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Abstract: Multiple uncertainties from source–load and energy conversion significantly impact the
real-time dispatch of an island integrated energy system (IIES). This paper addresses the day-ahead
scheduling problems of IIES under these conditions, aiming to minimize daily economic costs and
maximize the output of renewable energies. We introduce an innovative algorithm for Interval
Constrained Multi-objective Optimization Problems (ICMOPs), which incorporates meta-learning
and an improved Proximal Policy Optimization with Clipped Objective (PPO-CLIP) approach. This
algorithm fills a notable gap in the application of DRL to complex ICMOPs within the field. Initially,
the multi-objective problem is decomposed into several single-objective problems using a uniform
weight decomposition method. A meta-model trained via meta-learning enables fine-tuning to adapt
solutions for subsidiary problems once the initial training is complete. Additionally, we enhance
the PPO-CLIP framework with a novel strategy that integrates probability shifts and Generalized
Advantage Estimation (GAE). In the final stage of scheduling plan selection, a technique for identi-
fying interval turning points is employed to choose the optimal plan from the Pareto solution set.
The results demonstrate that the method not only secures excellent scheduling solutions in complex
environments through its robust generalization capabilities but also shows significant improvements
over interval-constrained multi-objective evolutionary algorithms, such as IP-MOEA, ICMOABC,
and IMOMA-II, across multiple multi-objective evaluation metrics including hypervolume (HV),
runtime, and uncertainty.

Keywords: island integrated energy system; interval constrained multi-objective optimization problems;
mate-learning; generalized advantage estimation; deep reinforcement learning

1. Introduction

As environmental concerns escalate and energy resources dwindle, countries around
the world are proactively pushing for energy reform to lessen their reliance on traditional
energy sources like fossil fuels [1,2]. An IIES enhances this effort by blending diverse
renewable and conventional energy sources [3–6]. These systems employ advanced tech-
nologies for energy conversion, storage, and smart management to create an efficient,
reliable, and sustainable supply chain. An IIES manages the scheduling of wind, solar,
and wave energy to fulfill the needs for electricity, cooling, heating, and water supply. The
primary challenges faced by IIESs in daily scheduling plans include the uncertainty and
variability of renewable energy sources, inaccuracies in load forecasting, limited energy
storage capacity, and complex energy management and scheduling strategies.

To manage these uncertainties, several optimization strategies have been explored,
including robust [7], stochastic [8,9], and interval optimization [10,11]. Robust optimization
ensures stability by planning for worst-case scenarios, leading to potentially conservative
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and inefficient resource utilization. Stochastic optimization, which relies on accurate proba-
bility distributions and extensive scenario analysis, increases model accuracy but demands
significant computational resources and accurate historical data. Interval optimization
offers a middle ground by directly setting ranges for uncertainties, thus simplifying the
model at lower computational costs, though its accuracy highly depends on how these
ranges are set. Given the multiple uncertainties IIESs face, such as extreme weather, un-
stable energy supply, and variable demands, interval optimization emerges as a flexible
approach to tackle these challenges. This paper, therefore, explores the application of inter-
val optimization to the multi-objective scheduling problems of IIES, identified as ICMOP.

The approaches currently available for tackling interval-constrained multi-objective
optimization problems remain limited [12–18]. Chen [17] et al. introduced a novel NSGA-II
algorithm for ICMOPs, which employs interval possibility and interval crowding distance
to define interval dominance relationships. Meanwhile, Zeng [18–20] et al. developed
an individual selection strategy with interval constraints to tackle the optimization con-
figuration and scheduling of a renewable energy system with five substations. Yu [21]
et al. developed a penalty function-based interval-constrained multi-objective optimization
algorithm, which effectively addresses interval constraints in uncertain scenarios using
interval analysis and innovative penalty functions. However, the computational complexity
of ICMOEA is considerable, especially in large-scale implementations, requiring extensive
computational resources and time.

In the study of IIES, most research only considers the uncertainties of renewable
energy output and load demand. However, if the uncertainties in the conversion efficiency
of various energy-side devices are also taken into account, this would significantly increase
the difficulty of real-time scheduling [22]. Previous research methodologies have primar-
ily focused on cost minimization, often overlooking these uncertainties, thereby limiting
the practical application of the models. Furthermore, although ICMOPs have been exten-
sively discussed theoretically, existing multi-objective evolutionary algorithms demonstrate
considerable deficiencies in processing speed and generalization capability. Specifically,
methods based on DRL, though widely applied in single-objective optimization, are still in
their nascent stages in multi-objective optimization research, with interval multi-objective
optimization representing a particularly challenging branch that has yet to be explored in
the context of IIES [23].

In light of these challenges, this study introduces an MOMAML-PPO algorithm, which
integrates meta-learning with an enhanced version of PPO-CLIP [24], aiming to bridge this
research gap. The primary objective of this paper is to address the real-time scheduling
issues of IIES, with specific innovations including the following: (1) IIES model architecture:
Utilizing prediction errors and confidence interval estimation, this study models the uncer-
tainties of sources, energy conversions, and loads with interval descriptions. The model
aims to minimize economic costs and maximize renewable energy output for an island’s
integrated energy system. (2) Introduction of meta-learning: By employing meta-learning
techniques to train a meta-model, it can, after solving one sub-model, adapt to other mod-
els’ solutions through mere fine-tuning [25]. The incorporation of meta-learning not only
enhances the model’s generalizability but also significantly reduces the transition time be-
tween different models, thereby improving overall solution efficiency. (3) Enhancements to
PPO-CLIP: By integrating probability shifts and Generalized Advantage Estimation (GAE),
the stability and exploratory capabilities of policy updates are strengthened, particularly in
the data-constrained environments of IIES. (4) Precision selection technique for solutions:
Utilizing interval breakpoint identification techniques, this strategy sifts through the Pareto
solution set to select the optimal scheduling plans, thereby further enhancing the economic
efficiency and reliability of the final scheduling solutions.
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2. An Optimal Scheduling Model for IIES Based on Multiple Uncertainties
2.1. Previous Research

In the challenging landscape of integrated energy system (IES) optimization and
scheduling, multifaceted uncertainties, such as fluctuations in sources and loads, pro-
foundly impact system stability. Extant research has centered on these uncertainties,
exploring resolution through diverse mathematical models and optimization strategies. For
instance, Hu [26] employed interval planning theory and stochastic analysis to construct a
planning model for an energy system with multiple uncertainties, leveraging fuzzy sets
and feasibility analysis. This model, aiming at economic minimization, achieved optimal
system scheduling, although its applicability remains limited to specific scenarios. Mean-
while, Bai [27] developed a two-layer robust optimization scheduling model based on
extreme scenarios of wind power output. This model uses a column constraint generation
algorithm for iterative solutions, effectively addressing the regulation costs induced by
wind power uncertainties.

On another note, Zhang [28] targeted the uncertainties of cold, heat, and electricity
loads using Monte Carlo simulations to generate uncertain parameter scenarios, subse-
quently reducing the number of scenarios through reverse scenario reduction techniques for
long-term planning. Despite these efforts, scenario generation techniques have not fully in-
tegrated system scheduling with load uncertainties. Furthermore, Zheng [29] introduced an
interval multi-objective scheduling model that transforms into a deterministic optimization
problem via interval ordering relations and possibility methods, solved using an improved
non-dominated sorting genetic algorithm. These studies collectively reveal that current IES
optimization scheduling heavily relies on the modeling or predictive accuracy of renewable
sources and load uncertainties, inadequately addressing equipment conversion efficiency
and the complexities of real-world scenarios.

With the increasing scale of problems, traditional evolutionary learning methods strug-
gle to ensure the rapid response required for real-time scheduling. In this context, DRL has
emerged as a novel solution. For example, Wang [30] applied scenario analysis to model
the stochasticity of wind turbines and photovoltaics, utilizing Generative Adversarial Net-
works to learn the intermittent characteristics of renewable energy outputs, thus producing
more realistic typical scenarios. Yan [31] implemented the soft actor–critic (SAC) algorithm,
focusing on real-time electricity pricing and the remaining battery capacity of electric
vehicles to develop intelligent charging strategies. Wu [32] introduced a phased training
approach using a Double Deep Q-Network (D3QN) [33] in the real-time scheduling model
of IES, effectively mitigating the issue of oversized action spaces in traditional RL methods.

Currently, DRL is primarily applied to straightforward scheduling issues in island-
based integrated energy systems, with scarce research extending it to the relatively complex
problems of ICMOPs [34,35]. To address this gap, this study proposes modeling the
operational scheduling problem of island-integrated energy systems as ICMOPs, solved
using the MOMAML-PPO method. This approach is anticipated to comprehensively handle
multiple uncertainties while ensuring the minimization of costs and the maximization of
renewable energy outputs.

2.2. IIES Architecture

This paper utilizes a structure for the IIES, as illustrated in Figure 1 [36–38]. The
architecture primarily encompasses the following components: renewable energy genera-
tion using wind, photovoltaic, and wave energy; an energy conversion section, including
electrolytic cells (ECs), hydrogen tanks (HTs), hydrogen fuel cells (HFCs), electric boilers
(EBs), electric refrigerators (ERs), adsorption refrigerators (ARs), water source heat pumps
(WSHPs), and seawater desalination systems (SDs); and the user side, which covers four
types of energy loads: electrical, cooling, heating, and water.
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In this system, wind, photovoltaic, and wave energies are captured and converted into
electrical energy. Some of the electrical energy is transformed into hydrogen through the
EC and stored and then reconverted into electricity by the HFC. The EB and WSHP are
used to meet heating demands, the ER and AR fulfill cooling needs, and the SD system
addresses water load requirements.

In this study, we addressed the uncertainties stemming from renewable energy output,
diverse load demands, and the energy conversion efficiencies of various coupled devices.
To predict the output of renewable energy and load forecasts, we employ a method of error
feedback and confidence intervals [36,37]. The output and load forecasts are described
as interval numbers, using historical data’s sample mean and variance to calculate a 95%
confidence interval of the overall mean [38,39]. This estimation helps better account for
the potential fluctuations in actual renewable energy output and loads, considering the
uncertainties more effectively. In terms of energy conversion, which involves equipment
like EC, HT, HFC, EB, ER, AR, WSHP, and SD Units, we consider uncertainties such as
energy conversion efficiency to build corresponding uncertainty models, ensuring stability
and reliability in the energy conversion process.

2.2.1. Electrical Load

In the study of power output predictions from wind, solar, and wave energy genera-
tion, the outputs are influenced by variables, such as wind speed, temperature, and other
environmental factors, all of which introduce uncertainties. To represent these uncertainties,
we use interval numbers to express the predicted output of each renewable energy source
during specific intervals. These intervals include predictions based on historical data and
adjustments for forecast errors and environmental noise. Specifically, the output interval
for wind energy can be represented as follows:

[Pwind(t)]
± =

[
Pwind(t)− (MSEwind(t) + εwind(t)),
Pwind(t) + (MSEwind(t) + εwind(t))

]
. (1)

where [Pwind(t)]
± represents the wind power output interval at time t. Pwind(t) denotes the

wind power output predicted based on historical data, MSEwind(t) is the mean squared
error at time t, and εwind(t) represents the random perturbation due to environmental
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factors at time t. The output intervals for solar and wave energy are defined similarly and,
therefore, not repeated here.

The electrolysis of water into hydrogen using electricity not only stores energy but also
addresses the intermittency and uncertainties of renewable sources. However, the efficiency
of the water electrolysis process is influenced by various factors, such as ambient tempera-
ture and system external conditions, which induce uncertainties in the hydrogen production
rate. To quantify this process, we have established the following mathematical model:

[
VH2(t)

]±
=

τH2 PH2(t)ρH2

4MH2

[
νH2

]± . (2)

where
[
VH2(t)

]± represents the interval value of the hydrogen volume produced by the
EC at time t, PH2(t) is the electrical power consumed by the EC during that period, τH2 is
the conversion coefficient of the EC, ρH2 is the density of hydrogen,

[
νH2

]± is the interval
value for the rate of hydrogen production by water electrolysis, and MH2 is the molar mass
of hydrogen.

The storage of hydrogen is also subject to uncertainties, and its dynamic changes can
be represented by the following model:[

SH2(t)
]±

=
[
SH2,in(t)

]± − [SH2,out(t)
]±

+
[
SH2(t− 1)

]±. (3)

where
[
SH2(t)

]± represents the interval value of the hydrogen storage amount at time t,[
SH2,in(t)

]± and
[
SH2,out(t)

]± represent the intervals of hydrogen input and output during
that period, respectively,

[
SH2(t− 1)

]
represents the interval value of hydrogen storage

from the previous period, with t− 1 serving as the starting baseline for the current period.
For HFC, which operate as the reverse process of water electrolysis using hydrogen

as fuel to generate electricity, the efficiency of HFC also possesses uncertainties. The
corresponding mathematical model is expressed as follows:[

Ph f (t)
]±

=
[
ηh f

]±
Vh f (t)Hhv. (4)

where
[

Ph f (t)
]±

represents the interval value of electrical power generated by the hydrogen

fuel cell at time t,
[
ηh f

]±
is the efficiency interval of the hydrogen fuel cell, Vh f (t) is the

volume of hydrogen consumed by the fuel cell during that period, and Hhv is the higher
heating value of hydrogen.

2.2.2. Cooling Load

In the performance study of absorption refrigerators, the primary issue we encounter
is the uncertainty of the cooling coefficient. To quantify this uncertainty, the following
mathematical model is established:

At any given time t, the cooling power CAC(t) of the absorption refrigerator can
be expressed as the product of the consumed thermal power HAC(t) and the cooling
coefficient COPac, where the cooling coefficient has a certain range of uncertainty. The
model is specifically represented as follows:

[Cac(t)]
± = Hac(t)[COPac]

±. (5)

Further, changes in the cooling power affect the freshwater usage WAC(t) of the
refrigerator, which also exhibits uncertainty and can be estimated through the product of
the water consumption rate ηAC and the cooling power:

[Wac(t)]
± = [Cac(t)]

±[ηac]
±. (6)
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where [CAC(t)]
±, HAC(t), and [WAC(t)]

± represent the interval values of the cooling power,
the consumed thermal power, and the freshwater usage of the absorption refrigerator at
time t, respectively. [CAC(t)]

± and [ηAC]
± indicate the interval values of the cooling

coefficient and the water consumption rate, respectively.

2.2.3. Heating Load

In analyzing the thermal energy conversion processes of WSHP and EB, it is crucial to
account for the uncertainties introduced by environmental factors to precisely assess the
performance fluctuations of these devices under varying operating conditions. The model
incorporates the conversion of high-quality electrical energy into high-quality thermal
energy during any given period t. The model is represented as follows:[

Pwshp,h(t)
]±

= Pwshp(t)
[
ηwshp,h

]±
, (7)

[
Wwshp(t)

]±
= Pwshp(t)

[
ηwshp

]±
. (8)

where
[

Pwshp,h(t)
]±

and
[
Wwshp(t)

]±
represent the interval values of the heating power

and the freshwater usage of the water source heat pump at time t. Pwshp(t) indicates
the heating power of the water source heat pump during period t, including consumed

high-quality electrical energy and the interval values of freshwater usage.
[
ηwshp,h

]±
and

[
ηwshp

]±
are the interval values of the heating efficiency coefficient and the water

consumption rate, respectively. Considering the uncertainty in the heating efficiency of EB,
the uncertainty mathematical model is established as follows:

[Peb,h(t)]
± = Peb(t)[ηeb]

±. (9)

where [Peb,h(t)]
± represents the heating power interval value of the electric boiler during

period t, and [ηeb]
± indicates the interval value of the heating efficiency of the EB.

2.2.4. Water Load

In response to the scarcity of freshwater resources in island regions, seawater de-
salination units provide an effective solution. These units convert seawater into potable
freshwater through the desalination process, which is critical for the survival and develop-
ment of island communities. However, the water production rate during the desalination
process is uncertain, necessitating precise mathematical modeling for its description and
management. Below is the mathematical model for a seawater desalination unit considering
the uncertainty of the water production rate:

[Wdu,w(t)]
± = Pdu(t)[ηdu]

±. (10)

where [Wdu,w(t)]
± represents the interval values of the freshwater volume produced by the

seawater desalination unit during period t, Pdu(t) denotes the electrical power consumed
by the desalination unit in the same period, and [ηdu]

± indicates the interval values of the
water production rate of the desalination unit.

2.3. Objective Function

For the proposed integrated energy system model of the island, this study addresses
the optimization scheduling problem of the types and numbers of renewable energy output
devices over a 24 h cycle with a time step of 1 h. The objective functions aim to minimize
the economic cost within the cycle and maximize the renewable energy output.
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2.3.1. Economic Cost Minimization

The total system cost interval value for a scheduling period [F1]
± is composed of the

maintenance cost interval value [Fmc]
± and the variable cost interval value [Fcc]

±:

min[F1]
± = [Fmc]

± + [Fcc]
±. (11)

The maintenance cost interval for time t, denoted as [Fmc]
±, is represented as follows:

[Fmc]
± =

T

∑
t=1

∑
i

∑
j

(
xi,j(t)Ci,j

)
+

T

∑
t=1

[Peov]
±Ceov. (12)

where xi,j(t) represents the number of operational units of the jth specification of the ith type
of energy resource at time t, and Ci,j represents the maintenance cost of the jth specification
of the ith type of energy resource. ∑T

t=1[Peov]
± represents the interval value of the unit

output during period t, and Ceov denotes the unit maintenance cost per period t.
The variable cost interval for time t, denoted as [Fcc(t)]

±, is represented as follows:

[Fcc(t)]
± =

[
Pcwp(t)

]±Cpucpc. (13)

where
[
Pcwp(t)

]± represents the interval value of the variable power for period t, and
Cpucpc indicates the unit cost of variable charges.

2.3.2. Maximization of Renewable Energy Output

The interval value of renewable energy output for a scheduling period [F2]
±:

max[F2]
± =

T

∑
t=1

∑
i

∑
j

(
Ni,j
[
Pi,j(t)

]±). (14)

where Ni,j represents the number of units of each specification of renewable energy sources

during period t, and
[

Pi,j(t)
±
]

indicates the interval value of the output for each renewable
energy device during period t.

2.4. Constraint Function

The constraints of the uncertainty-based multi-objective optimization scheduling
model for the island’s integrated energy system ensure that the system operates safely,
reliably, and economically while finding an optimal balance between multiple objectives
(minimizing economic costs and maximizing renewable energy output).

2.4.1. Integrated Energy System Power Constraints

Power balance in the integrated energy system is crucial for stable operation. The
output of various energy sources must meet the following balance constraints:

[Qelectric]
± =

(
[Pwater(t)]

± + [Psolar(t)]
± + [Pwave(t)]

±
)(

[Peb(t)]
± + [Pec(t)]

± + [Pdu(t)]
± +

[
Pwshp(t)

]±)
[

Qcooling

]±
= [Cec(t)]

± + [Cac(t)]
±[

Qheating

]±
=
[

Pwshp,h(t)
]±

+ [Peb,h(t)]
± − [Hac,h(t)]

±

[Qwater]
± = [Wdu,w(t)]

± −
[
Wwshp(t)

]±
− [Wac(t)]

±

. (15)

where [Qelectric]
±,
[

Qheating

]±
,
[

Qheating

]±
, and [Qwater]

± represent the electric, cooling,
heating, and water loads for period t, respectively.
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2.4.2. Renewable Energy Output Constraints

The output of renewable energies is constrained by upper and lower limits to ensure
the stability and reliable operation of the system. Specifically, the outputs for wind, solar,
and wave energy at any time tt are subjected to the following constraints:

0 ≤ [Pwind(t)]
± ≤ Pwind,max(t), (16)

0 ≤ [Psolar(t)]
± ≤ Psolar,max(t), (17)

0 ≤ [Pwave(t)]
± ≤ Pwave,max(t). (18)

where Pwind,max(t), Psolar,max(t), and Pwave,max(t), respectively, represent the maximum
permissible outputs for wind, solar, and wave energy sources for period t. These constraints
help maintain balance and prevent overloading of the system, ensuring optimal and
sustainable operation.

2.4.3. Renewable Energy Units Count Constraint

To appropriately allocate resources and optimize system performance, the number of
renewable energy units within the island’s integrated energy system is subject to specific
limits. The number of units for wind, solar, and wave energy output devices are Nwind,
Nsolar, and Nwave, respectively, and must satisfy the following conditions:

0 ≤ Nwind ≤ Nwind,max, (19)

0 ≤ Nsolar ≤ Nsolar,max, (20)

0 ≤ Nwave ≤ Nwave,max. (21)

where Nwind,max, Nsolar,max, and Nwind,max represent the maximum allowable number of
units for wind, solar, and wave energy, respectively. These constraints are set to ensure
that the deployment of renewable energy sources is within the sustainable capacity of the
island’s environment and infrastructure.

2.4.4. Unit Ramp Rate Constraint

To ensure smooth transitions in power changes within the system, the output of
coupled devices must remain within a specified range, and their ramp rates are also limited.
The specific constraints are as follows:

Pmin
i ≤ [Pi(t)]

± ≤ Pmax(t)
i , (22)

−ςmin
i ≤ [Pi(t)]

± − [Pi(t− 1)] ≤ ςmax
i . (23)

where Pmin(t)
i and Pmax(t)

i denote the lower and upper output limits for device i, and ςmin
i

and ςmax
i represent the downward and upward ramp rates, respectively. These ramp rate

constraints help to mitigate any abrupt changes in power output, which can be critical for
maintaining grid stability and ensuring the reliability of power supply on the island.

2.4.5. Operational Constraints of HFC Energy Storage Systems

During the operation of hydrogen fuel cell energy storage systems, specific constraints
on storage capacity and charging/discharging power must be satisfied to ensure efficient
and safe functioning. These operational constraints are defined as follows:
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Pmin
q,in (t) ≤

[
Pq,in(t)

]± ≤ Pmax
q,in (t)

Pmin
q,out(t) ≤

[
Pq,out(t)

]± ≤ Pmax
q,out(t)

Emin
q (t) ≤

[
Eq(t)

]± ≤ Emax
q (t)[

Eq(t)
]±

=
[
SEEq,static(t)

]±[
Eq(t)

]±
=
[
SEEq,in(t)

]±[Pq,in(t)
]±[CDEq,in

]± − [SEEq,out(t)]
±
[Pq,out(t)]

±

[CDEq,out]
±

. (24)

where Emin(t)
q and Emax(t)

q represent the lower and upper limits of the storage capacity
for the time period t, respectively. Pmin

q,in (t), Pmax
q,in (t), Pmin

q,out(t), and Pmax
q,out(t) represent the

lower and upper limits of the power for charging and discharging for the time period t.[
SEEq,static(t)

]± denotes the static energy efficiency interval of the storage device during
the time period t, and

[
CDEq,in

]± and
[
CDEq,out

]± represent the charging and discharging
efficiency intervals, respectively.

3. Interval-Constrained Multi-Objective Optimization Algorithm Based on DRL
3.1. MOMAML-PPO Solution Process

This study employs the MOMAML-PPO algorithm to address the multi-objective
interval-constrained optimization scheduling issues in integrated island energy systems. As
illustrated in Figure 2, this research initially constructs a model of the island energy system
incorporating multiple uncertainties based on forecast data of renewable energy output and
energy demand load. Subsequently, MAML provides an optimal set of initial parameters
to all enhanced PPO-CLIP networks, which then undergo self-training according to the
weights of their respective objectives. Finally, the optimal scheduling plan is determined
from the Pareto optimal solutions by identifying interval turning points.
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In Algorithm 1, we provide a detailed description of the solution process for the
MOMAML-PPO algorithm. For each decomposed weight vector, the algorithm inputs into
the MAML-PPO model to generate the corresponding solution sj, which is then stored in
P∗1 . Building on this, we calculate the Pareto front, denoted as P∗. The optimal solution s∗

is subsequently selected from P∗ using the method of interval pivot points.
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Algorithm 1. Solving Process Using MOMAML-PPO

Input: Meta-learning parameters ω, uniform weight distribution Ψ, instance s, number of weights
N.
Output: Pareto frontier PF.

1 Pareto optimal solution set: P∗ ← ∅ , P∗1 ← ∅
2 for j = 1 : N do
3 λj ← GetWeight(Ψ)

4
[
θj, σj

]
← MAML− PPO

(
ω, λj, T

)
5 sj ← GetSolution

(
pθj (·|s )

)
6

(
f j
1,− f j

2

)
← GetTargetValue

(
sj

)
7 The tuple

(
sj, f j

1,− f j
2

)
is inserted into P∗1 .

8 end for
9 P∗ ← GetParetoFont

(
P∗1
)

10 s∗ ← GetOptimalSolution(Ψ, N, P∗)

3.2. Optimal Solution Selection Method

In this paper, the knee points [40] of the Pareto frontier are utilized as the optimal
solutions for multi-objective interval optimization problems, as depicted in Figure 3. The
range of each objective value is represented as a rectangle. In Figure 3, the boundary
intervals’ lower boundary points form a line Llower, and the upper boundary points form a
line Lupper.
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The distances from each objective value’s lower boundary point to Llower (represented
by red dashed lines) and from each upper boundary point to Lupper. (represented by
blue dashed lines) are calculated to identify the most distant points. Among the lower
boundary points, x3 is the farthest from Llower, and among the upper boundary points, x4
is the farthest from Lupper. When multiple points exhibit similar distances, uncertainty is
introduced as a secondary criterion for comparison. Points with lower uncertainty are more
likely to be chosen as the optimal solution; therefore, x4 is selected as the optimal solution.

The chosen knee points are marked with red dots in Figure 3. This method enables
the identification of solutions within the Pareto solution set that not only possess a larger
hypervolume but also exhibit lower uncertainty, thereby facilitating the selection of optimal
solutions for multi-objective interval optimization problems. The validation of knee points
as optimal solutions is elucidated with reference to the specified literature [40].
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3.3. Meta-Learning Training Framework

The focus of this paper is a strongly ICMOP. Leveraging the Reptile algorithm, we
trained a meta-model, illustrated in Figure 4. This model acts as the optimal initial strategy
for various sub-models. With minimal fine-tuning, it swiftly constructs sub-problem models
corresponding to different weight vectors. Each sub-model produces solutions tailored to
its specific weight problem.
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The meta-learning process is outlined in Algorithm 2. The process begins with the
initialization of a randomly generated meta-model ω. This model undergoes Tmeta iterations

of training. In each iteration,
∼
N weight vectors are randomly drawn from the given

distribution Ψ. Each vector defines a sub-problem, requiring the DRL to update the
parameters of the corresponding sub-model. A sub-model is derived through T update
steps directed by a specific vector from the meta-model. Subsequently, the difference in
parameters between each sub-model and the meta-model is computed, followed by the
calculation of the mean difference. Finally, the meta-model parameters are updated by
multiplying the mean difference by the meta-learning rate ε. Throughout the meta-learning
process, the meta-model is refined through exposure to multiple sub-problems constructed
from different weight vectors.

Algorithm 2: Meta-learning training

Input: Meta-learning parameters ω, weight distribution Ψ, initial external step size Hout,
meta-learning iterations Tmeta, update steps per sub-model T, number of sub-problems sampled
∼
N, batch size per sub-problem B.
Output: Trained meta-model ω.

1 Hout ← H∗out
2 for t = 1 : Tmeta do
3 for n = 1 : N̂ do
4 λn ← SampleWeight(Ψ)
5 ωn ← PPO−CLIP(ω, λn, T, B)
6 end for

7 ∆ω ← 1
N ∑N̂

n=1

(
ωj −ω

)
8 ω ← ω + ν∆ω

9 Hout ← Hout − H∗out
Tmeta

10 end for
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3.4. DRL Framework

In IIES, DRL techniques are employed to regulate various devices, optimizing their
operation throughout the 24 h cycle. At designated time intervals t, the environment
supplies the agent with relevant state information St, based on the agent and guided by
policy πt, executes actions A(t) and receives the corresponding rewards R(t). Through
this iterative process, the agent learns and optimizes autonomously, continually enhancing
decision-making efficiency.

The environmental state St encompasses data predictions for wind, solar, and wave
energy, hydrogen production forecasts from ECs, hydrogen storage capacities, power
output from HFC, freshwater production from desalination units, heating power from
geothermal sources, and power ranges of electrical boilers and chillers. This set of state
information collectively mirrors the operational condition of the energy system at different
time points and the uncertainty of external conditions. The state can be mathematically
represented as follows:

S(t) =


[Pwind(t)]

±, [Psolar(t)]
±, [Pwave(t)]

±,
[
VH2(t)

]±,[
SH2(t)

]±,
[

Ph f (t)
]±

, [Wdu(t)]
±, [Pw(t)]

±,
[

Pwshp(t)
]±

[Peb(t)]
±, [Cec(t)]

±, [Cac(t)]
±, [Wac(t)]

±, t

 (25)

The system’s goal is to dynamically adjust the usage of equipment (defaulting to rated
power) to minimize daily economic costs and maximize renewable energy utilization. The
action vector A(t) details the adjusted usage for each type of equipment during the time
interval t, such as the number of wind and solar power units, among other adjustments.
This intelligent regulation ensures the system meets energy demands while considering
cost-effectiveness and environmental impacts. Actions A(t) are defined as follows:

A(t) =
(

Nwind, Nsolar, Nwave, Nec, Nht, Nh f c, Neb, Ner, Nar, Nwshp, Nsd

)
. (26)

The involved devices include wind, solar, and wave energy generators, EC, HT, HFC,
EB, ER, AR, WSHP, and SD units.

The reward rt at time t is issued by the environment, serving as a guide for updating
policies. The reward function motivates the agent to act within constraints, aiming to
minimize daily economic costs and maximize renewable energy throughput.

The direct handling of equality constraints often complicates and increases the diffi-
culty of problem-solving; therefore, penalty function [41] methods are used to transform
these into inequality constraints, simplifying problem-solving and enhancing model effi-
ciency. This paper utilizes penalty functions to optimize power balance constraints (cov-
ering electricity, cooling, heating, and water), initially converting equality constraints
into inequalities using a positive differential ε: |pi(x)|−ε . The defined penalty term
Ci(x) = max{0, pi(x)− ε} is integrated into the fitness function, creating a penalty-included
fitness function:

G(x) = f (x) +
4

∑
i=1

QiCi(x). (27)

where Qi are penalty coefficients that effectively penalize constraint violations.
The reward function R(t) integrates the impacts of total system cost, renewable energy

output, and penalty terms for constraints. It is defined as follows:

R(t) = SRND
(

λ[F1(t)]
± − (1− λ)[F2(t)]

± + µ[F3(t)]
±
))

. (28)

where [F1(t)]
±, [F2(t)]

±, and [Fc(t)]
± represent the interval values for total system cost,

renewable energy output, and penalty terms, respectively, assessed during different periods.
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The SRND method employs a normal distribution sampling technique, specifically outlined
as follows:

[R∗(t)]± = λ[F1(t)]
± − (1− λ)[F2(t)]

± + µ[Fc(t)]
±, (29)

SRND
(
[R∗(t)]±

)
= N

 [R∗(t)]− + [R∗(t)]+

2
,

(
[R∗(t)]+ − [R∗(t)]−

4

)2
. (30)

In this approach, the reward function first calculates a weighted sum [R∗(t)]± and

then employs the normal distribution function N
(

[R∗(t)]−+[R∗(t)]+

2 ,
(
[R∗(t)]+−[R∗(t)]−

4

)2
)

to

sample, thereby deriving the reward value R(t).

3.5. Integration of GAE and Stochastic Action Probability Shift in PPO-CLIP Algorithm

Figure 5 illustrates the schematic diagram of the enhanced PPO-CLIP method. Within
the PPO-CLIP framework, GAE [42] is employed to compute the advantage function, which
aids in reducing variance of the estimates and enhances the stability of the algorithm. The
formula for GAE is presented as follows:

ÂGAE(γ,λ)
t =

∞

∑
k=0

(γλ)kδV
t+k, (31)

δV
t+k = Rt+k + γV(St+k+1)−V(St+k). (32)

where δV
t+k represents the Temporal Difference (TD) residual, γ is the discount factor, and

λ is the smoothing factor. The PPO-CLIP algorithm constrains the policy update steps
through the clipping of the policy ratio, ensuring the stability of the learning process. The
loss function for updates in the actor network is defined as follows:

LCLIP(θ) = Êt

[
min

(
π′θ(At|St)

πθold(At|St)
Ât, clip

(
π′θ(At|St)

πθold(At|St)
, 1− ε, 1 + ε

)
Ât

)]
. (33)

where Êt denotes the empirical mean over samples, ε is a hyperparameter controlling the
degree of clipping, and the clip function aims to maintain the ratio Rt(θ) within [1− ε, 1 + ε].

The policy probability ratio π′θ(At |St)
πθold

(At |St)
, measures the similarity between the new and

old policies. Ât estimates the advantage at state St To enhance the model’s exploratory
capabilities and prevent convergence to local optima, a stochastic action probability shift
is introduced:

π′θ(At|St) =

{
πθ(At|St) if (rand() > υ)

randomly choose an action from Υ if (rand() ≤ υ)
. (34)

When the random number exceeds the threshold β, the policy π′θ selects an action
based on the current policy knowledge defined by θ. If the random number is less than
or equal to β, the policy will randomly select an action from all feasible actions set Υ,
thus fostering exploration. To evaluate the effect of stochastic action probability shift, the
cumulative rewards before and after the shift are compared by computing their average
rewards over T steps:

Rbe f ore =
1
N

T

∑
i=1

Ri
be f ore, (35)

Ra f ter =
1
N

T

∑
i=1

Ri
a f ter, (36)

∆R = Ra f ter − Rbe f ore. (37)
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If ∆R > 0, retain the current policy parameters θ; if ∆R < 0, revert to the parameters
before the shift, θold. Actor network’s gradient update:

θ = θ − α∇θ LClip(θ). (38)

where α represents the learning rate for the actor network. The critic network’s loss function
update is as follows:

LCRITIC(σ) = E
[(

V′(St)−V(St)
)2
]
, (39)

V′(St) = Rt + γV(St). (40)

Critic network’s gradient update:

σ = σ− χ∇σLCRITIC(σ). (41)

where χ is the learning rate for the critic network.
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3.6. Analysis of Algorithmic Complexity

This section evaluates the computational demands of the MOMAML-PPO algorithm,
considering both its time and space complexities, and assesses its practicability for deploy-
ment in operational energy systems.

3.6.1. Time Complexity

The computational burden of the MOMAML-PPO algorithm is categorized into dis-
tinct phases:

Meta-learning phase: The meta-model is initialized and iteratively refined across Tmeta
iterations, each adjusting N distinct weight vectors. Assuming the complexity of each
iteration to be O(u), the computational load for the meta-learning phase aggregates to
O(Tmeta·N·u).

Model decomposition and training stage: Following meta-learning, the overarching
problem is segmented into N individual single-objective tasks, each subjected to further
optimization via an enhanced PPO-CLIP protocol incorporating GAE. With each task
undergoing T iterations of complexity O(v), this phase contributes O(N · T · v) to the total
computational time.

Post meta-learning, the multi-objective problem is segmented into N single-objective
problems, each subjected to training using the meta-model refined through PPO-CLIP
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incorporating GAE. Assuming T PPO-CLIP iterations per single-objective problem with
each iteration having a complexity of O(v), the complexity for this stage is O(N·T·v).

Solution synthesis and Pareto frontier calculation: The algorithm synthesizes solutions
from each single-objective refinement and constructs the Pareto frontier. The computational
complexity for synthesizing solutions is O( f ), while the complexity for comparison and
storage operations is O(p). Thus, the total complexity of the operation is O

(
N · f + N2 · p

)
,

where N2 · p represents the Pareto comparison process for all solutions.
Summing these components yields a total time complexity for the MOMAML-PPO

algorithm of O
(
Tmeta · N · u + N · T · v + N · f + N2 · p

)
.

3.6.2. Space Complexity

The spatial requirements of the algorithm are driven by the need to store parameters
for both the meta-model and the individual single-objective models, alongside the solution
sets and Pareto frontiers:

Storage of model parameters: Each model, encompassing the meta-model and each of
the single-objective models, necessitates storage for its parameters. If the aggregate parame-
ter count is M, then the space required for storing all models’ parameters is O((1 + N) ·M).

Solution set and Pareto frontier storage: Each solution sj encapsulates outputs and
objective function values requiring storage space d. Hence, the total space required for
storing all solutions is O(N · d). The space to store the Pareto frontier typically does not
exceed the storage demand for the solution set itself.

Summing these factors, the total space complexity of the MOMAML-PPO algorithm is
O((1 + N) ·M + N · d).

3.6.3. Feasibility Discussion

The analysis of time and space complexities indicates that while the MOMAML-PPO
algorithm requires substantial computational resources to address large-scale problems, its
design allows for balancing performance and resource consumption through adjustable
parameters, such as Tmeta, T, and N. Additionally, the potential for parallelization of the
algorithm can further enhance its application efficiency in practical systems, making it a
robust tool for solving ICMOPs challenges.

4. Experiments and Discussion
4.1. Experimental Setup

This study is based on the interval-constrained multi-objective optimization schedul-
ing model for the integrated energy system of islands designed in Section 3, and experi-
ments were conducted using an interval multi-objective optimization algorithm based on
an improved PPO-CLIP and meta-learning. This section includes simulations of emergency
scenarios in scheduling to verify the model’s excellent handling capabilities for various
uncertainties. To demonstrate the effectiveness of the proposed algorithm, several interval
multi-objective optimization algorithms were selected for performance comparison, includ-
ing the IP-MOEA [43], ICMOABC [44], IMOMA-II [45], and CIMOEA [46] algorithms.

The experiments were carried out using a high-performance computing system
equipped with an Intel Core i7-13700K processor (13th generation) and an NVIDIA GeForce
RTX 4070 graphics card. The programming environment consisted of PyCharm (version
2023.1), with Python (version 3.11) employed for the implementation of algorithms and
preliminary testing. For comparative analysis, all of the experiments were conducted in a
MATLAB (version R2023b) environment to ensure uniformity and efficiency in algorithm
execution [47].

In the training of the multi-objective optimization scheduling model for the integrated
energy system of islands, the key experimental parameters are as presented in Table 1 [48].
In the meta-learning settings, the meta-learning rate was set to 1× 10−4 to control the
update speed of the meta-model during the learning process. The model underwent
training through 10,000 meta-iterations, with each sub-problem being updated five times.
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To ensure stability during the meta-learning process, the gradient clipping norm for meta-
learning was set at 1.0, with a decay cycle of 1000 and a decay magnitude of one-tenth of
the current learning rate. The initial learning rates for the actor and critic networks were set
at 1.5× 10−4 with a reward discount factor of 0.97 and a regularization parameter adjusted
to 0.01. The GAE λ parameter was 0.95, and the soft update rate of the target network
was adjusted to 0.03 to facilitate smooth transitions of network parameters, with a random
action probability offset of 0.1 (only during the training phase). The network architecture
comprises actor and critic networks, each configured with six layers using ReLU activation
functions, with weights updated through the Adam optimizer.

Table 1. Experimental parameter settings.

Parameter Name Symbol Parameter Value

Actor learning rate θ 1.5× 10−4

Critic learning rate σ 1.5× 10−4

GAE Lambda λGAE 9.5× 10−2

Discount factor γ 9.6× 10−2

Batch size B 128
Entropy coefficient c 1
Max gradient norm Normmax 0.5

Random action offset υ 5× 10−2

Meta-learning rate εmeta 1× 10−4

Iterations T 1× 104

Number of subproblems Nsub 101
Submodel update steps Tupdate 5

Decay period ςlr 1× 103

Decay rate per period φdecay 0.1
Target network soft update rate τtarget 3× 10−2

Table 2 lists the rated power and bounds for the experimental equipment, with some of
the device information derived from Appendix B. The model encompasses a diverse array
of energy devices, including both renewable energy collection units and energy conversion
systems, each with specifically designated quantities and power capacity ranges. The
renewable energy devices featured in the system comprise wind turbines, photovoltaic
panels, and wave energy converters. The quantity range for wind turbines is set from 0
to 15 units, for photovoltaic panels from 0 to 400 units, and for wave energy converters
from 0 to 120 units. The output of these devices is established based on predictive data to
accommodate varying environmental energy demands. The energy conversion devices
include EB, ER, AR, WSHP, SD, and HFC. The quantity limitations for EB and chillers are
capped at 20 units, absorption chillers at 10 units, WSHP range from 10 to 20 units, and
seawater desalination units fall within the same range, while hydrogen fuel cells have a
maximum limit of 300 units. The power parameters for each device are set according to their
design standards, for instance, EB at 66 kW, electric chillers at 45 kW, absorption chillers
at 180 kW, WSHP at 60 kW, seawater desalination units at 70 kW, and the parameters for
Hydrogen Fuel Cells are focused on the consumption of hydrogen.

Table 2. Equipment Parameters.

Device Name Rated Power Parameters Range of Units

Wind turbines Determined by predictive data 0–15
Photovoltaic panels Determined by predictive data 0–400

Wave energy converters Determined by predictive data 0–120
Electric boilerss 66 kW 0–20

Electric refrigerators 45 kW 0–20
Absorption refrigerators 180 kW 0–10
Water source heat pumps 60 kW 10–20

Seawater desalination units 70 kW 10–20
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4.2. Results and Discussion

This study conducts a simulation of the integrated energy system for the island de-
picted in Figure 1, employing a 24 h scheduling period with 1 h dispatch intervals. The
Extreme Learning Machine (ELM) [49] method is utilized to generate forecasts based on
historical data for wind, solar, and wave energy outputs, as well as daily predictions for
electrical, cooling, heating, and water loads over the 24 h scheduling period. As observed in
Figure 6, the wind energy output is relatively stable, while solar energy displays significant
variability during daylight hours, peaking at midday. Wave energy production is compar-
atively low, albeit with a slight increase during the evening. Regarding load predictions,
electrical demand peaks during the daytime high-demand period, then gradually declines.
Cooling and heating loads exhibit a distinct counter-cyclical pattern, with cooling demand
peaking during the day and heating demand more pronounced at night. The water load
remains relatively stable, with minor fluctuations during certain periods.
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Figure 6. Forecasting renewable energy output and multiple load demands.

We conducted an analysis of wind power output predictions for the integrated energy
system on the island, comparing the effects across different confidence intervals ranging
from 70% to 98% (as shown in Figure 7). A 95% confidence interval was ultimately selected
as the optimal confidence level because it balances forecast accuracy with the avoidance of
resource wastage due to overly broad intervals and reduces risks associated with prediction
uncertainty [50]. At the 95% confidence level, interval forecasts for various system metrics
were performed, with the results displayed in Figure 8, clearly marking the upper and
lower bounds of the predicted intervals.
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Based on the output data from renewable energy sources and load forecasts, an
interval-based multi-objective optimization model for the integrated energy system of
islands was solved. The objective functions aimed to minimize daily economic costs and
maximize the output from renewable energies. The resulting Pareto frontier is shown in
Figure 9.
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We conducted a detailed analysis of the energy dispatch performance of an integrated
energy system on an island over a 24 h period. As shown in Figure 10, the system dy-
namically adjusts the output of various energy devices in response to fluctuations in load
demand throughout the day, ensuring continuity and diversity of energy supply. Dur-
ing daylight hours, the system fully utilizes solar energy devices for power supply. At
night, as solar devices cease to produce energy, the system adjusts the operation of other
energy devices, maximizing the output of renewable energy and minimizing costs. This
dispatch strategy not only optimizes energy utilization efficiency but also enhances the
system’s adaptability to changes in energy demand, further confirming its effectiveness
and economic viability in practical applications.

We evaluated the performance of MOMAML-PPO compared to four other algorithms
(IP-MOEA, ICMOABC, IMOMA-II, and CIMOEA) within the integrated energy optimiza-
tion scheduling model for islands. All evolutionary algorithms were tested with a pop-
ulation size of N = 50 and Gen = 100 iterations. As shown in Table 3, MOMAML-PPO
achieved a hypervolume [51] index of 0.6214, surpassing the other algorithms, indicating
its superior capability in exploring the solution space more comprehensively in ICMOPs.
Moreover, the computation time of MOMAML-PPO was only 92.4 s, significantly lower
than the other algorithms, demonstrating higher time efficiency. The uncertainty of the
algorithm is quantified by the mean of the sum of the widths of the objective function inter-
vals for all individuals. Although MOMAML-PPO displayed slightly higher uncertainty
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compared to CIMOEA, its performance remained within a range of 3.2141. This can be
attributed to the fact that the DRL model was designed to address a class of problems rather
than a specific experimental case. In contrast, CIMOEA is tailored for direct computation on
specific experimental data, resulting in lower uncertainty values than MOMAML-PPO after
approximately 80 generations of population evolution, as supported by statistical analysis.
Through a lateral comparison between the DRL method and the interval multi-objective
evolutionary algorithm, MOMAML has demonstrated outstanding generalization perfor-
mance. After sufficient training, this algorithm can quickly devise scheduling solutions
for different instance scenarios. Not only does MOMAML solve problems faster, meeting
the demands of real-time scheduling, but it also shows considerable advantages in the HV
index, indicating a higher quality of its solution set.
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Table 3. Algorithm comparison.

Algorithm Name Hypervolume Time/s Uncertainty

MOMAML-PPO 0.6614 92.4 3.2141
IP-MOEA 0.5785 14,297 22.2541
ICMOABC 0.5436 10,783 28.8451
IMOMA-II 0.5436 14,150 28.4715
CIMOEA 0.5967 1575.5 2.3793

We investigated the application of the enhanced PPO-CLIP model in the optimization
and scheduling systems of comprehensive island energy. The training efficiency and
performance of the model were assessed through various parameter initialization strategies.
During the experimental design, the model’s weight coefficients were uniformly set at 0.5,
and all average reward values were normalized. The number of iterations was fixed at
10,000, processing the same 20 data sets in each iteration to ensure consistency and accuracy
in the evaluations.

We performed sensitivity analyses on two pivotal parameters affecting the perfor-
mance of our model: the learning rate, θ, of the actor–critic network and the discount factor,
γ, for reward computation, as illustrated in Figures 11 and 12. The experiments allocated
equal weights of 0.5 to objectives F1 and F2, to ensure the model remained balanced in its
pursuit of these distinct goals while pursuing these distinct goals. A total of 5000 iterations
were executed, sufficient to evaluate the model’s long-term behavior and stability. The
rewards computed in each iteration were normalized.
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At a learning rate of θ = 1.5× 10−4, the model demonstrated both high and stable
reward trajectories. When the learning rate was increased to 1.5× 10−4 and further to
1.5× 10−3, the model tended to either overshoot the optimal solution or oscillate around
it, resulting in significant reward volatility and challenges in achieving convergence. Con-
versely, at a lower learning rate of θ = 1.5× 10−5, the model exhibited greater stability in the
final phases, albeit with slower convergence compared to a learning rate of θ = 1.5× 10−4.
Therefore, a learning rate of θ = 1.5× 10−4 proved optimal, effectively balancing acceler-
ated learning with stability and higher mean rewards.

In Figure 12, we examined the impact of varying discount factors, γ, on model perfor-
mance. A setting of γ = 0.96 optimized the balance between immediate and future rewards,
enhancing long-term average reward. Higher discount factors, such as γ = 0.98, led the
model to over-prioritize long-term rewards, potentially compromising responsiveness to
immediate changes. Conversely, lower values of γ, specifically 0.9 and 0.8, caused an
overemphasis on short-term rewards, neglecting long-term strategic development and
subsequently diminishing overall performance. Selecting γ = 0.96 facilitated a balance
between long-term strategic considerations and immediate responses, thus enhancing the
model’s adaptability and robustness across various task environments.

To validate the efficacy of the proposed meta-model parameter initialization strategy,
we established one experimental group and two control groups. The control groups were
evaluated using domain parameter transfer and random initialization strategies, with
each undergoing 10,000 training iterations. The average reward values were normalized
for comparison. As depicted in Figure 13, the meta-model parameter transfer strategy
(represented by the red line) demonstrated higher average reward values from the early
stages of the experiment and reached a stable state after approximately 3500 iterations.
This observation suggests that the meta-model parameter transfer strategy significantly
enhances the model’s initial performance and accelerates the learning process. Moreover,
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this strategy not only boosts the model’s rapid adaptability but also enhances its stability
and efficiency over long-term iterations.
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In comparison, the adjacent sub-model parameter transfer strategy (blue line) initially
exhibited lower performance. However, as the iterations progressed, its performance
gradually improved, showing comparable results to the meta-model parameter transfer in
the mid to late stages of iteration. This indicates that the parameters of adjacent sub-models
can gradually adapt and optimize the current model’s performance with sufficient iterations.
Compared to the aforementioned strategies, random initialization (green line) showed
overall poorer performance, particularly in the initial stages of iteration, highlighting the
importance of appropriate parameter initialization in complex system optimization and
the challenges that random initialization may pose at the start of model learning. The
meta-model parameter transfer method not only improved the training efficiency but also
optimized the model’s long-term stability and performance during iterations, confirming
the effectiveness of using meta-learning for parameter initialization to enhance model
training efficiency.

To assess the resilience of the model under emergent weather conditions, consider
two scenarios involving torrential rainfall, which differ in the timing of the rain. In both
scenarios, solar power devices are rendered inoperative due to weather constraints, while
all wind turbines operate at their maximum rated power of 8 kW. According to the results
of the experiment shown in Figure 14, in extreme weather conditions devoid of solar
input, wind energy emerges as the primary source of power for the energy system, with a
marked increase in output from other devices as well. The power output exhibits significant
variability, underscoring the model’s capability to dynamically adjust different devices to
meet the continuously changing electricity load demands.
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5. Conclusions

This study presents an integrated energy optimization scheduling model for islands
based on multi-objective optimization algorithms that account for multiple uncertainties,
utilizing a novel approach combining meta-learning with an enhanced PPO-CLIP tech-
nique. This method adopts the idea of uniformly decomposed weights from MOEA/D,
transforming complex interval multi-objective optimization problems into simpler interval
single-objective challenges. By training a meta-model capable of adapting to any weighted
subproblem and subsequently fine-tuning it, the model for each subproblem is generated,
enabling the solution of all weighted issues. Optimal scheduling solutions are characterized
using interval critical points. The conclusions are as follows: (1) MOMAML-PPO inherits
the powerful generalization capabilities of DRL, and in scenarios such as the real-time
scheduling of integrated energy systems on islands, it can rapidly generate solution sets.
(2) The introduction of meta-learning provides robust support for model initialization and
parameter tuning, overcoming the traditional drawback of slow training speeds encoun-
tered with decomposition methods in DRL. (3) The application of the modified PPO-CLIP
algorithm enhances the exploratory capabilities of the system, proving the effectiveness of
the action probability “shift” strategy and the GAE method, effectively avoiding potential
local optima traps and demonstrating remarkable adaptability to environmental uncer-
tainties. Looking ahead, this research aims to explore more efficient algorithms within
the reinforcement learning framework, such as SAC, A3C, and D3QN, to determine if
further improvements in model performance and experimental outcomes can be achieved.
Through continual technological innovation, this work seeks to provide more precise and
reliable theoretical and practical support for the optimization of integrated energy systems
on islands.
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Appendix A. The List of Model Parameters Included in This Paper

Symbol Description

[Pwind(t)]
± The wind power output interval at time t

MSEwind(t) The mean squared error at time t

εwind(t) The random perturbation due to environmental factors at time t[
VH2 (t)

]± The interval value of the hydrogen volume produced by the EC at time t

PH2 (t) The electrical power consumed by the EC during that period

ρH2 The density of hydrogen[
νH2

]± The interval value for the rate of hydrogen production via water electrolysis
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Symbol Description

MH2 The molar mass of hydrogen[
SH2 (t)

]± The interval value of the hydrogen storage amount at time t[
SH2 ,in(t)

]± The intervals of hydrogen input during that period[
SH2 ,out(t)

]± The intervals of hydrogen output during that period[
SH2 (t)

]
The interval value of hydrogen storage from the previous period t[

Ph f (t)
]± The interval value of electrical power generated by the hydrogen fuel cell at time t[

ηh f
]± The efficiency interval of the HFC

Vh f (t) The volume of hydrogen consumed by the fuel cell during that period

Hhv The higher heating value of hydrogen

[CAC(t)]
± The interval values of the cooling power

HAC(t) The consumed thermal power

[WAC(t)]
± The freshwater usage of the absorption refrigerator at time t

[CAC(t)]
± The interval values of the cooling coefficient

[ηAC ]
± The water consumption rate[

Pwshp,h(t)
]± The interval values of the heating power[

Wwshp(t)
]± The freshwater usage of the water source heat pump at time t

Pwshp(t) The heating power of the water source heat pump during period t[
ηwshp,h

]± The interval values of the heating efficiency coefficient[
ηwshp

]± The water consumption rate

[Peb,h(t)]
± The heating power interval value of the electric boiler during period t

[ηeb]
± The interval value of the heating efficiency of the EB

[Wdu,w(t)]
± The interval values of the freshwater volume produced by the SD unit during

period t

Pdu(t) The electrical power consumed by the desalination unit in the same period

[ηdu]
± The interval values of the water production rate of the desalination unit[

Pcwp(t)
]± The interval value of the variable power for period t

Cpucpc The unit cost of variable charges[
Pi,j(t)

±
]

The interval value of the output for each renewable energy device during period t

[Qelectric]
± The interval value of the electric[

Qheating
]± The interval value of the cooling[

Qheating
]± The interval value of the heating

[Qwater ]
± The interval value of the water loads

Pwind,max(t) The maximum permissible outputs for wind energy sources for period t

Psolar,max(t) The maximum permissible outputs for solar energy sources for period t

Pwave,max(t) The maximum permissible outputs for wave energy sources for period t

Nwind,max The maximum allowable number of units for wind

Nsolar,max The maximum allowable number of units for solar

Nwind,max The maximum allowable number of units for wave energy

Pmin(t)
i

The lower output limits for device i

Pmax(t)
i

The upper output limits for device i

ςmin
i The downward ramp rates

ςmax
i The upward ramp rates

Emin(t)
q The lower limits of the storage capacity for the time period t

Emax(t)
q The upper limits of the storage capacity for the time period t

Pmin
q,in (t) The lower limits of the power for charging for the time period t
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Symbol Description

Pmax
q,in (t) The upper limits of the power for charging for the time period t

Pmin
q,out(t) The lower limits of the power for discharging for the time period t

Pmax
q,out(t) The upper limits of the power for discharging for the time period t[

CDEq,in
]± The charging efficiency intervals[

CDEq,out
]± The charging and discharging efficiency intervals

Appendix B. Data Description for Kaishan Island, Lianyungang City, Jiangsu Province

Type Description

Renewable energy output

Wind power output
Solar power output
Wave power output
Tidal power output

Load demand

Electrical load
Cooling load
Heating load
Water load

Unit power output

Electrolytic cells
Hydrogen tanks

Hydrogen fuel cells
Electric boilers

Electric refrigerators
Adsorption refrigerators
Water source heat pumps

Seawater desalination systems
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