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Abstract: Object detection in aerial images has had a broader range of applications in the past few
years. Unlike the targets in the images of horizontal shooting, targets in aerial photos generally
have arbitrary orientation, multi-scale, and a high aspect ratio. Existing methods often employ a
classification backbone network to extract translation-equivariant features (TEFs) and utilize many
predefined anchors to handle objects with diverse appearance variations. However, they encounter
misalignment at three levels, spatial, feature, and task, during different detection stages. In this
study, we propose a model called the Staged Adaptive Alignment Detector (SAADet) to solve
these challenges. This method utilizes a Spatial Selection Adaptive Network (SSANet) to achieve
spatial alignment of the convolution receptive field to the scale of the object by using a convolution
sequence with an increasing dilation rate to capture the spatial context information of different
ranges and evaluating this information through model dynamic weighting. After correcting the
preset horizontal anchor to an oriented anchor, feature alignment is achieved through the alignment
convolution guided by oriented anchor to align the backbone features with the object’s orientation.
The decoupling of features using the Active Rotating Filter is performed to mitigate inconsistencies
due to the sharing of backbone features in regression and classification tasks to accomplish task
alignment. The experimental results show that SAADet achieves equilibrium in speed and accuracy
on two aerial image datasets, HRSC2016 and UCAS-AOD.

Keywords: object detection; remote sensing; spatial selection; receptive field

1. Introduction

Object detection is a widely used technical means for intelligently identifying aerial
data. Its purpose is to automatically locate and identify valuable targets from visible
light photographs. This method is currently a popular area of research in aerial image
processing. It has enormous promise for applications in resource inquiry, environmental
monitoring, geological disaster detection, and urban planning. They have become more
popular because faster graphics processors and more high-resolution object recognition
and scene understanding datasets are available. The CNN [1]-based object detector is
divided into two categories: single-stage and two-stage. The two-stage ones include the
R-CNN series [2–6], which uses a method called Region Proposal Network (RPN) to create
accurate candidate region boxes (CRBs). These detectors are handy in situations where high
accuracy is required. Conversely, single-stage detectors such as SSD [7], YOLO [8], and
RetinaNet [9] predict the location of objects by predefining the anchor, providing greater
efficiency and suitability for applications that require high real-time performance. Both
methods use features extracted from a backbone network stacked with small receptive field
convolution kernels for target localization regression and category classification.

Overhead photography captures aerial photographs that have a high level of detail
and show intricate target shapes and variations in the background. The photos contain
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objects that exhibit a wide range of morphological and distributional features, such as
varying orientations, multi-scale, and high aspect ratios as shown in Figure 1. Nevertheless,
when attempting to apply general-purpose object detectors to aerial images, which are
images taken from the top view, certain limits arise. In order to tackle these difficulties,
researchers have concentrated their efforts on extracting features that are invariant to
rotation. The Rotation RPN (RRPN) [10] arranges anchors of different scales, aspect ratios,
and angles at every grid point on the feature map. The anchors are employed to acquire
rotated candidate regions, and region features are captured using RROI Pooling [10]. While
the introduction of angles improves task performance for nondensely distributed targets, it
also increases the computational and memory demands.

Figure 1. Objects in aerial images display diverse morphological and distributional features, including
arbitrary orientation, multi-scale, and high aspect ratio.

In order to tackle comparable difficulties, follow-up studies have concentrated on
correcting horizontal anchors to oriented anchors and carrying out region alignment. As
an illustration, R3Det [11] utilizes a method similar to RROI Pooling to re-encode the
location information of the adjusted horizontal anchor into matching feature points. This
process involves pixel-level feature interpolation, resulting in feature reconstruction and
alignment. However, the RoI transformer [12] determines positive and negative samples
by computing the Intersection over Union (IoU) between a horizontal anchor and the
smallest rectangle that envelopes the ground truth (GT) box. This process helps train
high-quality horizontal CRBs. Next, they acquire oriented CRBs through regression and
use RRoI Align to accurately correct the regions’ features for alignment. Although R3Det
and RoI Transformer do not necessitate a substantial quantity of predefined anchors, they
nonetheless demand the heuristic establishment of horizontal anchors and the execution of
intricate RRoI computations. All the methods mentioned above utilize traditional CNNs to
extract TEFs. They create an approximation of rotation invariance by using RROI Pooling
or RRoI Align to simulate changes in rotation [13].

Although the features and objects have been successfully aligned, the design concept
of the backbone bears resemblance to RRPN, R3Det, and RoI Transformer. These methods
rely on a backbone made of stacked fixed and small receptive field kernels. However,
they do not effectively utilize the contextual information surrounding the target. As a
result, the constraints that arise include a restricted ability to adjust to different scales
and a vulnerability to background noise interference. For oriented object detection to
work well on multi-scale objects, more complex, deeper networks and training data are
usually required to obtain more robust scale representations. Nonetheless, this leads to
more intricate network structures and increased computational complexity, which presents
obstacles to deploy.

The analysis shows that to accurately and rapidly detect remote sensing objects of
various scales, it is necessary to utilize the object’s distinctive features and contextual back-
ground information while ensuring consistency in the task. Currently, we can categorize
the problems in remote sensing object detection into three types, spatial misalignment,
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feature misalignment, and task misalignment, as shown in Figure 2. They are described
as follows.

(a) (b) (c)

Box Head
𝜽

Figure 2. (a) Spatial misalignment between the fixed receptive field with a kernel size of 3 × 3
and the range (yellow rectangle) of contextual information required to detect the object accurately.
(b) Feature misalignment exists between the oriented anchor (grey rectangle) and the convolution
features (red-beige rectangle). (c) Shared backbone features result in task misalignment between
classification and regression.

1. Spatial Misalignment Issue. Existing networks use a convolution kernel structure
with a fixed and small kernel size, which can be misaligned in terms of spatial align-
ment, thus making it difficult to align the spatial coverage of objects and accurately
perceive changes in scale and orientation. In order to expand the receptive field,
current remote sensing detectors need to stack more small convolution kernels, which
leads to a more complex network and a heavier computational load. In addition, a
fixed and narrow receptive field reduces the detection accuracy because it cannot
recognize objects precisely. The reason for this limitation is that accurate target detec-
tion usually relies on a large and changing amount of contextual information about
the target environment, which can provide essential insights into the target’s shape,
location, and other characteristics.

2. Feature Misalignment Issue. The normal convolution operation moves in a horizontal
direction, and the TEFs are extracted. However, the RIFs required to recognize rotat-
ing targets effectively make it difficult to identify objects with specific orientations,
causing feature misalignment and lower detection accuracy. Furthermore, when the
convolution’s sliding direction does not align with the target orientation, it intro-
duces background noise of varying intensities, disrupting the extraction of the TEF.
This makes it challenging to obtain a satisfactory target representation, making the
detection accuracy even worse.

3. Task Misalignment Issue. The classification task requires RIFs, while the regres-
sion task requires orientation-sensitive features (OSFs). However, the classifica-
tion/regression branch in the detection head directly uses the fusion features of
the anchor network and FPN for the object classification and localization tasks, which
may lead to inconsistencies in the final classification confidence score and regres-
sion localization accuracy. More precisely, the anchor point has to face the awkward
situation of low localization accuracy while having a high classification score. On
the contrary, the nonmaximal suppression (NMS) stage may abandon objects with
higher localization accuracy due to lower classification scores, leading to missed
detections. Therefore, the inter-task misalignment problem can seriously affect the
detection accuracy.

In order to tackle the above problems, this study has proposed a Staged Adaptive
Alignment Detector (SAADet), which first utilizes the proposed SSANet backbone network
to dynamically evaluate the scale-sensitive contextual features extracted by different re-
ceptive field size convolution kernels based on the input with the aid of a spatial selection
mechanism; second, after correcting the horizontal anchor to the oriented anchor, the spatial
features are extracted by guiding the alignment convolution (AC) [14] to align with the
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object orientation; and finally, the alignment features decouple into RIFs and OSFs through
the Active Rotation Filter (ARN) [15].

Our method performs robustly on two remote sensing datasets—HRSC2016 and
UCAS-AOD. They are publicly available. Specifically, this study has resulted in the follow-
ing contributions:

• We propose a lightweight backbone network to achieve adaptive spatial selection
and thereby acquire extensive and dynamic contextual information to enable spatial
alignment.

• RIFs are obtained by correcting the horizontal anchor regression to an oriented anchor
to guide the AC to complete the feature alignment by moving from a coarse to a
delicate detection pattern.

• We propose an efficient feature decoupling method to perform task alignment and
mitigate the inconsistency in classification and regression.

2. Related Work
2.1. Oriented Object Detection

In remote sensing, real-world scenarios present various challenges for object identifi-
cation, including the presence of rotated objects with multiple orientations. Conventional
detection networks that rely on CNNs are inefficient in detecting objects with specific orien-
tations because they do not possess rotation invariance (RI). Research efforts have primarily
focused on developing detection algorithms that can accurately capture the orientation
features of objects.

In order to recognize rotating multi-oriented objects, researchers have made substantial
efforts to improve the feature representation of conventional networks. For example, Cheng
et al. [16] inserted a rotation-invariant layer into AlexNet [17]. Ensuring that the feature
representations of the samples are similar before and after the rotation during the training
process made it easier for the detector to find objects positioned differently. They achieved
this by applying regularization constraints in the objective function. Shi et al. [18] devised
a geometric transformation module that produces images from different perspectives using
random rotations and flips. This allows the detector to acquire knowledge about oriented
features effectively. In their study, Huang et al. [19] utilized a Deformable Convolution
module to obtain RIFs, thus resolving the problem of recognizing rotated objects.

However, the studies above rely on horizontal anchors established by axis alignment.
While these anchors improve the convolution network’s ability to represent oriented fea-
tures, they cannot effectively capture the object’s orientation information. Horizontal
anchors cannot precisely indicate an object’s orientation, namely, the rotation angle. Fur-
thermore, objects tightly packed together pose challenges for horizontal anchors. The
significant overlap between anchors can easily cause anchor suppression during postpro-
cessing, leading to missed detections. As a result, researchers have pursued new avenues
of investigation in anchor detection. We can broadly classify these investigations into three
types: redundant oriented anchor, angle regression, and representation of oriented anchor.

Presetting Redundant Oriented Anchor. This method entails predefining numerous
oriented anchors at every place in the feature map to align with objects of specific orienta-
tions without modifying the current network structure. One can achieve this by altering the
angle information of the anchor hyperparameters. Ma et al. [10] first proposed a Rotating
Region Network for creating anchors with orientation. This led to the widespread adoption
of the idea of using preset-oriented anchors. Liu et al. [20] utilized a 12-angle oriented
anchor and suggested substituting the angular loss regression with the diagonal length of
the bounding box, which led to positive outcomes. In order to mitigate the problem arising
from little variations in the angle of the object, Bao et al. [21] developed the ArIoU metric
to improve the reliability of its evaluation, particularly for tiny angles. Meanwhile, Xiao
et al. [22] presented a method for anchor selection, which adaptively allocates anchors and
constructs anchors with six angles at each point to accurately locate targets with specific
orientations.
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Design Angle Regression. This method uses a regression function to predict the object’s
orientation, where the angle information is not combined with the position information
of the four boundary corner points of the anchor but is regressed separately. For instance,
Yang et al. [23] developed a multi-task rotating region CNN that directly predicts the ship’s
sailing orientation through successive modules such as oriented anchor regression, bow
orientation prediction, and rotated nonmaximum suppression. Conversely, Hua et al. [24]
utilized a point-wise convolution to predict the orientation and designed a new angular
loss function for constraints. Additionally, some researchers [25–27] also implemented
horizontal and oriented prediction heads at the late stage of the detection, generating
horizontal anchors and oriented anchors simultaneously. To address the issue of boundary
mutations in oriented boxes, Chen et al. [28] proposed the Oriented Bounding Box Multi-
Definition and Selection Strategy, resulting in smoother regression of the oriented anchor
and the more accurate detection of oriented objects.

Enhancing the Representation of Oriented Anchor. In real-world scenarios, RRoI
Warping [10,29] (such as RRoI Pooling and RRoI Align) is widely employed to extract
RIFs from the two-dimensional plane. This method correctly warps regional features
based on the anchor’s RRoI. However, using regular CNNs for RRoI Warping cannot
get a real sense of the RIFs and accurately model orientation changes, a network with
a higher capacity and a larger number of training samples is required to achieve an RI
approximation. ReDet integrates RE operations [30] into the backbone feature extractor to
produce REFs. It then utilizes RiRoI Align to selectively extract RIFs from the REFs. Pu
et al. [31] introduced the Adaptive Rotated Convolution (ARC) kernel, which is designed
to extract object features with varying orientations in images. They also implemented an
efficient conditional computation method to adjust to changes in the object orientation
inside the image.

2.2. Deformable Convolution

In order to accurately predict targets in aerial images, their rotated multi-orientation,
multi-scale, and effective representation of the high aspect ratio need to be considered.
General research efforts usually model the deformation of these targets from transform-
invariant feature operators and CNNs. These methods have inherent drawbacks because
they usually give geometric deformations that are fixed and known a priori, which makes
them unable to cope with the new task of unknown geometric deformations. Second, manu-
ally designed invariant features and fixed-size convolution kernel templates require the ad-
dition of extra aids in order to be able to cope with a wide variety of complex deformations.

In order to reinforce the modeling capability of objects with multi-scale and high
aspect ratios, Dai et al. [32] introduced Deformable Convolution Networks (DCNs). DCN
incorporates learnable offsets, allowing the convolution kernel to adjust its shape and
position better to accommodate the geometric variations in the input data. DCN improves
the detector’s ability to perceive changes in the shape of targets, thereby increasing object
recognition and localization accuracy. Furthermore, Zhu et al. [33] proposed an upgraded
version of Deformable Convolution Networks (DCNv2) that incorporates extra trainable
parameters to alter the shape of the convolution filter. This modification enhances the
network’s capacity for modeling and training, resulting in improved attention to essential
regions in images. The DCNv2 model has superior accuracy and resilience in handling
distorted objects.

Furthermore, Wu et al. [34] proposed Dynamic Filter Networks (DFNs), which enable
the convolution kernel to apply different filter weights at various locations by introducing
dynamic filters. This method enables the convolution process to adjust to variations in
the local structure of the input data in real time, enhancing feature detection. There is
also a method called Dynamic Convolution (DynamicConv), proposed by Zhao et al. [35],
which introduces a dynamic deformation field to enable the convolution kernel to adapt to
the geometric changes of the input image dynamically. DynamicConv can extract more
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distinctive features and utilize varying filter weights across different input image regions,
leading to a scaled-up performance in classification and detection tasks.

Nevertheless, Deformable Convolution has certain drawbacks. Incorporating learnable
offsets amplifies the intricacy and computing burden of the model, potentially leading to
extended durations for both training and prediction processes. Furthermore, tuning the
parameters of Deformable Convolution demands a higher level of expertise and proficiency.
In addition, Deformable Convolution may lack accuracy when dealing with tiny objects or
intricate features.

3. Methodology

Figure 3 showcases the introduction of a Staged Adaptive Alignment Detector (SAADet)
explicitly designed for object detection in aerial images. The three main components
of SAADet are the backbone, neck, and head. The backbone component utilizes our
proposed spatial alignment adaptive network (SSANet) for feature extraction and acquires
feature maps of diverse semantic levels by sequential downsampling. Shallow features
encompass coarse-grained spatial information, while deep features contain fine-grained
semantic information related to the object categories. The neck utilizes the FPN structure.
It upsamples the resolution of feature maps coming in from different backbone layers, then
combines them with feature maps from the same layer to restore spatial resolution and
gather more contextual information. This allows for capturing the features of objects at
multi-scale. The head consists of five detection heads accountable for the classification and
anchor regression of different-scale objects using the feature maps yielded from the neck.
Each detection head consists of two modules, AGCM and RDM. AGCM is responsible for
correcting the horizontal anchor to an oriented anchor, which guides the AC to align the
axis-aligned features to an arbitrarily oriented object after correction. RDM employs ARFs
to decouple the aligned features into RIFs and OSFs, thereby mitigating the inconsistency
between object classification and positional regression.

Head

Head

Head

Head

NeckBackbone

Feature Pyramid NetworkSSANet

Head

H×W×5

pooling

ARF

cls.

Rotation Detection Module

H×W×32

H×W×256

H×W×CH×W×256

H×W×256
Aligned features

H×W×1

ACL

Anchor-guided Correction Module

ARN

H×W ×256
Neck features

H×W×5
anchors

H×W×18
offsets

H×W×256

cls.

reg. reg.

Figure 3. Structure of the proposed SAADet. The SAADet system consists of an SSANet backbone, a
Feature Pyramid Network (FPN) [6], an Anchor-guided Correction Module (AGCM) and a Rotation
Detection Module (RDM). Detection heads, consisting of AGCM and RDM, operate at every scale
level of the feature pyramid. AGCM uses the Anchor Refinement Network (ARN) to correct the
preset horizontal anchor to generate a high-quality rotated anchor. We then feed the rotated anchors
and features into the AC Layer (ACL) to obtain the aligned features. The RDM uses Active Rotating
Filters (ARFs) [15] to decouple the aligned features into rotation-sensitive features (RSFs) and RIFs.
Then, the cls. branch and reg. branch yield the final detections.

3.1. SSANet Backbone Architecture

A bird’s-eye view of targets on the ground from a high altitude reveals significant
scale differences in their appearance. Suppose valid contextual information about the
surrounding background and environment closely linked to these targets can be obtained.
In that case, a better understanding of their shape, orientation and scale can be achieved,
enabling more effective and accurate predictions. Conventional CNNs, constructed by
stacking small and fixed convolution kernels, struggle to comprehend the entire scene and
accurately identify objects based on limited or local features. However, the computing
burden is significantly increased if we stack multiple small convolution kernels to achieve
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a larger receptive field. In order to tackle this issue, we introduce the SSANet backbone
network as seen in Figure 4a to extract comprehensive and adaptable contextual information
while ensuring a streamlined network architecture.

det

𝐻 ×𝑊 × 3

Stage 1
basic block× 𝐷1

patch_embed 1

patch_embed 2

patch_embed 3

Stage 2
basic block× 𝐷2

patch_embed 4

Stage 3
basic block× 𝐷3

Stage 4
basic block× 𝐷4

BatchNorm

+

BatchNorm

+

Space
Selection

FFN

basic block

SS operator

FC

GELU

FC

Attention

DW-Conv

FC

GELU

FC

Mlp

(𝑏)

patch_embed 2,3,4
3 × 3 conv, s2, p1 

BN

patch_embed 1
7 × 7 conv, s4, p3 
BN

(𝑐)(𝑎)

Figure 4. (a) The overall architecture of SSANet. (b) Detailed illustration of the basic block. SS
operator as its core operator. Each basic block comprises batch normalization, attention-based Space
Selection, and a feed-forward network (FFN). (c) The patch-embedding layers follow conventional
CNN designs. As seen in patch-embed 1, ‘s4’ and ‘p3’ represent stride 4 and padding 3, respectively.

The SSANet architecture is primarily based on a stacking basic block structure. As
shown in Figure 4b, each basic block has two residual sub-blocks: the Space Selection sub-
block is in the front, followed by the FFN sub-block. The SS operator, seen in Figure 5, is the
core component of SSANet and implements the spatial attention mechanism through Space
Selection. Based on the inputs in a learnable manner, this operator dynamically evaluates
the importance of the feature maps of multiple different depth kernels. The corresponding
attention scores are obtained to perform a weighted summation of these feature maps.
The operator can adaptively select kernels with different receptive fields according to
different targets. The FFN sub-block’s design utilizes large kernels with different receptive
fields adaptively. The FFN sub-block introduces more complex nonlinear relationships that
map features from the input dimension to higher-dimensional latent spaces, augmenting
the expressive power of the model and aiding the model in better learning higher-order
representations of the input features, as well as understanding and capturing the subtleties
and correlations in the input features.

Further clarification is needed; the last layer of FC in the Space Selection sub-block is
not a traditional fully connected one but a point-wise convolution. Point-wise convolution
is a typical convolution operator used in CNNs. It is often used to reduce or expand the
number of channels of a feature map or for feature fusion; it can replace the role of a fully
connected layer. This is because it has few parameters and can reduce the number of
parameters by controlling the number of output channels, reducing the model’s complexity
and computational cost. In contrast, the fully connected layer requires many parameters,
which can easily lead to overfitting and computational burden.

The patch_embed downsampling layer is used to acquire hierarchical feature maps
as depicted in Figure 4c. The patch_embed layer is placed before the stage layer to down-
sample the image’s input resolution by a factor of four. Similarly, the patch_embed layer
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applies downsampling to input feature maps by reducing their size by half using 2, 3, and
4 layers.

𝐒

×

𝐗

Conv
ℱ(5,1)
𝑑𝑤

Conv
ℱ(7,3)
𝑑𝑤 ×

+ Element-wise Summation × Element-wise multiplication SigmoidS

Conv
ℱ1×1

Conv
ℱ1×1

𝐗1

𝐗2

Spatial Selection 
Adaptive+ SConv

ℱ2→𝑁

Avg
Max
Pool

Conv
ℱ 23,1

+
𝐘

×Split
Conv
ℱ1×1𝐗

𝐗𝑆𝑃

Figure 5. Detailed conceptual illustration of the SS operator, visualizing the operation of the spatial
selection mechanism. Specifically, the SS operator enables the network to dynamically select appro-
priate large receptive field features based on different objects. The underlying principle of this design
is that choosing receptive fields with different dimensions makes it possible to collect contextual
information at various scales. This, in turn, aids in recognizing objects of varying sizes and shapes.
The SS operator can efficiently adjust to complicated situations and objects by selectively choosing
receptive fields. This strategy of splitting a singe oversized kernel convolutions also tackles the issue
of a substantial rise in parameter quantity.

The stacking of basic blocks in SSANet is impacted by ConvNeXt [36], PVT-v2 [37],
VAN [38], ConvFormer [39], metaFormer [40], and LSKNet [41] models. The organization
method is specified in Table 1, where the hyperparameter Ci denotes the number of feature
channels in the ith stage layer, and Si indicates the number of basic blocks in the ith
stage. The SSANet model we propose consists of only two versions, requiring eight
hyperparameters to describe its structure.

Table 1. Versions of SSANet in this study. The variable Ci denotes the number of feature channels,
and Di denotes the number of basic blocks in the ith stage.

Model {C1, C2, C3, C4} {D1, D2, D3, D4} #P

SSANet-T {32, 64, 160, 256} {3, 3, 5, 2} 3.99 M
SSANet-S {64, 128, 320, 512} {2, 2, 4, 2} 11.74 M

3.2. Mechanisms for Adaptive Spatial Selection

A wide receptive field is essential for tasks involving target recognition. Nevertheless,
merely extending the size of the receptive field results in an escalation of the parameter
quantity and computing complexity. This method may not adequately cater to the dynamic
and broad range of contexts required for precise object recognition.

Recent studies have shown that well-designed convolutional networks with large re-
ceptive fields can achieve performance similar to that of Transformer [42]-based models.
ConvNeXt [36] embeds 7 × 7 deep convolutions in its backbone, significantly improving
downstream tasks’ performance. RepLKNet [43] also achieved surprising performance
by reparameterizing using a 31 × 31 convolution kernel. SLaK [44] further expanded the
kernel to 51 × 51 by decomposing the convolution kernel and sparse grouping methods.
The decomposition of the large kernel of VAN [38] performs an efficient decomposition to
form the convolutional attention.

In order to address the difficulties raised at the beginning of this sub-section, according
to the above technical line, we suggest directly splitting a single oversized kernel into a
sequential succession of deep convolution kernels. These kernels have progressively
increasing size and dilatation rates, allowing for contextual information extraction at
different scales. For example, the oversized kernel with a kernel size of 23 and dilation rate
of 1 is split into two large kernels. The first large kernel of the splitting has a kernel size
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of 5 and a dilation rate of 1. The second large kernel has a kernel size of 7 and a dilation
rate of 3. The theoretical receptive field is unchanged before and after the splitting. After
splitting the two large kernels, which are connected serially, their respective feature maps
are subjected to attention weight calculation, and the features of the more critical kernels
are dynamically selected for weighted reinforcement according to different inputs X to
realize the spatial attention mechanism and achieve the purpose of spatial feature adaptive
selection. Equation (1) expresses the ith deep kernel receptive field calculation in the kernel
series after splitting the single oversized kernel:

ki−1 ≤ ki; d1 = 1, di−1 < di ≤ RFi−1,

RF1 = k1, RFi = di(ki − 1) + RFi−1.
(1)

To avoid creating gaps between feature maps, we set a maximum limit on the dilation
rate in convolution. For example, we can split a single oversized kernel into two or three
smaller kernels as shown in Table 2; the two oversized kernels have a theoretical receptive
field size of 23 or 29, respectively. This splitting strategy has two significant advantages.
First, it directly evaluates the importance of different kernels based on input with distinct
receptive fields, allowing for adaptability in spatial selection and the ability to collect
features at various scales and splitting a single oversized kernel into consecutive large
kernels with greater efficiency than using a single oversized kernel. As shown in Table 2,
our splitting strategy effectively decreases the parameter count for an equivalent theoretical
receptive field compared to a single oversized kernel.

Table 2. The splitting of a single oversized kernel into deep kernel sequences (assuming 64 channels),
assessing the number of parameters and floating-point operations for two common scenarios. Here,
the variable ‘k’ represents the kernel size, whereas ‘d’ represents the dilation rate.

Receptive Field (k, d) Sequence #P FLOPs

23 (23, 1) 40.4 K 42.4 G
(5, 1) −→ (7, 3) 11.3 K 11.9 G

29 (29, 1) 60.4 K 63.3 G
(3, 1) −→ (5, 2) −→ (7, 3) 11.3 K 13.6 G

Given a split sequence consisting of N depth kernels
[
F dw

i

]N

i=1
, each kernel is then

followed by a 1 × 1 convolution kernel F 1×1, that is

Xi = F 1×1
i

(
F dw

i (X)
)

, i ∈ [1, N], (2)

The function F dw
i (·) indicates that the kernel size of the deep convolution is k and the

dilation rate is d.
This design performs channel fusion for each spatial feature vector. With the 1 × 1

convolution layer, we could transform and adjust the channel dimensions to better suit
different object tasks and scenarios.

We make a spatial selection adaptive mechanism to help the detector capture the most
exciting area of spatial context, stop from looking at the global context, and only look at the
context around each object’s position, which lowers the effect of areas that are not relevant.
This mechanism selects extensive kernel features with varying scales. To be more precise,
we first perform an element-wise summation of features captured from various kernels
with different receptive field ranges:

X̃ =
N⊕

i=1

Xi, (3)

where
⊕

denotes element-wise summation.
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To effectively process the spatially pooled features from Xi in the channel dimension,
we utilize average and maximum pooling, represented as Pavg (·) and Pmax (·). After-
wards, we link these combined features in the channel dimension. In order to enhance
the interaction among various pooling features, we utilize a convolution layer F 2→N(·)
to convert them into N distinct spatial attention maps. This allows for the merging and
interaction of spatial data at different levels, resulting in a more varied and impactful
spatial attention map XSA:

XSA = F 2→N([Pavg (X̃);Pmax(X̃)]), (4)

To accomplish spatial selection adaptivity, we employ a sigmoid activation function to
calculate the mask for XSA

i . Afterwards, we evaluate and weigh the features of Xi through
the mask and carry out an element-wise summation of the N-weighted feature maps over
the channel dimension. Next, channel fusion is performed using the 1 × 1 convolution
kernel F 1×1 to provide a score S, which represents spatial attention:

S = F 1×1

(
N⊕

i=1

(σ(XSA
i )

⊗
Xi)

)
, (5)

The symbol σ(·) denotes the sigmoid function, whereas
⊗

denotes element-wise
multiplication.

The output Y of the SS operator is created by performing element-wise multiplication
between the input features X and S, which is similar to the method described in [38,39,45]:

Y = X
⊗

S. (6)

Figure 5 presents a comprehensive conceptual depiction of an SS operator, showcas-
ing a clear explanation of how the spatial selection mechanism effectively captures the
appropriate broad receptive field for various objects in an adaptive manner.

3.3. Anchor-Guided Correction Module (AGCM)

Anchor Refinement Net. Conventional object detectors that rely on anchors have diffi-
culty accurately detecting objects with different scales and orientations. In order to tackle
this issue, we propose a lightweight Anchor Refinement Network (ARN) that consists of
two simultaneous branches: one for anchor classification and another for anchor regression.
The first branch sorts an anchor into two categories: foreground and background, whereas
the second branch refines horizontal anchors to high-quality oriented anchors as indicated
by the blue arrows in Figure 3. We only require the regressed oriented anchor to guide AC
in adjusting the sampling position during the training stage. Consequently, the inference
phase eliminates the classification branch. Utilizing the one-to-one design of the anchorless
detector, we introduce a singular square anchor for every place in the feature map. Further-
more, we do not exclude class predictions with low confidence, as the final forecast reveals
certain negative class predictions to be positive.

Aligned Convolution. A common 2D convolution computational procedure is illus-
trated here. X, Y denote the input and output feature map, respectively, and the position of
each point on X takes the value of the domain Ω = {0, 1, . . . , H − 1} × {0, 1, . . . , W − 1}.
First, we use a standard grid Gk×k = {(i, j)} for sampling, where −

⌊
k
2

⌋
≤ i, j ≤

⌊
k
2

⌋
. Next,

the sampled values are combined using a weighted summation with the matrix W. The
grid G3×3 = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)} which means that a kernel size is 3 and a
dilation rate is 1. For every point p in the domain Ω on Y, we have

Y(p) = ∑
g∈ Gk×k

W(g) · X(p + g), (7)

Compared with common convolution, AC introduces an offset scope, represented as
T , at each point p:
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Y(p) = ∑
g∈ Gk×k ;t∈ Tk×k

W(g) · X(p + g + t), (8)

The offset scope (T ) is determined by comparing the sampling position of the anchor
with the usual sampling position ((p + g)) for a given location (p). Denote the coordinates
of the appropriate anchor at point (p) as ((x, y, w, h, θ)). The anchor-based sampling position
(Lg

p) is defined for each (Lg
pg ∈ Gk×k) as follows:

Lg
p =

1
S

((
x
y

)
+ R(θ) · g

⊗(w
k
h
k

))
, (9)

where k denotes the size of the kernel, S denotes the stride of the feature map, and R(θ) is

a matrix defined as R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
represents a rotation. The offset scope T at

the position p is defined as

T =
{

Lg
p − p − g

}
g∈ Gk×k

. (10)

This way, we can convert a given position X(p) according to an axis-alignment convo-
lution feature’s corresponding oriented anchor p into an arbitrarily oriented feature.

We propose AC to extract features of the mesh distribution by adding an extra offset
scope guided by an oriented anchor. Unlike Deformable Convolution, the offset scopes in
AC do not need to be learned but can be inferred directly from the oriented anchor.

Aligned Convolution Layer. After introducing the AC, we developed an Aligned Con-
volution Layer (ACL) as shown in Figure 6. First, we decoded the anchor prediction grid
with dimensions of H × W × 5 into absolute anchor coordinates denoted by (x, y, w, h, θ).
We then determined the offset scope by applying Equation (10). This offset scope was
then combined with the input features in the AC to extract the alignment features. We
must highlight that we employed a uniform sampling method for every anchor (with
5 dimensions) to collect points (with 3 rows and 3 columns). This allowed us to acquire an
offset scope with 18 dimensions (consisting of 9 coordinates for both x and y offsets). Blue
arrows represent these coordinates in the diagram. Additionally, it is essential to highlight
that ACL functions as a lightweight convolutional layer with minimal computational delay
in determining the offset scope.

AlignConv

H×W×256
Neck features

H×W×256
Aligned features

H×W×256 H×W×5
anchors

H×W×18
offsets

reg.

ARN

Figure 6. Elaborate conceptual depiction of the AGCM module. The ARN corrects the initial
horizontal anchor to an oriented anchor, which guides the AC to complete the feature alignment of
the Neck features to the object.
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3.4. Rotation Detection Module (RDM)

We used RetinaNet as our baseline model, integrating its architectural design.
Feature Decoupling. To fix the problem of the irrelevance between predictive classifi-

cation and localization regression, we added a feature decoupling module (RDM), as seen
in Figure 3, to make object detection more accurate. At first, we employed ARF to encode
the angle information. The ARF is a kernel with k × k × N dimensions. It is rotated N − 1
times during convolution to produce Y with N angle channels. The default value for N is 8.
As far as a X and the ARF F are concerned, convolved with the ARF F , the nth rotation
result of Y can be represented as follows:

Y(n) =
N−1

∑
i=0

F (i)
θn

· X(i), θn = n
2π

N
, n = 0, . . . , N − 1, (11)

The notation Fθn represents the clockwise rotation of F by an angle of θn. Similarly,

F (i)
θn

and X(i) refer to the ith individual channel orientations of Fθn and X, respectively. We
successfully acquired RSFs containing clear and specific angular information encoding by
implementing ARF on the convolution layer.

Regression tasks need OSFs, whereas object classification tasks demand RIFs. The
objective of our study as stated in the literature [15] is to extract RIFs by pooling OSFs. The
method is direct: choose the orientation channel that shows the most significant reaction as
the output feature,

Ŷ = Pmax

(
Y(i)

)
, i = 0, . . . , N − 1. (12)

We can improve the object classification accuracy and reliability by aligning object
features with different orientations. RIFs necessitate fewer and more efficient parameters
in comparison to rotation-sensitive features. After combining the dimensions of height (H),
width (W), and 256, a feature map with 8 orientation channels will have the dimensions of
H × W × 32. Afterwards, we pass on to the rotation-sensitive and rotation-independent
features in two separate sub-networks to forecast the positions and the categories.

Regression Targets. Each oriented anchor is represented as a quintuple (b = (x, y, w, h, θ)),
where x and y represent the center coordinates, w and h designate the width and height di-
mensions, and (θ) denotes the angle concerning the horizontal. The regression process aims to
forecast the offset between each positive anchor and the adjacent GT. In order to provide re-
gression invariance of scale and position, the offset vector (∆ =

(
δx, δy, δw, δh, δθ

)
) is commonly

parameterized as follows:

(
δx, δy

)
=

(
1

bw
(gx, bx)−

1
bh

(
gy, by

))
· R⊤(θ),

(δw, δh) = log(gw, gh)− log(bw, bh),

δθ =
1
π

(
θg − θ + kπ

)
,

(13)

The symbols b and g represent the anchor and its GT, respectively. The integer k
ensures that the rotation of the anchor and its GT, given by

(
θg − θ + kπ

)
, falls within the

range of [−π
4 , 3π

4 ].
In AGCM, we set θ = 0 to represent the level anchor. Subsequently, the regression

object can be represented by Equation (15). In RDM, we initially decode the final output of
the regression branch and then recalculate the regression object by Equation (15).

Strategy for matching. We employ the IoU as the metric to evaluate the effectiveness
of our matching method. An anchor is considered positive if its IoU value exceeds the
foreground threshold. On the other hand, we label an anchor as negative if its IoU value
falls below the background threshold. Contrary to the IoU calculation for horizontal
anchors, we compute the IoU for two oriented anchors. In AGCM and RDM, establishing
the foreground and background thresholds to 0.5 and 0.4 is customary, respectively.
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The multi-task loss function. The SAADet loss is a comprehensive loss function that
combines the loss of AGCM and RDM, consisting of two components. For every horizontal
anchor/oriented anchor, we assign a category label to each component and determine its
position by regression. We explicitly define the loss function as follows:

L =
1

NF

(
∑

i
Lcls

(
cA

i , lg
i

)
+ ∑

i
1[l∗i ≥1]Lloc

(
xA

i , gi

))

+
λ

NR

(
∑

i
Lcls

(
cR

i , lg
i

)
+ ∑

i
1[l∗i ≥1]Lloc

(
bR

i , gi

))
.

(14)

Here, λ represents the loss balance hyperparameter, 1[·] denotes the indicator function,
NA and NR refer to the number of positive anchors in AGCM and RDM, respectively, and
i represents the index of the samples in the mini-batch. cA

i and bA
i indicate the index of

the ith sample prediction category and correction location in AGCM, whereas cR
i and bR

i
represent the predicted object category and ith sample position in the RDM. The variables
lg
i and gi denote the proper category and position of the object, respectively.

4. Experimentation
4.1. Datasets

We conducted tests using two publicly accessible remote sensing datasets, HRSC2016
and UCAS-AOD, both annotated with oriented GT boxes.

HRSC2016 [46] is an extensive dataset specially designed for aerial ship detection. It is
made up of 1061 photos with sizes that vary from 300× 300 to 1500× 900. We divided these
photos into 436 for the training set, 181 for the validation and 444 for the test set. Dense
distribution, diverse scales, complex image backgrounds, and high similarity between the
ship and the near-shore texture characterize the area along the shore. In order to maintain
consistency in our experimentations, we adjusted the size of the images to 800 × 800 for
both training and testing to focus on a single scale.

The UCAS-AOD [47] dataset is an aerial image dataset designed for detecting two
types of objects: cars and airplanes. All images are captured from various global regions
using Google Earth. This dataset comprises approximately 2420 images with a total of
14,596 instances, and the image sizes range from 1280 × 659 to 1372 × 941 pixels. These
images depict diverse types of cars and airplanes in various environmental conditions,
including different lighting, weather, and seasonal variations. The dataset exhibits a diverse
distribution of targets, encompassing various models, colors, and sizes of cars and airplanes,
as well as their distributions in different environments such as airport runways, parking
lots, and urban streets.

4.2. Evaluation Metrics

The standard evaluation metrics for object detection are Recall, Precision, Average
Precision, Precision–Recall Curve, mean Average Precision, and frames per second. The
above metrics are abbreviated below: R, P, AP, PRC, mAP, and FPS. The first five metrics
evaluate detection accuracy, whilst the final metric evaluates the detection speed.

The IoU measures the proportion of overlap between the predicted box and the GT box
regarding their total area. It serves as an indicator of the accuracy of object identification.
We explicitly define the IoU as follows:

Intersection = area ( Prediction ∩ Ground Truth )

Union = area ( Prediction ∪ Ground Truth )

IoU =
Intersection

Union

(15)
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The classifications are determined based on the following outcomes: True Positive,
False Negative, False Positive, and True Negative. The above outcomes are abbreviated
below: TP, FN, TP, and FP. Recall and Precision are defined as the following:

Recall =
TP

TP + FN
(16)

Precision =
TP

TP + FP
(17)

The addition of True Positives and False Negatives represents the total number of GT
boxes. In contrast, the sum of True and False Positives reveals the number of objects that
have been predicted as positive. Therefore, the number of accurately predicted objects out
of the total detected objects determines P, and the number of correctly predicted objects out
of the total actual objects determines R. AP, or Average Precision, is a metric that considers
both Precision and Recall. It is defined as follows:

AP =
∫ 1

0
Precison(r)dr (18)

AP represents the Recall’s average precision, which ranges from 0 to 1. We obtain
the PRC, a graphical representation, by determining the maximum P value for each R.
The area of the region under the graph is the AP. We calculate mAP, or mean Average
Precision, by taking the average precision across all categories. We represent it using the
following formula:

mAP =
1
N

N

∑
n=1

APn (19)

The mAP is a metric that measures the accuracy of object detection. The value of N
denotes the number of different target categories being considered. Therefore, a higher
mAP score suggests a more accurate and exact detector.

Aside from examining accuracy, the speed of detection is also a crucial component in
thoroughly evaluating the detection performance. Commonly, we quantify the speed of
detection in frames per second (FPS), indicating the number of samples we can recognize
in a single second. The duration required to process the photos can also quantify the speed.

4.3. Implementation Details

Multi-scale object detection is achieved by utilizing the P3, P4, P5, P6, and P7 layers of
the feature pyramid. We assign a single anchor to each point on the feature map to predict
neighboring objects. This study utilizes random flips as a means of augmenting the data.
To ensure high-quality detection, we set the positive example match threshold in AGCM at
0.5 and RDM at 0.5.

This study adapts the mAP as the metric for evaluation. We use the mAP metric from
the PASCAL VOC 2007 Challenge for the HRSC2016 and UCAS-AOD to compare with
other methods. We carry out a series of ablation experiments on the HRSC2016, known
for its vast variations in aspect ratio and scale in remote-sensing images of ships. These
variations provide a considerable barrier to object detection in aerial images.

We train and test the model at a single scale using only one RTX 2080Ti graphics
card. The network is trained to adopt the Stochastic Gradient Descent (SGD). We set the
batch size and initial learning rate of SGD to 8, 2.5 × 10−3, respectively. The momentum
value is set to 0.9, while the weight decay value is set to 0.0001. We train 48 and 24 epochs
on HRSC2016 and UCAS-AOD, respectively. The input samples for the HRSC2016 and
UCAS-AOD have a resolution of 800 × 800. In this study, all experiments are performed
using the framework of oriented object detection MMRotate.
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4.4. Ablation Studies

The selected baseline consists of the ResNet backbone and the RetinaNet detector. The
backbones of our proposed methods all adapt SSANet-S in ablation studies.

Assessing the validity of different versions of SSANet. The performance of the network
is affected by its depth and width; the depth is reflected in the stacking of convolution
kernels, i.e., the stacking of basic blocks, and the width is expressed in the number of
channels in the convolution kernel. The depth of SSANet-T is slightly larger than that of
SSANet-S. However, as shown in Table 3, the width is halved in each stage, which results
in insufficient fusion of the features in the channel dimension, and so it lags in the final
mAP metrics by 1.45%. So in this study, we use SSANet-S.

Table 3. Comparison of detection mPA for two versions of SSANet backbone networks, SSANet-S
and SSANet-T.

Model {C1, C2, C3, C4} {D1, D2, D3, D4} mAP (%)

SSANet-T {32, 64, 160, 256} {3, 3, 5, 2} 89.27
SSANet-S {64, 128, 320, 512} {2, 2, 4, 2} 90.72

Evaluation of different splitting styles for a single oversized kernel. The number of
kernels after splitting is an important factor for the SS operator. We implement the splitting
strategy based on Equation (1). We thoroughly examine the impact on performance when
breaking down a oversized kernel into multiple kernels of varying depths. We conduct this
study assuming a fixed receptive field size of 29. As shown in Table 4, The results show that
splitting an single oversized kernel into two smaller depth kernels can achieve equilibrium
in speed and accuracy, resulting in the best FPS and mAP performance.

Table 4. This study examines the impact of varying numbers of splits on inference FPS and mAP,
assuming a theoretical receptive field of 29. The trials illustrate that the process of breaking a single
oversized kernel into two smaller, more concentrated kernels effectively preserves both performance
and precision.

(k, d) Sequence Receptive Field Num. FPS mAP (%)

(29,1) 29 1 15.8 88.57
(5, 1) −→ (7, 4) 29 2 17.0 89.23

(3, 1) −→ (5, 2) −→ (7, 3) 29 3 16.3 88.91

A single oversized kernel suffers from too many parameters, high computational
complexity, and slow inference, and its fixed receptive field may also intensify spatial
misalignment with the object, affecting the detection accuracy. In contrast, splitting the
oversized kernel into more kernels, although it will increase the number of parameters by
a small amount, which will have some impact on the performance, the bigger problem
is that more kernels will lead to a relatively more minor corresponding receptive field,
which will not allow the object to efficiently and dynamically select the required contextual
information, which in turn will have an impact on the detection accuracy.

Validity of receptive field size and selection type. The findings in Table 5 indicate that
a receptive field size of 23 produces the most optimal outcomes. The size of the receptive
field is critical in object appearance matching and identification. A limited receptive field
can result in the inadequate extraction of the object’s features and important contextual
information, impeding precise object recognition. On the contrary, if the receptive field is
too big, it might cause more noise because of the increased distance and extra space. This
can lead to the noise overshadowing smaller and medium-sized objects. Furthermore, an
excessively expansive receptive field can cause the model to incorrectly see background
noise as a component of the object, reducing accuracy and resulting in missed detections.
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As a result, there is a compromise in determining the receptive field size, ensuring sufficient
background information is retained while effectively capturing object features.

Table 5. The effectiveness of ablation study is assessed by examining the impact of different receptive
field sizes and selection types while using a single oversized kernel that is separated into two
depth kernels in a sequence. CS (Channel Selection) is analogous to SKNet [48]. On the other
hand, SS (Spatial Selection) is a method that we have developed and put forward. We achieved the
optimal performance of SSANet by using spatial selection to obtain a large receptive field adapted to
the target.

(k1, d1) (k2, d2) CS SS Receptive Field FPS mAP(%)

(3, 1) (5, 2) 11 15.9 88.46
(5, 1) (7, 3) 23 16.7 88.65
(7, 1) (9,4) 39 15.4 87.97

(5, 1) (7, 3) ✓ 23 16.8 88.23
(5, 1) (7, 3) ✓ 23 17.0 90.72

Furthermore, the empirical results in Table 5 demonstrate that our suggested spatial
selection method surpasses channel attention methods (such as SKNet) in aerial object
detection tasks. The spatial selection method’s superiority stems from its ability to accu-
rately represent the scale and shape of various targets in aerial images, which frequently
exhibits significant differences in object scale and shape. Conversely, conventional channel
attention mechanisms exclusively concentrate on the channel dimension’s feature response,
disregarding the objects’ distribution in the image space. Our spatial selection method can
more precisely capture position and shape information by accurately simulating distinct
objects’ spatial scales and aspect ratios.

Comparing the Efficacy of Maximum Pooling and Average Pooling. When looking at
how well max pooling and mean pooling work in CNNs, it is clear that both reduce the
number of dimensions in the feature map, make the model run faster, and use less comput-
ing power. Max pooling is a highly successful method for recognizing key aspects of an
image, such as edges and textures. This process significantly improves the model’s capabil-
ity to detect and recognize crucial features. Conversely, average pooling effectively reduces
noise and fine details in the image while retaining more background information, making
it well suited for jobs that involve recognizing backgrounds and understanding scenes.

As is evident from Table 6, combining maximum pooling and average pooling im-
proves detection accuracy by 1.06% and 1.97%, respectively, compared to using only one
pooling method. By utilizing this integrated method, the model can extract contextual infor-
mation at several scales more efficiently, resulting in enhanced accuracy in object detection.

Table 6. A study examining the influence of maximum and average pooling on spatial selection in
the SSANet backbone we developed. The results suggest that using both maximum and average
pooling simultaneously yields the best outcomes.

Pooling
FPS mAP (%)

Max. Avg.

✓ 17.0 89.14
✓ 17.0 88.75

✓ ✓ 17.0 90.72

We conducted a study to examine the impact of several combinations, including
SSANet, AGCM, and RDM of SAADet, on performance. Our findings revealed that the
SSANet backbone is effective in the spatial selection mechanism.

Assessing the validity of different components of SAADet. To determine the validity
of the proposed components, we performed component configuration experiments on
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the HRSC2016. Table 7 displays the mAP results of the experiment. At first, because of
the preset one anchor box and the challenge of capturing the critical features needed for
object detection, the baseline model attained a mAP level of 74.16%. Adding SSANet
made detection work 4.66% better, which suggests that the SSANet backbone network
was able to obtain more accurate feature representations. Despite having only one preset
anchor, AGCM efficiently utilized the critical features to correct the horizontal anchor
accurately during the learning process, resulting in a 5.21% enhancement in detection
performance. After that, SAADet obtained a 6.69% improvement in detection performance
by using the aligned features decoupling method called ADM. This is a significant increase
of 16.56% improvement compared with the baseline model. This very visual demonstrates
the effectiveness of our suggested SAADet.

Table 7. The outcomes of the ablation study on the detection performance for various combinations
of SAADet components. SAADet delivers optimal performance by effectively combining SSANet,
AGCM, and RDM to align at the spatial, feature, and task levels.

Baseline Different Versions of SSADet

with SSANet? - ✓ ✓ ✓
with AFCM? - - ✓ ✓
with ADM? - - - ✓

mAP(%) 74.16 78.82 84.03 90.72

Impact of variable numbers of ARN stacking on performance. This section examines
how different numbers of ARN stacking, i.e., the number of correction steps, affect perfor-
mance. The model sans ARNs used a matching threshold of 0.4 for positive cases during
the detection phase. The one-stage ARN component set the thresholds for the correction
and detection stages at 0.5. We established the two-stage ARN component threshold at 0.4,
0.5, and 0.7. Table 8 illustrates a 4.44% enhancement in performance achieved by utilizing
the one-stage ARN. This improvement can be credited to replacing horizontal anchors with
orientated anchors, which results in the model being provided with superior samples more
accurately aligned with the object’s critical features. Nevertheless, utilizing a two-stage
ARN led to a decrease in performance of 1.26% compared to a one-stage ARN. Raising the
threshold during the detection phase can substantially decrease the number of positive
anchors that surpass the existing matching threshold. This can lead to a scarcity of positive
anchors and a pronounced imbalance between positive and negative anchors. Therefore,
the detection header employs a single-stage ARN.

Table 8. The ablation study evaluates the effectiveness of different correction stages when em-
ploying ARN for anchor correction. The study shows that the best performance is attained with
one-stage refinement.

Refinement Stages 0 1 2

mAP (%) 86.28 90.72 89.46

4.5. Comparative Experiments

The backbones of our proposed methods all use SSANet-S in comparative experiments.
HRSC2016 Results. Our method achieves the highest ranking with an outstanding

mAP of 90.72% on the HRSC2016 as shown in Table 9. Significantly, our method utilizes a
single horizontal anchor at every position on the feature map, leading to quicker inference
and surpassing frameworks that depend on many superfluous predetermined anchors.
These data indicate that using several anchors is unnecessary for efficient oriented object
recognition. By configuring the input image size to 800× 800 pixels, our model significantly
improves 17 frames per second on the RTX 2080 Ti GPU, showcasing outstanding real-
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time performance. Figure 7 is provided below. Our method effectively demonstrates the
detection outcomes on the HRSC2016, providing clear visual insights.

Figure 7. Visual demonstration of the final detection results of different categories on HRSC2016
adapting our method. Due to the high resolution of the image, please zoom in to view the test results.

Table 9. Comparison of mAP values achieved using different methods on the HRSC2016. The
highlighted numbers in the table represent the highest mAP scores achieved compared to all
other methods.

Method Backbone Input_Size mAP(07)(%) mAP(12)(%)

R2CNN [49] ResNet101 800 × 800 73.07 79.73
RC1&RC2 [46] VGG16 - 75.7 -

Axis Learning [50] ResNet101 800×800 78.15 -
Rotated RPN [10] ResNet101 800 × 800 79.08 85.64

TOSO [51] ResNet101 800 × 800 79.29 -
RRD [52] VGG16 800 × 800 84.30 -

Rol Transformer [12] ResNet101 512 × 800 86.20 -
RSDet [53] ResNet50 800 × 800 86.5 -

Gliding Vertex [54] ResNet101 512 × 800 88.20 -
OPLD [55] ResNet50 1024 × 1333 88.44 -

BBAVectors [56] ResNet101 608 × 608 88.60 -
DRN [57] Hourglass104 768 × 768 - 92.70
DAL [58] ResNet101 416 × 416 88.95 -

RIDet-Q [59] ResNet101 800 × 800 89.10 -
R3Det [11] ResNet101 800 × 800 89.26 96.01
DCL [60] ResNet101 800 × 800 89.46 96.41
SLA [61] ResNet101 768 × 768 89.51 -
CSL [62] ResNet50 800 × 800 89.62 96.10

RIDet-O [59] ResNet101 800 × 800 89.63 -
CFC-Net [63] ResNet101 800 × 800 89.70 -

GWD [64] ResNet101 800 × 800 89.85 97.37
YOLOv8 OBB DarkNet53 640 × 640 90.03 95.01
TIOE-Det [65] ResNet101 800 × 800 90.16 96.65
S2ANet [14] ResNet101 512 × 800 90.17 95.01

SSADet (Ours) SSANet (Ours) 800 × 800 90.72 97.38
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Results on UCAS-AOD. The results of our proposed method are analyzed in Table 10,
where it achieves a mAP of 90.47%. This ranks it at the top and shows a clear advantage
over other detectors. Figure 8 visualizes the detection results on the UCAS-AOD dataset.
The detection results highlight the importance of aligning spatial, feature, and task levels
to achieve precise rotated object detection. From Figure 8, it can be observed that both the
dense distribution of cars and airplanes in the figures numbered 1 and 5 are accurately
detected, demonstrating the effectiveness of our method in detecting densely distributed
objects. Furthermore, in the figure numbered 2, the detected directions of the vehicles
perfectly match the curvature of the circular road, validating the accuracy of our method
in detecting objects with various orientations. The successful detection of large vehicles
with high aspect ratios in the figures numbered 3 and 4, as well as the detection of multi-
scale airplanes in the figure numbered 6, further demonstrates the advantages of our
method. Additionally, even in cases where the airport is partially obscured by thin clouds
as shown in the figure numbered 7, and where significant brightness contrast is present as
shown in the figure numbered 8, our method remains robust in detecting airplanes without
interference, showcasing the robustness of our approach.

① ②

③ ④

⑤

⑧⑦

⑥

Figure 8. Visual demonstration of the final detection results of different categories on UCAS-AOD
adapting our method. To identify the location of the test results, we have marked the top right corner
of each image with a circled number. Due to the high resolution of the image, please zoom in to view
the test results.
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Table 10. Comparison of mAP values achieved using different methods on the UCAS-AOD. The
highlighted numbers in the table represent the highest mAP scores achieved compared to all
other methods.

Method Backbone Input_Size Car Airplane mAP(%)

R-Yolov3 [66] Darknet53 800 × 800 74.63 89.52 82.08
R-RetinaNet [9] ResNet50 800 × 800 84.64 90.51 87.57

Faster RCNN [67] ResNet50 800 × 800 86.87 89.86 88.36
Rol Transformer [12] ResNet50 800 × 800 88.02 90.02 89.02

RIDet-Q [59] ResNet50 800 × 800 88.50 89.96 89.23
SLA [61] ResNet50 800 × 800 88.57 90.30 89.44

CFC-Net [63] ResNet50 800 × 800 89.29 88.69 89.49
TIOE-Det [65] ResNet50 800 × 800 88.83 90.15 89.49
RIDet-O [59] ResNet50 800 × 800 88.88 90.35 89.62

YOLOv8 OBB DarkNet53 640 × 640 89.73 90.05 89.89

SSADet (Ours) SSANet (Ours) 800 × 800 90.18 90.76 90.47

As can be seen from Table 11, SSADet has the lowest floating-point arithmetic and
parameter counts, while our mAP metrics rank first in Tables 9 and 10. These fully demon-
strate that our method achieves an optimal balance between computational cost and
detection accuracy.

Table 11. Comparative tests on computational metrics.

Method Backbone Mem (GB) Flops (G) Params (M) FPS

Rol Transformer ResNet50 8.67 122.61 55.13 12.3
R-RetinaNet ResNet50 3.38 131.97 36.42 20.39

CSL ResNet50 4.40 144.42 37.35 24.07
S2ANet ResNet50 3.14 120.78 38.60 11.18
R3Det ResNet50 3.62 205.23 41.90 10.6

Gliding Vertex ResNet50 8.45 121.51 41.14 17.91
GWD ResNet50 3.39 131.97 36.42 15.97

YOLOv8 OBB DarkNet53 2.74 169.10 44.48 16.37

SSADet (Ours) SSANet (Ours) 4.48 98.24 24.88 17.28

5. Conclusions and Future Work

This study presents the Staged Adaptive Alignment Detector (SAADet), which seeks
to enhance the efficiency of the single-stage detector by focusing on three levels of optimiza-
tion: spatial alignment, feature alignment, and task alignment. Initially, we use the SSANet
backbone to extract features that match the object’s size. Afterwards, the alignment of spa-
tial features is accomplished by employing rigorous supervision and a corrected orientated
anchor to direct the alignment convergence. Ultimately, we employ the Active Rotation
Kernel to separate the core features and resolve discrepancies between classification and
regression. Ultimately, this strategy effectively establishes a favorable equilibrium between
the detection speed and the results’ accuracy. Comprehensive testing on a pair of remote
sensing datasets has confirmed the effectiveness of the proposed SAADet method. For
future work, we intend to conduct further research in two aspects: first, further research on
effective representations in terms of dense target distribution and large aspect ratio mor-
phology to improve the detection accuracy, and second, considering the use of anchor-free
detectors to provide more options and attempts for detecting oriented objects.
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