gate
layers. In recent years, the semiconductor industry has witnessed a significant increase
in demand for high-capacity storage devices, such as 3D-NAND flash memory, driven
by the rapid growth of various sectors, including cloud services and mobile devices. The
latest generation of 3D-NAND features more than 200 layers of vertical gate stacks. To
manufacture such a highly integrated 3D-NAND flash memory, high-aspect-ratio (HAR)
etching technology is essential, enabling the precise etching of numerous layers, ranging in
the several hundreds [1,2]. In these structures, accurately controlling the etching depth and
precisely detecting the etching endpoint for each layer has become increasingly important.
Consequently, reliable etch endpoint detection (EPD) techniques are crucial. EPD plays a
vital role in determining the yield and quality of the etching process, and its significance
continues to grow [3].

Accurate etch endpoint detection plays a crucial role in improving manufacturing
process yield and reducing process failure rates. In the plasma etching process, the intensity
of the wavelength corresponding to the thin-film layer to be etched is monitored, and
the change in intensity provides a real-time view of the etching progress. The principle
of EPD is that when the etched material is fully reacted, and no more by-products are
produced, a change in the intensity of the corresponding wavelengths is detected. Various
EPD techniques have been developed in recent years [4,5]. However, several limitations
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still exist. Traditional EPD algorithms have primarily relied on signal changes at a single
wavelength [6-8]. Such single-wavelength-based EPD methods are vulnerable to noise and
signal fluctuations, which can lead to a low signal-to-noise ratio [9,10]. This may pose a
challenge to the precision of endpoint detection.

While recent studies have focused on improving EPD performance by employing
multiple wavelengths [11,12], most EPD algorithms still rely on signal patterns at specific
time points for decision-making. This reliance on instantaneous signal patterns makes
it challenging to predict the EPD moment in advance or accurately detect the endpoint,
as the algorithms mainly focus on the signal change at the exact EPD time. On the other
hand, the optical emission spectroscopy (OES) time series data measured during the entire
etching process contains information spanning from the beginning to the end of the etching
procedure. However, existing EPD algorithms often struggle to fully account for the
temporal dependencies embedded within these time series data, lacking consideration for
the comprehensive flow and context of the data. As a result, there is a pressing need for
data analysis and decision-making approaches that effectively incorporate these long-term
temporal dependencies.

In recent years, efforts have been made to address these issues by leveraging deep
learning techniques [13-16]. Kim et al. utilized a convolutional neural network (CNN)
based on OES data to detect the etch endpoint [17], but it has a limitation in directly
modeling the temporal dependencies of time series data, as the authors transformed
the OES data into a two-dimensional format to be used as input for the CNN. Hwang
et al. proposed a method for detecting anomalies in time series data from semiconductor
manufacturing processes using a long short-term memory (LSTM) autoencoder [18]. This
suggests that the LSTM can be effectively utilized for analyzing semiconductor process data,
but there is still a lack of direct application to EPD. Existing EPD studies have primarily
focused on endpoint detection itself, with a tendency to rely on signal patterns at specific
time points. The LSTM is a type of recurrent neural network (RNN) designed to address the
long-term dependency problem [19-22]. The LSTM can effectively learn long-term patterns
in time series data through its cell state and multiple gates [23-25]. These characteristics of
the LSTM make it suitable for analyzing time series data, such as the intensity values of
wavelengths obtained through OES sensors.

In this study, we propose an EPD method that considers the entire flow and context
of time series data using the LSTM. Through the LSTM, we can comprehensively analyze
the change patterns of OES signals from the past to the present, considering the temporal
dependencies and interactions between multiple wavelengths. The goal is to improve EPD
performance by reflecting the context of the entire time series rather than simply looking at
the signal at a specific time point. By doing so, we expect to increase accuracy and reduce
the false detection rate.

2. Experiment

Experiments were conducted using an in-house modified commercial 300 mm capac-
itive coupled plasma (CCP) etch system operating at frequencies of 2 MHz, 13.56 MHz,
and 100 MHz, as depicted in Figure 1. A commercial 300 mm high-end manufacturing
etch chamber, in-house modified with triple-RF power systems for the purpose of plasma
equipment intelligence, located in the Plasma E.I. Convergence Research Center in Korea
Institute of Fusion Energy, was employed for the experiment. The triple-RF power systems
consist of a 100 MHz VHF source power in the upper electrode and a combination of
13.56 MHz and 2 MHz LF bias power in the lower electrode. The upper electrode utilizes a
very-high-frequency (VHF) power source to control the ion flux incident on the substrate,
while the lower electrode employs a low-frequency (LF) power source to control the ion
energy incident on the substrate. For the etching target, SiO;/Si3sN4/Si coupon wafers
(50 mm x 50 mm) were etched using a mixture of CF4, O,, and Ar gasses according to the
recipe provided in Table 1.
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Figure 1. A schematic description of the 300 mm CCP-type dielectric etcher, called the data acquisition
oxide etch (DaO) system, located in the Korea Research Institute of Fusion Energy, Korea.

Table 1. Oxide etch recipe.

RF Power (Watt) Gas (sccm)
Pressure (mTorr) Time (s)
2 MHz 13.56 MHz 100 MHz CF, (o)) Ar
20 500 800 240 45 60 90

We acquired real-time OES data by connecting an OES sensor to the viewport sidewall
of the etch chamber. Using the non-invasive OES sensor, we measured the wavelength
and intensity of the light emitted from the plasma. The measurement range spanned from
200 nm to 1100 nm, and the wavelength information was obtained at 100 ms intervals.
OES is commonly used to understand the energy state transitions of radicals, reactive ions,
and atoms within a plasma chamber [26]. In this experiment, the emission wavelength
intensities of radicals and reactive ions in the plasma were measured and identified.

When etching SiO; using a CF4/O;/ Ar plasma, the main chemical species generated
through chemical and physical reactions are the reaction products in the surface reaction
mechanism. The surface reactions can be simplified as SiO, + CFy — SiF, +CO, + - - -
and Si3Ny + CFy — SiF, + CO, + - - - . The OES wavelength features selected in this pro-
cess were the peaks related to the reactants F, O, and C, and the peaks related to the reaction
products in the reaction surface mechanism, CO, CN, and SiF. The wavelengths used can
be found in Table 2.

Table 2. Information about the wavelengths used for EPD.

Species Wavelength (nm)
SiF 336, 440
CcO 482, 560, 561
CN 386, 387
F 685, 677,703
G 516

@) 777, 844
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All coupon wafers were etched for a pre-determined fixed time. To ensure the complete
etching of the SiO; layer, over-etching was performed. During this process, it was confirmed
through ellipsometry that approximately 200 nm of the Si3Ny layer was etched. This
was carried out to verify that the SiO, layer was fully etched. Therefore, the optical
emission signals collected through OES serve as time series data spanning the entire
etching process. By using these data as input for the LSTM model, the model can learn
long-term dependencies and detect the etch endpoint.

3. LSTM Method

The LSTM is a model designed to address the limitations of the RNN, specifically the
problems of vanishing gradients and exploding gradients. The gradient information in the
LSTM is more effective in maintaining and utilizing information over longer sequences
compared to the RNN [27].

As shown in Figure 2, the LSTM consists of three gates: the input gate, forget gate, and
output gate. Each gate has the following roles. The input gate determines how to update
the internal state based on the current state and the previous hidden state [28]. It decides
what information should be stored in the cell state. First, it determines what information
to store from the current input and the previous hidden state through a sigmoid layer.
Then, the hyperbolic tangent (tanh) layer generates a new candidate vector. The forget gate
determines what information should be forgotten and to what extent, from the previous
cell state, by passing it through a sigmoid layer. The output gate determines how much
of the cell state should be reflected in the hidden state and decides the hidden state to be
passed to the next time step of the LSTM [28].

® 0 0§
Lebst

- %

Figure 2. LSTM diagram [29].

The LSTM controls the cell state using three gates. The cell state contains all the
core information, and the hidden state is processed whenever necessary to propagate
information in a form that exposes only the required information for each time step. The
equations for the LSTM are as follows:

fr = oW+ [he—1,xi] + bp), (1)
it = o (Wi [hy—1,x:] + bi), @)
Ci = tanh(We-[ly_1.x] + Do), 3)
Cr= fr-Ciq +ir: 8 t 4)

ot = o (Wo-[hy—1,x¢] + bo), 5)

hy = 0;-tanh(Cy) (6)
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In these equations, fi, it, and o; represent the forget, input, and output gates, respec-
tively. The function o denotes the sigmoid function. The matrices Wf, W;, W, and W, are
the weight matrices for the corresponding gates, and the vectors by, b;, b, and b, are the
bias vectors for the corresponding gates. ;1 represents the hidden state of the previous

—

time step, x; is the input at the current time step, C; denotes the candidate cell state, C;_; is
the cell state from the previous time step, and C; is the cell state at the current time step.
These are all used to update and output the internal state of the LSTM.

A. Data preprocessing

In this study, we conducted etching experiments and acquired a total of 10 datasets.
Each acquired dataset consisted of approximately 20,000 OES intensity values. The inten-
sity values measured through OES can vary depending on the environment and sensor
settings. Therefore, the preprocessing stage is essential to enhance the performance of
the LSTM model. In this stage, the OES sensor data with different intensity values were
preprocessed by normalizing between 0 and 1 using MinMaxScaler to adjust them to a
consistent range. The algorithm proposed for EPD utilized the OES peak intensity data,
which effectively reflect the characteristics of the etch endpoint, as shown in Figure 3, along
with the aforementioned wavelengths. The preprocessed data were used as input data to
detect the etch endpoint. The labeling results showed that the ratio of class 0 to class 1
was approximately 6:4, indicating a relatively balanced dataset. The dataset was divided
into training and validation sets with an 8:2 ratio, which is a commonly used split ratio in
machine learning.
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g “
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Figure 3. Example of OES data with selected peaks, corresponding to chemical species in the plasma.

B. LSTM modeling and results

In this study, to detect the etch endpoint of SiO;, we designed the LSTM modeling,
as shown in Figure 4, considering the entire flow and context of the time series data.
The modeled LSTM consists of three stacked layers, each performing a unique role. The
layer configuration was determined through an iterative process, where we repeatedly
evaluated performance to identify the optimal structure. The modeled LSTM consists of
three stacked layers, each performing a unique role. The first layer contains 64 cells. The
second layer includes 32 cells to remember the values from the first layer. In the third
layer, a fully connected layer and the rectified linear unit (ReLU) activation function are
used to accurately detect the etch endpoint based on the remembered state information.
Finally, by using the sigmoid activation function, the output values are restricted between
0 and 1, enabling the identification of the situations before and after the etch endpoint.
This configuration provides an optimal balance between performance and training speed
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during the model design process. The LSTM model structure and parameter values can be
found in Table 3.

LSTM Layer
(§4cel) LSTM Layer
(32 cell)
LSTM
4 LSTM Fully Connected
{5 Layer
l Sigmoid
Z, -~
|, LST™ l 1

E LSTM ‘ /" 1+e>* \Classiﬁcation
. t \ /

: AN 0/1
|, LsT™ : 1 /
fo Z, L Tre=

| l

LSTM FC Output =16

——p t3
Hidden units

Figure 4. LSTM neural network schematic.

Table 3. LSTM model structure and parameter values.

Layer (Type) Output Shape Parameter No.

Istm (LSTM) (None, 10, 64) 18,688
Istm_1 (LSTM) (None, 32) 12,416
dense (Dense) (None, 16) 528
dense_1 (Dense) (None, 1) 17

The LSTM model training process is illustrated in Figure 5. During the training of the
LSTM model, the wavelength intensity values from Table 2 were bundled in 0.5 s intervals
and input into the model. This allows the LSTM to determine the occurrence of EPD based
on the intensity changes over a 0.5 s period, distinguishing between the situations before
and after the endpoint. The parameters set during the training process were as follows: the
learning rate was 0.001, the number of training iterations was 200, and the batch size was 32.
To reduce the training time, the learning process was set to stop if the same loss is obtained
for 10 consecutive iterations. With these conditions, the model achieved an accuracy of
97.1% upon completion of the training. To evaluate the generalization ability of the trained
model, we performed a 10-fold cross-validation and found that the LSTM model was able
to maintain a stable predictive performance, with an average accuracy of 97.1%, even on
data not used for training.

As shown in Figure 6, the performance of the model was evaluated using a 10-fold
cross-validation and the loss and accuracy graphs of the model. The loss graph reveals that
the training loss decreases rapidly in the initial stages but gradually becomes more gradual.
This indicates that the model is being optimized through learning. The validation loss also
exhibits a similar trend, and no signs of overfitting were observed. As shown in Table 4,
when evaluating the accuracy using test data, the model achieved a 97.1% accuracy in
identifying EPD, with a false detection rate of approximately 1%. Consequently, the LSTM
model demonstrated high accuracy by effectively learning the temporal dependencies of
the time series data.
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Figure 6. Modeling performance evaluation: (a) loss graph of LSTM-based model; (b) accuracy of
LSTM-based model.
Table 4. LSTM model confusion matrix metrics.
Precision Recall F1 Score
Without EPD 0.95 0.99 0.97
With EPD 0.99 0.96 0.97
Accuracy 0.97

The accuracy of the proposed LSTM model was evaluated by comparing the predicted
results with the actual results. To compare the performance of the LSTM-based model,
support vector machine (SVM), Random Forest, and Adaboost models, which are models
that do not consider temporal dependencies, were used as etch endpoint detectors. The
SVM classifier demonstrated an accuracy of 93.6%, while RandomForest showed an accu-
racy of 94.8%. AdaBoost exhibited an accuracy of 92%. Consequently, the proposed LSTM
model outperformed the other three models, confirming that a model considering temporal
dependencies is superior. These model accuracy results are presented in Table 5.
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Table 5. Machine learning model accuracy.

Model Accuracy (%)
SVM 93.6
Random Forest 94.8
AdaBoost 92

On the other hand, deep learning models such as the Bidirectional LSTM (BiLSTM)
and vanilla RNN were used to compare the performance of the LSTM model. BiLSTM
showed an accuracy of 93.1%, while vanilla RNN demonstrated an accuracy of 96.4%. As
a result, the proposed LSTM model achieved the highest performance, and these model
accuracy results are presented in Table 6.

Table 6. Deep learning model accuracy.

Model Accuracy (%)
BiLSTM 93.1
vanilla RNN 96.4
LSTM 97.1
Attention-based LSTM 98.2

To improve the LSTM model, an attention layer was added to the proposed LSTM
model. This was carried out to more effectively capture the intensity change characteristics
of the OES data as the etching process progresses, thereby enhancing the performance of
the EPD model. The acquired OES data are characterized by a gradual change in intensity
as the etching process progresses, with different intensity widths at certain critical points
where the intensity changes in unit time. To effectively capture these change features, we
used an attention mechanism.

The attention mechanism can focus on points in a sequence of OES data that have
different intensity changes. It emphasizes the important parts of the sequence by assigning
higher weights to points where the change in intensity represents a change from the
previous state. During the learning process of the model, it evaluates the importance of
each element of the input sequence and helps to ensure that important information is
not lost [30]. The attention-based LSTM model was designed as shown in Figure 7. It
consists of a basic LSTM layer that processes the input data, followed by an attention
layer that evaluates the importance of each sequence. Finally, a fully connected layer is
added to receive the output from the attention layer and generate the final predicted values.
This ultimately produces an output that identifies the situations before and after the etch
endpoint. The structure and parameter values of the attention-based LSTM model can be
found in Table 7.

Table 7. Attention-based LSTM model structure and parameter values.

Layer (Type) Output Shape Parameter No.
Istm (LSTM) (None, 10, 64) 18,688
Istm_1 (LSTM) (None, 10, 32) 12,416
Attention (Attention) (None, 32) 1088
dense (Dense) (None, 16) 528
dense_1 (Dense) (None, 1) 17

The training process for the attention-based LSTM model is the same as that of the
LSTM model, with the only difference being the addition of the attention layer. When the
training of the attention-based LSTM model was completed, it achieved an accuracy of
approximately 98.2%. The performance of the model was evaluated using 10-fold cross-
validation and the loss and accuracy graphs of the model. The results showed that, similar
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to the LSTM model, the validation loss exhibited a similar trend, and no signs of overfitting
were observed.

LSTM Layer
(64 cell) LSTM Layer
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LSTM Attention
— 3 Taver Fully Connected
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l 1 Sigmoid
l A o~ 1L
LSTM
\ -
—— - N A lte ™ Classification
2 LSTM

0/1

— LStZM : sz, / 1+e*

FC Output =16

Hidden units
Figure 7. Attention-based LSTM neural network schematic.

As shown in Table 8, the attention-based LSTM model improved the etch endpoint
detection performance by approximately 1% and reduced the false detection rate (F1 score)
by approximately 1% compared to the LSTM model.

Table 8. Attention-based LSTM model confusion matrix metrics.

Precision Recall F1 Score
Without EPD 0.98 0.98 0.98
With EPD 0.98 0.98 0.98
Accuracy 0.98

4. Conclusions

In this study, we proposed an LSTM-based method for detecting the endpoint in
etching processes. Unlike traditional approaches that rely on signal patterns at specific
time points, this method demonstrated its effectiveness by considering all the information
from the beginning to the end of the etching process contained in the entire OES time
series data, and the LSTM model achieved a high accuracy of 97.1%. The performance
of the model was further improved by applying the attention mechanism to the LSTM
model. The attention mechanism assigns higher weights to points in the time series data
where the intensity change differs from the previous state, allowing the model to focus
on the critical information for etch endpoint detection. This resulted in an approximately
1% performance improvement compared to the LSTM model, with the attention-based
LSTM model ultimately achieving a high accuracy of 98.2%. The proposed attention-based
LSTM model overcomes the limitations of the existing EPD algorithms and addresses the
issues of traditional methods that primarily focus on signal changes only at the precise EPD
moment. By utilizing the temporal dependencies inherent in the entire OES time series
data, the proposed model not only accurately identifies the EPD moment but also captures
the precursory symptoms of EPD occurrence, enhancing the reliability of the system. In
addition to improving endpoint detection accuracy, the proposed method also reduced the
false detection rate, which can negatively impact yield. This improvement can contribute to
enhanced EPD accuracy in high-aspect-ratio etching processes. Furthermore, the proposed
LSTM-based method can be applied not only to the etching process but also to various
stages of the semiconductor manufacturing process, such as cleaning processes, process
monitoring, and anomaly detection. This can be utilized in various fields where time
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series data analysis plays a crucial role and is expected to contribute to the technological
advancement of semiconductor manufacturing processes.
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