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Abstract: The use of satellites to cover remote areas is a promising approach for increasing communi-
cation availability and reliability. The satellite resources, however, can be quite costly, and developing
ways to optimize their usage is of great interest. Optimizing spectral efficiency while keeping the
transmission error rate above a certain threshold represents one of the crucial aspects of resource
optimization. This paper provides a novel strategy for adaptive coding and modulation (ACM)
employment in land mobile satellite networks. The proposed solution incorporates machine learn-
ing techniques to predict channel state information and subsequently increase the overall spectral
efficiency of the network. The Digital Video Broadcasting Satellite Second Generation (DVB-S2X)
satellite protocol is considered as the use case, and by using the developed channel simulator, this
paper performs an evaluation of the proposed machine learning solutions for channels with various
characteristics, with a total of 90 different observed channels. The results show that a convolu-
tional neural network with a modified loss function consistently achieves an improvement (over
100% in some scenarios) of spectral efficiency compared to the state-of-the-art ACM implementation
while keeping the transmission error rate under 0.01 for single channel evaluation. When observing
two channels, an improvement of more than 300% compared to the outdated information spectral
efficiency was obtained in multiple scenarios, showing the effectiveness of the proposed approach
and allowing optimization of the handover strategy in satellite networks that allow user-centric
handover executions.

Keywords: land mobile satellite communications; DVB-S2X protocol; channel state prediction;
spectral efficiency; SNR; machine learning; neural networks

1. Introduction

The rapid development of digital technologies in different application areas demands
an expansion of infrastructure to support the communication needs of the immense num-
ber of newly introduced devices. Whether it is broadband internet services [1], mobile
communication [2], the concept of smart cities or smart homes [3], maritime and aviation
communication [4,5], etc., stable, reliable and fast communication is essential. For certain
applications and scenarios, terrestrial 5G networks offer more than suitable conditions,
but on the other hand, based on specific needs, communication through satellite networks
can be used to overcome the existing shortcomings of other available communication
systems [6,7].

There are many types of satellites that can be used for establishing communications,
and they can be generally divided into four categories based on their type of orbit: Geo-
stationary Earth Orbit (GEO), Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and
Highly Elliptical Orbit (HEO) satellites [8]. Because of their consistently low distance
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from the Earth’s surface, LEO satellites offer the smallest amount of latency and higher
throughput, which can be crucial for data transmission in many different applications.

Although LEO satellites offer low latency and potentially high throughput, they
present certain challenges. They have a high speed relative to the Earth’s surface, and
although they can cover remote areas where there is no other infrastructure, their speed
can cause a Doppler shift in frequency that needs to be accounted for. In addition, since
they move quickly, it is necessary to have appropriate handover procedures since the
LEO satellites circle the Earth in less than two hours, so from a single point, they are only
visible for a few minutes [9]. Signal quality improvement in LEO satellite systems can
also be performed from many different viewpoints, whether it is through antenna design,
beamforming algorithms, channel state or signal-to-noise ratio (SNR) prediction, etc.; there
are many opportunities for optimization in LEO satellite communication.

When considering the practical applications of satellite communication, it is important
not only to consider the SNR or the channel state information (CSI) [10] but also consider
the protocol that is used for communication, and in the proposed research, the Digital Video
Broadcasting Satellite Second Generation extended (DVB-S2X) protocol [11] is adopted.
The initial version of the protocol was developed for GEO satellite communication and
is mostly used for video broadcasting, but the DVB-S2X also supports data transmission,
which is more sensitive to propagation delay, and it can be applied to LEO satellite systems.
The DVB-S2X offers a range of spectral efficiencies (0.2–5.6 b/s/Hz), and its flexibility in
terms of adaptive coding and modulation allows for dynamic optimization of bandwidth
usage, opening up many possibilities for optimization.

Considering that the optimization of communication processes can be quite complex
and that ample amounts of data are available through both real communication setups and
simulation implementations, machine learning (ML) presents itself as a promising approach
that can improve communication performance in different scenarios [12]. ML algorithms
rely on available data and are often used to perform direct input–output mappings. The
process of ML parameter optimization that results in the mapping between the algorithms’
inputs and outputs is called training, and this process is performed based on available
data by trying to minimize the optimization (loss) function of the system. The complexity
of possible mappings depends on the selection of the algorithm and available data, and
a subset of ML that can provide not only simple mappings but mappings that consider
additional limitations/constrictions and goals is called neural networks [13]. Neural
networks take inspiration from the structure of the human brain and can have both simple
and extremely complex architectures, depending on the intended application. The resources
that neural networks require both in terms of available data for training and computation
power can be extensive, but the results obtained using neural networks present state-of-
the-art results in many fields, ranging from image [14,15] and signal [16,17] processing all
the way to large language models [18] and data synthesis [19]. In line with everything
previously stated, neural networks can often be found in the communication optimization
literature alongside other conventional optimization techniques.

1.1. Related Work

In [20], the authors propose a joint user scheduling and beamforming algorithm for
LEO satellites following the DVB-S2X standard [11]. The authors consider the influence of
Doppler shift and phase disturbance on the CSI estimation, but no prediction of the CSI is
performed. The optimization method is based on hierarchical clustering, the semidefinite
programming algorithm and the concave–convex process (CCCP). The focus is placed
on the optimization of massive multiple input multiple output (MIMO) communication
systems, and the authors report that the observed metric, energy efficiency, is higher for
the proposed solution when compared to the traditional decoupling design algorithms.
The optimization of scheduling in satellite communications has also been analyzed with
different optimization scenarios in [21,22] without focusing on the influence various factors
can have on the CSI. The authors in [21] aimed to maximize the sum rate under the per-
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beam power constraint and minimum SINR requirement of scheduled users, proposing a
convex–concave procedure-based algorithm. The study described in [22] rather focuses on
the separate analysis of intra-beam and inter-beam scheduling and takes the interference
among beams into consideration during the scheduling. The authors in [23] observed the
ergodic capacity of satellite-terrestrial links in the presence of co-channel interference and
outdated CSI and presented an analytical form of the achievable ergodic capacity. The
analysis was carried out on channels with both uncorrelated and correlated fading and
the numerical and simulation results validate the analysis proposed by the authors. The
estimation of a massive MIMO orthogonal frequency division multiplexing channel for
LEO satellite communication is presented in [24]. The authors show that an asymptotic
minimum mean square error (MMSE) of the estimation can be minimized under certain
array response vector conditions. In addition, the authors proposed a two-stage channel
estimation, i.e., per-subcarrier space domain processing, followed by per-user frequency
domain processing. The simulation results show that the proposed solution can achieve a
performance near the MMSE with a much lower complexity.

In terms of CSI prediction, the authors in [25] propose a scheme based on a deep neural
network to assist LEO satellite massive MIMO systems. The implemented neural networks
contain a convolutional and long short-term memory module, which is used to analyze the
relationship of uplink–downlink channels between LEO satellites, the mapping between
CSI and beamformers, and directly predicting the future downlink CSI of LEO satellites
based on the observed uplink CSI. The implemented architectures could also generate the
appropriate beamformers based on the predicted downlink CSI. The implemented systems
are validated through numerical methods and show a promising application of neural
networks in complex communication systems. A comparison between different machine
learning methods and a modified autoregressive integrated moving average (ARIMA)
model for CSI prediction is presented in [26]. The authors compare the performance
of the proposed improved ARIMA model to neural networks (convolutional and long
short-term memory (LSTM)), a Markov chain model and a basic ARIMA algorithm. The
simulation shows that the performance of the improved ARIMA model has a significant
increase in spectral efficiency compared to the other implemented prediction models.
CSI prediction was analyzed through the influence of atmospheric attenuation in [27].
The authors implemented several types of neural networks, including a convolutional
neural network, LSTM and a multilayer perceptron. The performed simulations show
that the prediction of the interference period and types of atmospheric attenuation using
the proposed architecture can be effectively obtained. In [28], the authors analyzed the
massive MIMO channel model combined with LEO satellite characteristics and proposed
an approach based on the LSTM neural network for a prediction scheme to mitigate the
effects of outdated CSI. The proposed architecture achieved higher prediction accuracy
compared to the adopted outdated CSI.

A review of the methods used for communication optimization in the work presented
in the literature is given in Table 1.

Table 1. A review of related work.

Reference Communication Method Optimization Criteria Optimization Method

[20] Liu et al. LEO satellites and DVB S2X energy efficiency
hierarchical clustering, the
semidefinite programming
algorithm and the CCCP

[21] Bandi et al. satellite communications and
DVB-S2X

maximum sum rate under the
per-beam power constraint and
minimum SINR requirement of

scheduled users

convex–concave procedure-based
algorithm



Electronics 2024, 13, 3659 4 of 24

Table 1. Cont.

Reference Communication Method Optimization Criteria Optimization Method

[22] Zhang et al. high throughput GEO satellite Fairness among users and
spectral efficiency

fixed-size user grouping
algorithm, calculation of

equivalent CSIs and frame
scheduling

[23] Bankey et al.
multiuser hybrid

satellite-terrestrial amplify
and forward relay network

the ergodic capacity with
co-channel interference and

outdated CSI

analytical form of the achievable
ergodic capacity

[24] Li et al. MIMO LEO satellite CSI MMSE Asymptotic MMSE and a
two-stage channel estimation

[25] Zhang et al. MIMO LEO satellite system CSI MSE A system based on neural
networks

[26] Guo et al.
MIMO adaptive modulation

and coding LEO satellite
system

CSI absolute error and spectral
efficiency

Multiple ML models and
modified ARIMA

[27] Zhang et al. LEO satellite Atmospheric attenuation in CSI Different types of neural networks

[28] Zhang et al. Massive MIMO LEO satellite
system CSI NMSE LSTM

The proposed paper LEO satellites and DVB S2X SNR MSE, spectral efficiency,
error rate CNN and adapted margin

1.2. Paper Contributions and Structure

The work presented in this paper focuses on the application of ML (including neural
networks) for SNR predictions in LEO satellite communications. The approach is based on
an implemented simulator that creates channels with the following:

• Varying expected SNR values;
• Levels of Doppler shift;
• Shadowing levels.

The simulator is used to create data from 90 different channels (six different expected
SNR values, five different levels of Doppler shift, and three different levels of shadowing) in
order to study the relationship between different channel conditions and the improvements
that can be provided by various ML algorithms for single-channel communication in
comparison to a baseline method. The proposed methods are evaluated not only in terms
of SNR prediction but also in terms of spectral efficiency and transmission error rate using
the DVB-S2X protocol, placing a focus on practical applications. Finally, the evaluation
of algorithms is also performed on two separate satellite channels, observing each pair of
channels within the same level of shadowing.

We propose a systematic approach, observing the relationship between different
channel conditions and improvement in LEO satellites’ spectral efficiency following the
DVB-S2X protocol, that is, to the best of the authors’ knowledge, not present in the literature.
In addition to various scenarios, a proposed neural network algorithm with a modified
loss function also provides an improvement when compared to the traditional, outdated
information approach both when observing a single satellite and two separate satellite
channels. This new approach to obtaining a reliably low transmission error rate while
still consistently providing spectral efficiency improvement opens up possibilities for
future work based on the modification of neural network loss functions in order to meet the
required system optimization criteria. In terms of applications, the improved prediction and
spectral efficiency also allow for user-centric handover procedures, and the proposed work
also evaluates the possibilities for lowering outage probabilities when using two satellites
instead of a single one.
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The remainder of the paper is structured as follows. Section 2 contains the description
of the system model, with Section 2.1 describing the satellite network and Section 2.2
describing the channel modeling and simulation. Section 3 presents the proposed channel
state prediction and modulation and coding (MODCOD) selection strategy, with Section 3.1
describing the algorithms used for SNR prediction and Section 3.2 describing spectral
efficiency evaluation protocol and MODCOD selection for both single channel evaluation
and the scenario where two satellite channels are considered. Section 4 presents the
obtained results and discussion, with Section 4.1 describing the SNR prediction results.
Section 4.2 is the obtained spectral efficiency improvement for single channel evaluation,
Section 4.3 is the evaluation of two satellite channels, and Section 4.4 is the discussion.
Finally, the conclusion is given in Section 5, alongside the directions for future work.

2. System Model
2.1. Satellite Network Description

A typical radio access network (RAN) supports a set of MODCODs spectral effi-
ciencies M = {M1, M2, . . . , MK}, each associated with monotonously increasing function
T : M → R , where T(Mi) represents minimal SNR value needed to operate in the MOD-
COD Mi, also called the threshold. If we denote the instantaneous SNR in the channel by γ
then the optimal MODCOD is the greatest element in a set Sγ ⊆ M, Sγ = {Mi|T(Mi) ≤ γ},
i.e., supremum of Sγ denoted as sup(Sγ). In a special case, when Sγ = ∅, the lowest
spectral efficiency M1 will be used for transmission.

Let us enumerate all of the total N RANs that the end-user can use to establish
communication by a set I = {1,2,. . .,N}. At a time interval (tj−1,tj], the end-user measures
instantaneous SNRs for all the currently available RANs, i.e., RANs from a set Ij ∈ I.
The principle of forming the Ij set is discussed later. The measured values form a set,
Γj =

{
γ̂j,i

∣∣i ∈ Ij
}

, where γj,i represents measured SNR in [dB] of the i-th RAN during
time interval (tj-1,tj]. Then, a prediction function f : R3 → M is executed, which for all the
available RANs produces the MODCODs that will potentially be used until the next SNR
measurements are completed, i.e., in the time interval (tj,tj+1]. The goal of the function
f () is to make predictions regarding the optimal MODCOD based on the current and
previous SNR measurements. Let S ⊆ M be a set of MODCOD efficiencies formed in the
following way

P =
{

Mm
∣∣ g

(
γ̂j,i, γ̂j−1,i, γ̂j−2,i

)
≥ T(M m

)}
, (1)

where γj,i ∈ Γj, while g : R3 → R+ produces a prediction of channel state information (i.e.,
SNR value). Thus we have

f
(
γ̂j,i, γ̂j−1,i, γ̂j−2,i

)
= sup(P). (2)

The end-user simply chooses the RAN that will produce the MODCOD with the
highest spectral efficiency, i.e.,

f
(

γ̂j,nj , γ̂j−1,nj , γ̂j−2,nj

)
≥ f

(
γ̂j,i, γ̂j−1,i, γ̂j−2,i

)
, ∀i ∈ Ij. (3)

In the case where there are multiple RANs that achieve maximal efficiency, and the
previously used RAN is among them, the end-user does not perform a handover. Otherwise,
the least-used RAN in the current time window is selected in order to reduce the possibility
that the selected RAN leaves a set of available RANs. If nj ̸= nj−1, the handover procedure
is triggered, and the information of the preferred RAN is sent to the network core via
reverse link.

In our previous work [29], we optimized the threshold margin; however, our further
findings revealed that the prediction of SNR could be directly made by state-of-the-art
machine learning models, as discussed in the subsequent section.
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2.2. Channel Modeling and Simulation

In this work, we assume that instantaneous SNR, denoted by γ(t), is defined as the
following [30]:

γ(t) =
PT

σ2dβ
|h(t)|2, (4)

where h(t) denotes the time-varying complex channel gain, PT denotes transmitted power,
σ2 denotes the variance of the additive Gaussian noise, d is the distance between transmitter
and receiver, and β is the corresponding path-loss factor.

Various channel models were developed to describe the propagation conditions in a
narrowband land mobile satellite channel. Typically, it is assumed that the fluctuations are
the result of weak scattered components (multipath fading) and random variations in the
power of multipath components (shadowing).

It is typically assumed that the channel gain between the RAN access point and the
end-user is composed of two time-varying components [31–33]:

h(t) = a(t)ejα(t) + z(t)ejα0 . (5)

The first term in the above expression corresponds to the scattering component, and
the second term corresponds to the line-of-sight (LOS) component. In particular, a(t)
represents the amplitude of the scattering component, α(t) is the random phase, z(t) is the
amplitude of the LOS component, and α0 denotes the corresponding phase.

In Loo’s model, the amplitude of the LOS component is modeled by using the ran-
dom variable with log-normal distribution [31]. Although this model corresponds to the
measurement results available in the literature, the corresponding mathematical analysis is
usually too complex. The shadowed Rice model [32,33] is a simpler but accurate channel
model for narrowband land mobile satellite channels. In this model, it is assumed that
a(t) is Rayleigh distributed, α(t) is uniformly distributed, z(t) is Nakagami-m distributed,
and α0 is a deterministic value. The corresponding probability density function of the
instantaneous power gain in the satellite-terrestrial channel, denoted by λ(t) = |h(t)|2, was
derived in the paper [32] and given in the following form:

fΛ(λ) =

(
2b0m

2b0m + Ω

)m 1
2b0

e−
λ

2b0 1F1

(
m; 1;

Ωλ

2b0(2b0m + Ω)

)
, λ ≥ 0, (6)

where 1F1() is the confluent hypergeometric function, m represents the parameter of
Nakagami-m distribution, 2b0 is the average power of the scattering component (the first
term in Equation (5)), and Ω denotes the average power of the LOS component (the second
term in Equation (5)). Three degrees of freedom in this channel model, i.e., parameters
m, b0 and Ω, can be used to accurately describe different propagation conditions in the
satellite-terrestrial channel.

An accurate simulator of shadowed Rice fading that generates the corresponding fad-
ing samples with arbitrary temporal properties was proposed in [34]. A slightly improved
version of this simulator, described in [35], is used in this paper.

In real-world scenarios, observing channels with various characteristics in a systematic
way can be difficult as these characteristics are not necessarily predictable or stable. It is,
however, necessary to have a sufficient amount of data for all possible scenarios when
developing algorithms that improve telecommunication performance, which can easily be
achieved through the usage of simulations. To obtain the most benefit from the availability
of the data through simulations, channels with varied characteristics are considered in this
paper. Namely, the three characteristics that are varied for the different channels observed
in this paper are as follows:

• The expected SNR value of the channels;
• The level of Doppler frequency shift;
• The level of shadowing.



Electronics 2024, 13, 3659 7 of 24

The expected SNR value of a channel does not necessarily imply changes in the
morphology of the signal, but it does heavily influence the possibility and speed of data
transmission. Hence, it is important to observe this parameter in order to analyze its inter-
actions and influence on spectral efficiency and the transmission error rate, in combination
with the other two considered characteristics that change the morphology of the SNR signal
for a given channel. In general, a higher expected SNR value of a channel allows for higher
spectral efficiency to be obtained and is considered a favorable condition. In this paper, a
set of expected SNR values is considered, {0 dB, 3 dB, 6 dB, 9 dB, 12 dB, 15 dB}, to cover
both extremes, the very high SNR, the very low SNR and several steps in between.

The second characteristic that is observed in this paper is the level of Doppler fre-
quency shift. This influence of Doppler frequency shift is modeled through the fDm
parameter of the simulation and essentially influences the SNR characteristic of the channel
in terms of speed of change. In terms of the SNR dynamic, the higher the fDm value, the
quicker the changes in the SNR occur over time and the weaker the correlation of future
SNR values to the previous ones. This makes the SNR value more complex to predict and
can significantly impact communication performance. A set of values for the fDm parameter
was considered, {5 Hz, 25 Hz, 50 Hz, 75 Hz, 100 Hz}, and these cover a range of movement
influences that can be considered residual movement after considering the movement
corrections based on the GPS signal.

The third characteristic of a channel that is considered in this paper is the level of
shadowing. Based on the channel simulation described in the previous section, three
scenarios were considered through the parameters shown in Table 2.

Table 2. Channel parameters for different shadowing scenarios.

Shadowing Scenario b0 Ω m

light shadowing 0.158 1.29 19.4
average shadowing 0.126 0.835 10.1
heavy shadowing 0.063 0.000897 0.739

The level of shadowing modulates how often and to what extent the SNR values drop
to very low values. This can add to the difficulty of predicting future SNR values, but more
prominently, it creates intervals in which no transmission of data could occur. The lower
level of shadowing represents more favorable conditions, but it is of interest to see to which
extent channels with higher levels of shadowing can be used and how reliable they can be.

In combination with various levels of expected SNR and Doppler frequency shift, the
observed levels of shadowing create a space of channel characteristics that can cover a
wide range of scenarios. The total number of different generated channels amounts to 90
(6 expected SNRs × 5 different fDms × 3 different shadowing levels). For each channel,
at least 100.000 consecutive samples were generated for the purposes of training and
evaluation. Each generated sample has a true SNR value present in the channel and an
estimated SNR value available as input to the decision-making algorithms.

3. A Novel Channel State Prediction and MODCOD Selection Strategy
3.1. SNR Prediction Algorithms

For the purposes of SNR prediction, the outdated information (OI) approach was
used as a baseline, and two different approaches using neural networks were implemented
alongside two other machine learning (ML) models, support vector machine (SVM) and
linear regression (LR). The OI approach simply considers that the future SNR value will be
equal to the last estimated one. This approach conceptually works well when the channels
have low levels of Doppler frequency shift and shadowing but falls short when channel
estimation problems become more complex. On the other hand, the machine learning
approaches use 10 consecutive estimated SNR values to predict the following true SNR
value of the channel. The future SNR value is predicted based on a fixed input sequence
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with a length of 10 since this length was considered to be sufficient for neural networks to
recognize the characteristics of the channel without having a very high number of input
features nor requiring long buffering of data.

The two simpler ML models were used with default parameters: ridge regularization
for linear regression with the regularization parameter set to 1 and the radial basis function
kernel with the regularization parameter set to 1 for the SVM. The goal of the paper was
to see how simple ML algorithms would perform in different scenarios, not to explore
multiple complex architectures. The neural networks used for the SNR prediction were
convolutional neural networks with identical architecture but different loss functions. The
architecture of the neural networks is given in Figure 1.
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The proposed architecture is a rather simple convolutional neural network with a
fully connected layer at the end. For the neural networks, smaller architectures were
implemented to allow for potential practical applications, as larger neural networks have a
higher inference time and might not be suitable for tasks such as real-time SNR predictions.
The neural networks also have the possibility of modifying the loss function, which can
greatly influence the performance of the network regarding certain areas of interest. The
goal was to analyze this, comparing the two implemented neural network algorithms.

The difference between the regular neural network implementation (NN) and the
modified one (NN2) was that the NN had a standard mean square error loss function, while
the NN2 had a mean absolute error loss function with an added factor of 0.5 × (ŷ − y),
where ŷ represents the prediction of the network, and y represents the true value. The mo-
tivation behind the implementation of the modified loss function of NN2 is that predicting
higher SNR values than the true ones often results in unsuccessful data transmission, while
a lower SNR prediction is suboptimal, but communication exists. In terms of simple SNR
prediction, NN2 is expected to perform worse than a regular NN, but when performing
further evaluations using various MODCODs, its intentionally lower predictions could be
beneficial for both a lower error rate and a higher spectral efficiency. Both neural networks
were trained using an Adam optimizer, batch size of 256, validation split of 0.2 and patience
of 20 epochs.

The implementation of the ML models, neural networks, signal processing, evaluation
and visualization was performed in the Python programming language [36], using the
numpy [37], keras [38], scikit-learn [39] and matplotlib [40] libraries. Any parameters of
the implemented neural networks and ML models that are not stated are left as default
in the keras version 2.13.1 and scikit version 1.0.2 libraries. The initial evaluation of the
proposed algorithms (OI, LR, SVM, NN, NN2) was performed using the mean square error
(MSE) between the predictions ŷ and labels y (with n samples):
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MSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (7)

The training of the algorithms was performed on the first 75% of the signal and the
evaluation was performed on the last 25% of the generated SNR signal. The inputs to
the algorithm were estimated SNR values, while the labels were the true SNR values, as
generated by the simulation. On each set (both training and test), input–output pairs
were created by sliding a window of 10 samples for creating inputs and taking the next
consecutive sample as the label that should be predicted.

3.2. MODCOD Selection Evaluation

After the initial evaluation that shows the ability of the algorithms to perform SNR
predictions, the next step was to evaluate the algorithms in terms of spectral efficiency.
For spectral efficiency evaluation, all operation points of the DVB-S2X protocol [11] (short-
frame communication) were used. For the considered MODCODs, the spectral efficiencies
(Mi) and the SNR thresholds (T(Mi)), minimal SNR value needed to operate with the
efficiency, are listed in Table 3. Based on the algorithms’ predicted SNR, the system takes
the highest possible MODCOD that could be successfully used with that predicted SNR.

Table 3. MODCODs, the spectral efficiencies (Mi) and the SNR thresholds (T(Mi)).

MODCOD Mi [b/s/Hz] T(Mi) [dB]

BPSK-S 1/5 0.1 −9.9
BPSK-S 11/45 0.12 −8.3

BPSK 1/5 0.2 −6.1
BPSK 4/15 0.27 −4.9
BPSK 1/3 0.33 −3.72

QPSK 11/45 0.49 −2.5
QPSK 4/15 0.53 −2.24

QPSK 14/45 0.62 −1.46
QPSK 7/15 0.93 0.6
QPSK 8/15 1.07 1.45

QPSK 32/45 1.42 3.66
8PSK 8/15 1.60 4.71

8PSK 26/45 1.73 5.52
16APSK 7/15 1.87 5.99
16APSK 8/15 2.13 6.93
16APSK 26/45 2.31 7.66

16APSK 3/5 2.40 8.1
16APSK 32/45 2.84 9.81

32APSK 2/3 3.33 11.41
32APSK 32/45 3.56 12.18

The first level of evaluation was performed for each channel separately. So, the
evaluation for each ML algorithm was performed for 90 different channels. To ensure
the evaluations relate to practical use cases, margins were determined on the training
set so that the transmission error on the training set is lower than 0.01 where possible
or lower than 0.001+unavoidable error (samples where the SNR is lower than the lowest
operation threshold). This margin was extracted for each algorithm and scenario separately
(simple search with a resolution of 0.5 dB) and was then applied to the predictions on
the appropriate test set. In this way, all algorithms have a comparatively fixed error rate,
and the performances in terms of spectral efficiency could be adequately performed. The
determined error rate threshold of 0.01 was selected as the highest possible error rate that
might be considered usable for transmission, and further evaluation was performed on
two channels as it is considered that combining two channels would create a scenario
where, at least in theory, a lower error rate could be obtained.
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The final step of the evaluation was performed using two channels, where each combi-
nation of channels within the same level of shadowing is considered. This was performed
for OI and NN2 to provide an easier comparison since NN2 has been shown to have better
performance in terms of spectral efficiency than all other algorithms. For this evaluation, a
greedy selection was performed by the algorithms, i.e., for each point in time, the channel with
the higher predicted SNR was selected. This creates a single array of SNR prediction values
for the final algorithm predictions. The true labels were selected based on the labels for the
channel that was selected for that corresponding point in time. The same principle for margin
estimation was performed, extracting the margin on the training set and then applying it to the
test set for OI and NN2 separately. The resolution for the search was also 0.5 dB, but the goal
transmission error was 0.001 since two channels would often allow for a lower transmission
error. Of course, if the transmission error of 0.001 was unattainable, the margin would be
determined to reach the unavoidable error +0.0001 on the training set. The comparison between
the NN2 and OI is performed by showing a relative improvement in spectral efficiency from
the NN2 algorithm, calculated as (M NN2

i − MOI
i

)
/MOI

i .

4. Results and Discussion
4.1. SNR Prediction

The initial testing results present the MSE between the predictions and labels on the
test set for various channels and for the five observed algorithms. The OI is considered a
baseline algorithm as it is simple to implement and is often used in the literature, while the
ML models were expected to offer improvement. In terms of MSE performance (as well
as spectral efficiency), the implemented LR and SVM performed the same or worse than
the regular NN, so for an easier comparison, only the results of the NN are presented in
this and further sections as it will be a good representative of the best performing simple
ML algorithms. The MSE values for all observed scenarios are shown in Table 4, while
Figures 2–4 show the same metric visually for light shadowing, average shadowing and
heavy shadowing, respectively.

Table 4. The MSE [dB2] achieved on the test set for various scenarios, OI/NN/NN2.

MSE [dB2]

SNR [dB] fDm = 5 Hz fDm = 25 Hz fDm = 50 Hz fDm = 75 Hz fDm = 100 Hz

Light shadowing

0 1.0/0.5/0.6 2.2/1.4/2.1 4.5/2.9/3.9 7.4/4.8/6.4 11.7/7.2/9.1
3 0.7/0.3/0.5 1.8/1.3/1.7 3.6/2.4/3.5 6.8/4.4/5.7 10.5/6.8/8.8
6 0.5/0.3/0.4 1.5/1.0/1.4 3.6/2.2/2.9 7.3/4.6/5.7 10.2/6.8/8.5
9 0.4/0.3/0.3 1.2/0.9/1.2 3.2/1.9/2.5 6.3/3.9/5.4 9.8/6.5/8.3
12 0.3/0.3/0.3 1.3/0.9/1.1 3.3/1.9/2.8 7.0/4.2/5.2 9.5/6.3/8.2
15 0.2/0.2/0.2 1.0/0.7/0.9 3.5/2.0/2.7 6.7/4.1/5.2 10.2/6.8/8.8

Average shadowing

0 1.5/0.8/1.1 7.4/3.8/4.7 17.2/7.3/9.5 31.4/11.9/14.5 38.2/13.8/17.0
3 1.5/0.8/0.9 6.8/3.3/4.1 17.0/7.2/9.2 27.8/10.8/13.7 35.5/13.2/16.2
6 0.7/0.6/0.6 7.1/3.0/4.1 17.7/7.2/9.1 30.1/11.5/13.9 35.9/13.6/16.3
9 0.7/0.5/0.6 6.1/2.6/3.4 17.2/7.1/9.1 27.5/11.2/13.5 33.5/13.2/16.3
12 0.4/0.4/0.4 5.4/2.3/3.3 16.9/6.8/8.3 26.7/10.8/13.2 35.4/13.6/16.6
15 0.6/0.5/0.6 6.2/2.6/3.2 16.8/6.8/8.3 29.4/11.1/13.9 34.3/13.3/16.8

Heavy shadowing

0 3.4/1.2/1.8 7.9/3.9/5.4 15.7/7.8/10.3 26.2/13.5/17.1 34.0/18.5/23.2
3 2.3/1.1/1.6 6.2/2.9/4.1 14.9/7.2/9.4 24.7/12.5/16.1 34.2/18.0/23.3
6 1.1/0.6/1.3 5.7/2.7/3.5 13.9/6.4/8.0 22.8/11.4/14.8 32.5/17.6/23.1
9 0.8/0.5/0.6 5.0/2.3/2.9 12.7/5.7/7.6 22.2/11.1/15.0 31.8/17.3/22.1
12 0.8/0.5/0.8 5.2/2.0/3.3 12.6/5.7/7.5 22.8/11.0/14.0 30.5/17.6/21.3
15 0.6/0.4/0.5 4.6/1.8/2.5 12.7/5.4/6.8 22.9/11.5/15.0 30.4/17.3/22.1
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When observing the values from Table 4, it can be concluded that based on different
scenarios, the MSE can have quite a large range of values, from 0.2 dB2 to 38.2 dB2 for
the outdated information. The vast range of these values shows that based on different
channel characteristics, different expectations for SNR prediction quality should be present.
The ranges of MSE for NN and NN2 have the same minimum value as the OI, and this
value is so low that it can be concluded that the implementation of additional algorithms
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outside of OI can be completely redundant in certain scenarios, e.g., fDm = 5 and higher
expected SNR values. On the other hand, the maximum MSE for NN is quite lower than
the maximum value for outdated information, amounting to 18.5 dB2, which is less than
half of the maximum value of the OI and almost half of the OI MSE value for that respective
scenario. Notably, the NN2 has a consistently higher MSE than the NN but also provides
an improvement when compared to the OI. This is to be expected as the loss function of
the NN2 is not made to optimize for the MSE or exact prediction; rather, it is created to
force the network to rarely overestimate the SNR value. For pure SNR prediction, this
is impractical, but it will later be shown that this has benefits when observing practical
applications and spectral efficiency.

The results shown in Figures 2–4 intuitively show the overall trends of the MSE in
terms of various algorithms and channel scenarios. Notably, it can be observed that for
all algorithms, the MSE is higher when the fDm parameter rises. This is expected as the
higher values of fDm correspond to channels that have less predictable changes, and both
OI and neural networks have difficulties performing when more rapid SNR changes are
present. It is also evident that for a very low fDm, regardless of SNR, the algorithm performs
quite similarly. As presented in Table 4, improvements exist in most scenarios, but they
are so minor that the development of special algorithms for the prediction of SNR can
be considered redundant. On the other hand, for high fDm values, the improvements
that the neural networks provide become more evident. It is interesting to note that the
discrepancy between the performance of NN and NN2 also increases with the increase in fDm,
regardless of shadowing conditions. This is most likely because a higher fDm creates a more
unpredictable channel, and since the NN2 is penalized for overestimating the SNR, it starts to
consistently predict much lower values in order to avoid the overestimating. This results in a
higher MSE and, therefore, worse performance when compared to the NN approach.

Another interesting characteristic worth noting is that the OI has a higher MSE for
heavy shadowing as opposed to average shadowing for fDms of 50 Hz and above (75 Hz and
100 Hz) for all SNR values. This is an interesting find, as heavy shadowing is considered a
worse scenario than average shadowing. On the other hand, for unpredictable channels,
such as those with high fDms values, heavy shadowing actually creates a more predictable
pattern; although the SNR values are lower, more frequent shadowing occurrences create
more regularity in the pattern and create a correlation between previous samples and future
ones. The neural networks, however, compensate for these characteristics, and the same
aspect is not prominent in neural networks’ performance.

4.2. Single Channel Spectral Efficiency

Considering the achieved results, it is clear that the neural networks can provide clear
improvement in terms of SNR prediction when compared to the baseline OI approach, and
the next step represents the evaluation of spectral efficiencies for all observed channels. The
initial step is to analyze the outage probabilities if perfect SNR predictions would have been
performed for the test channels, presented in Table 5. These outage probabilities present the
unavoidable error on the test set and are relevant for the interpretation of further results.

The results show that for the set threshold of 0.01 for single channel evaluation, outage
probability is too high in some scenarios, making the set threshold unobtainable. These
outage probabilities, however, should not impair the improvements in spectral efficiency
that the neural networks should offer. The outage probabilities are more prominent for
higher levels of shadowing, which is expected as 1 percent of the test set corresponds to
250 samples, and more frequent, heavier shadowing can easily make more than 250 samples
have values lower than the minimum operational threshold.

Table 6 shows the results in terms of spectral efficiency and achieved error transmission
rate for all considered conditions and algorithms. Figures 5–7 show the relationship between
the SNR and the achieved spectral efficiency for light, average and heavy shadowing, re-
spectively, while Figures 8–10 show the results visually in terms of improvement percentage
compared to the OI spectral efficiency for light, average and heavy shadowing, respectively.
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Table 5. The outage probability on the test set for each observed scenario. The probabilities higher
than or equal to 0.01 are presented in red.

Outage Probability

SNR [dB] fDm = 5 Hz fDm = 25 Hz fDm = 50 Hz fDm = 75 Hz fDm = 100 Hz

Light shadowing

0 0.016 0.022 0.019 0.02 0.021
3 0.01 0.009 0.007 0.008 0.009
6 0.003 0.004 0.004 0.004 0.004
9 0.001 0.001 0.001 0.002 0.002
12 0 0.001 0.001 0.001 0.001
15 0 0 0 0 0

Average shadowing

0 0.03 0.035 0.031 0.037 0.037
3 0.016 0.015 0.014 0.014 0.015
6 0.005 0.009 0.007 0.008 0.007
9 0.002 0.003 0.004 0.003 0.004
12 0.001 0.001 0.001 0.002 0.002
15 0 0.001 0.001 0.002 0.001

Heavy shadowing

0 0.091 0.095 0.096 0.098 0.094
3 0.048 0.048 0.05 0.052 0.051
6 0.021 0.026 0.026 0.026 0.025
9 0.009 0.012 0.012 0.012 0.012
12 0.007 0.007 0.007 0.007 0.007
15 0.002 0.003 0.003 0.004 0.003

Table 6. The achieved spectral efficiency [b/s/Hz] achieved on the test set for a single channel for
various scenarios, OI/NN/NN2. The spectral efficiencies in bold represent the ones for which the
transmission error rate was lower than 0.01.

Mi[b/s/Hz]

SNR [dB] fDm = 5 Hz fDm = 25 Hz fDm = 50 Hz fDm = 75 Hz fDm = 100 Hz

Light shadowing

0 0.33/0.4/0.41 0.27/0.29/0.28 0.19/0.19/0.2 0.14/0.14/0.14 0.11/0.11/0.12
3 0.73/0.77/0.79 0.55/0.54/0.59 0.37/0.39/0.41 0.24/0.24/0.27 0.17/0.18/0.17
6 1.25/1.24/1.27 1.0/1.06/1.06 0.73/0.85/0.89 0.54/0.57/0.63 0.4/0.4/0.42
9 1.84/1.82/1.96 1.63/1.63/1.65 1.28/1.45/1.41 0.92/1.05/1.12 0.77/0.75/0.79

12 2.62/2.53/2.66 2.26/2.36/2.36 1.86/2.05/2.1 1.44/1.62/1.62 1.18/1.19/1.25
15 3.16/3.06/3.2 2.94/3.04/3.04 2.51/2.74/2.77 2.05/2.25/2.25 1.73/1.79/1.82

Average shadowing

0 0.33/0.35/0.36 0.15/0.2/0.19 0.1/0.12/0.13 0.1/0.1/0.1 0.1/0.1/0.1
3 0.6/0.66/0.67 0.24/0.35/0.37 0.11/0.15/0.16 0.1/0.12/0.12 0.1/0.1/0.1
6 1.15/1.07/1.25 0.5/0.69/0.79 0.19/0.33/0.31 0.12/0.18/0.19 0.11/0.13/0.14
9 1.7/1.68/1.71 0.98/1.2/1.24 0.44/0.66/0.7 0.23/0.37/0.38 0.17/0.28/0.27

12 2.49/2.37/2.52 1.46/1.83/1.98 0.78/1.12/1.17 0.49/0.76/0.77 0.32/0.57/0.54
15 2.99/3.01/3.02 2.13/2.45/2.62 1.24/1.56/1.74 0.78/1.25/1.24 0.6/0.96/1.0

Heavy shadowing

0 0.34/0.42/0.39 0.22/0.26/0.27 0.14/0.18/0.19 0.11/0.13/0.14 0.1/0.11/0.11
3 0.6/0.67/0.71 0.36/0.42/0.5 0.2/0.26/0.3 0.14/0.19/0.19 0.11/0.14/0.14
6 0.94/1.0/1.04 0.52/0.7/0.83 0.25/0.49/0.51 0.17/0.26/0.27 0.13/0.16/0.17
9 1.4/1.46/1.51 0.74/1.03/1.2 0.36/0.62/0.71 0.2/0.36/0.41 0.14/0.2/0.23
12 2.05/2.22/2.14 1.21/1.73/1.78 0.67/1.09/1.26 0.36/0.61/0.68 0.3/0.35/0.44
15 2.73/2.67/2.77 1.94/2.41/2.47 1.2/1.7/1.94 0.78/0.97/1.21 0.51/0.62/0.7
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The results in Table 6 show the wide range of performances that can be achieved
for various scenarios and again point out that different channel characteristics can quite
heavily influence the performance of the algorithms. Expectedly, as opposed to the MSE
results, the expected SNR plays a significant role in achieving higher spectral efficiency.
More specifically, the higher the expected SNR, the higher the achieved spectral efficiency.
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This stands regardless of the implemented algorithm or fDm value. It is also important to
note that there are many scenarios for which the transmission error rate is higher than 0.01,
essentially making reliable communication impossible, regardless of the spectral efficiency
that can be achieved. As can be seen in Table 5, all of the scenarios for which the desired
error rate of 0.01 is not achieved have an unavoidable transmission error higher than 0.01.
The implemented approach for margin determination does not make achieving an error of
less than 0.01 on the test set certain, as the margin is determined on the training set and
only then applied on the test set. However, the results indicate that this approach works
quite well, as all the scenarios in which the error is larger than 0.01 correspond to the ones
where the unavoidable outage probability is above 0.01.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 6. The achieved spectral efficiency on the test set for various scenarios under average shad-
owing conditions using a single channel. 

 
Figure 7. The achieved spectral efficiency on the test set for various scenarios under heavy shadow-
ing conditions using a single channel. 

 
Figure 8. The achieved spectral efficiency improvement in % compared to the OI, on the test set for 
various scenarios under light shadowing conditions using a single channel. Scenarios where the 
Figure 8. The achieved spectral efficiency improvement in % compared to the OI, on the test set for various
scenarios under light shadowing conditions using a single channel. Scenarios where the transmission error
is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 are shown in red.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 25 
 

 

transmission error is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 
are shown in red. 

 
Figure 9. The achieved spectral efficiency improvement in % compared to the OI, on the test set for 
various scenarios under average shadowing conditions using a single channel. Scenarios where the 
transmission error is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 
are shown in red. 

 
Figure 10. The achieved spectral efficiency improvement in % compared to the OI, on the test set for 
various scenarios under heavy shadowing conditions using a single channel. Scenarios where the 
transmission error is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 
are shown in red. 

  

Figure 9. The achieved spectral efficiency improvement in % compared to the OI, on the test set for various
scenarios under average shadowing conditions using a single channel. Scenarios where the transmission
error is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 are shown in red.



Electronics 2024, 13, 3659 16 of 24

Electronics 2024, 13, x FOR PEER REVIEW 16 of 25 
 

 

transmission error is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 
are shown in red. 

 
Figure 9. The achieved spectral efficiency improvement in % compared to the OI, on the test set for 
various scenarios under average shadowing conditions using a single channel. Scenarios where the 
transmission error is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 
are shown in red. 

 
Figure 10. The achieved spectral efficiency improvement in % compared to the OI, on the test set for 
various scenarios under heavy shadowing conditions using a single channel. Scenarios where the 
transmission error is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 
are shown in red. 

  

Figure 10. The achieved spectral efficiency improvement in % compared to the OI, on the test set for
various scenarios under heavy shadowing conditions using a single channel. Scenarios where the
transmission error is <0.01 are shown in blue, and scenarios where the transmission error is >0.01 are
shown in red.

The visual representations of the obtained spectral efficiencies are shown in Figures 5–7,
indicating clearly how the trends of spectral efficiencies behave for different shadowing,
fDm and SNR conditions. NN2 is consistently better than the OI, with NN also being better
in most cases. For an SNR of 0 dB, the improvement seems negligible, but as the SNR
increases, the difference between spectral efficiency becomes more prominent. The shapes
of the presented curves also change based on the amount of shadowing. It can be seen in
Figure 5 that the spectral efficiency rises mostly linearly with the SNR for most of the light
shadowing conditions, regardless of the algorithm, but the trends become more curved as
the fDm increases. For average shadowing, the trends seem more curved, and for heavy
shadowing, almost no curve looks linear. This conclusion also stands for all algorithms,
meaning that regardless of the achieved improvement, the relationship between SNR and
spectral efficiency has a different trend based on the type of channel that is observed.

Observing the results from Figure 8, it can be seen more clearly that NN2 has a con-
sistently better performance than OI and almost always a better performance than NN.
The improvement in spectral efficiency that the NN2 provides is not drastic in comparison
to OI or NN, as can be seen, but it is consistent. This clearly indicates the importance of
considering different scenarios, as developing complex algorithms can provide limited
improvement in certain ones. The consistency shows that the proposed method is con-
ceptually good, but for practical applications, it is important to weigh the benefits of the
spectral efficiency improvement against the complexity of integrating complex models into
a system.

When comparing NN2 and NN, it is important to note that, as opposed to the simple
SNR prediction, NN2 has better performance. This is due to the introduced margin and the
need for a transmission error rate no greater than 0.01. Since there are many MODCODs
considered for communication, their operations thresholds are not that far apart. Hence, if
the neural networks predict an SNR value that is much higher than the operation point
of the best possible MODCOD, no data will be transmitted, and a transmission error will
occur. This is why the NN2 approach of underestimating values is useful because it is less
likely to make such mistakes, so the determined margin ensuring a low error rate will not
be as high and will not bring down the spectral efficiency improvements as much as it will
for NN.
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In terms of achieving a transmission error rate no greater than 0.01 for light shadowing
specifically, Figure 8 recapitulates that for an expected SNR of 0 dB, it is not possible, and
no approach achieves this, but it is also shown that for the SNR of 3 dB and an fDm of 5 Hz,
none of the algorithms could obtain a transmission error rate lower than 0.01. This channel
does not fall under the category of difficult or unpredictable, as there is light shadowing,
and the fDm is quite small. However, since the SNR is not high, it is always possible
that the SNR values happen to be distributed in such a way that the outage probability
is higher than 0.01, which is exactly what happened in this case. This stands in line with
the results obtained for average and heavy shadowing, as for both, there was an error rate
higher than 0.01 for all scenarios where the expected SNR was equal to 3 dB. One more
interesting occurrence is that for an fDm of 100 Hz and an expected SNR of 3 dB, the NN
did not achieve an error rate lower than 0.01, while NN2 and OI did. This simply shows
that the errors that NN makes can be such that the SNR prediction itself is better, but the
overestimating of values that sometimes occur can have a negative impact on reaching
certain goals, such as low rates of transmission error. In terms of obtainable improvement
for light shadowing, for a frequency range of 40 MHz, if the best relative improvement
scenario is considered for NN2 ( fDm = 75 Hz, SNR = 9 dB), the contribution of NN2 would
be (1.12 − 0.92) b/s/Hz × 40 MHz = 8 Mb/s.

Observing average shadowing, similar patterns can be observed for light shadowing,
with some changes. Firstly, for average shadowing, for an expected SNR of 3 dB, the
transmission error rate was always higher than 0.01. This is because more frequent or
heavier shadowing increases the intervals in which no communication can occur, thus
raising the unavoidable error, which exceeds 0.01 in these scenarios. It can also be seen,
in comparison to the low shadowing conditions, that for higher fDm values, the achieved
spectral efficiencies are overall quite lower, while for the lower fDm values, this is not
as prominent. This is to be expected as the combination of quicker changes in SNR in
combination with more frequent shadowing makes predictions significantly more diffi-
cult, whereas if more shadowing but for slower changing SNR channels (lower fDm), the
SNR pattern during shadowing can be more easily predicted and therefore not hinder the
performance as severely. One more important observation is that although the absolute
values are overall lower for higher fDm when compared to the light shadowing, the relative
improvement between OI and NN2 is more pronounced. This would indicate that for less
favorable scenarios, such as average shadowing and a high fDm, although the absolute
spectral efficiency cannot be high, introducing more complex algorithms for SNR predic-
tion could provide a significant benefit. Another occurrence that has happened for light
shadowing was that in certain scenarios, NN has a transmission error rate higher than
0.01 while OI and NN2 do not. This has now happened for fDm of 50 Hz and an expected
SNR of 6 dB for the same reason described in the light shadowing scenario. Once again,
in the results obtained for heavy shadowing, it can be seen that the expected SNR of 6 dB
does not allow for communication under any fDm conditions. For the average shadowing,
in terms of obtainable absolute improvement (for a frequency range of 40 MHz), the best
relative improvement scenario for NN2 ( fDm = 100 Hz, SNR = 12 dB), the contribution of
NN2 would be (0.54 − 0.32) b/s/Hz × 40 MHz = 8.8 Mb/s.

The analysis of the results obtained for heavy shadowing is quite similar to the
one for previous scenarios. The transmission error rate was higher than 0.01 (due to
outage probability) for almost all fDms and the expected SNR up to 9, with the only
exception being the SNR of 9 dB and fDms of 5 Hz. This shows that, as in the examples
above, sometimes channel SNR values can play out in such a way that they allow for
communication to be established in a way that is not possible for similar scenarios. One
more important observation that stands for all shadowing conditions but can best be seen
for heavy shadowing is that even in the scenarios where the transmission error rate is
higher than 0.01, the improvements of spectral efficiency exist between OI and NN2 and
the absolute value of spectral efficiency rises with the rise of the expected SNR. This is
extremely important because even if a desired error rate is unattainable, this approach
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will still provide an improvement in spectral efficiency, which is crucial when considering
multiple channels with different characteristics and the usability of the provided method.
The relative improvement provided in certain scenarios for heavy shadowing is the highest
among the observed scenarios and exceeds 100% in some cases. For the best relative
improvement scenario for NN2 ( fDm = 75 Hz, SNR = 12 dB), considering a frequency range
of 40 MHz, the NN2 contribution amounts to (0.68 − 0.36) b/s/Hz × 40 MHz = 12.8 Mb/s.

4.3. Double Channel Spectral Efficiency

The final evaluation step is the one where the performance of the proposed method
is evaluated for two communication channels. Here, only the NN2 and OI are compared
for an easier overview of the results, especially considering that the NN2 approach has
provided better results for the single channel spectral efficiency improvement. Figure 11
shows the results for light shadowing, Figure 12 for average shadowing and Figure 13 for
heavy shadowing.
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Figure 11 shows how the combination of two channels can influence the performance
of the proposed system. Each larger square represents a scenario where the channels fDm s
are fixed (e.g., second row, third column, fDm1 = 25 Hz, fDm2 = 50 Hz), while the smaller
squares correspond to various combinations of expected SNR. The type of square, such as
red outline, regular outline and hatched, corresponds to the range of transmission errors
for that scenario, and the color scale corresponds to the relative improvement in spectral
efficiency. The relative improvement is above 0 for all scenarios, i.e., there are no scenarios
where the OI outperformed the NN2. Secondly, the red squares outline the scenarios in
which the desired transmission error rate was achieved, i.e., it was under 0.001. It can be
seen that for a low fDm, it is always achievable, but as the fDm rises, this becomes more
difficult, and for the fDm = 100 Hz, regardless of SNR, the proposed method achieved a
transmission error rate lower than 0.01 but not lower than 0.001. On the other hand, it can
be seen that the relative improvement of spectral efficiency provided by the NN2 is much
more prominent for the scenarios with a higher fDm (as seen in dark blue) as opposed
to the ones for lower fDm (seen in white or light blue). This shows that depending on
the scenario, different goals can be achieved and that the final goal has to be considered
through the design of the algorithm since the most straightforward solution (such as NN)
might not provide the best results. Overall, scenarios where lower errors are obtainable
present ones where SNR is easier to predict; hence, OI initially had good performance,
which is why the relative improvement offered by the NN2 is not as high as for some
other scenarios.

Figure 12 shows how the increase in shadowing affects the performance of the system.
When compared to the light shadowing conditions, many of the results are in darker
blue, showing a greater relative improvement than the one achieved for light shadowing.
Secondly, it can be seen that aside from a couple of scenarios of both channels having an
fDm of 25 Hz, an error rate lower than 0.001 could not be achieved if one of the channels
does not have an fDm of 5 Hz. Thirdly, it can be seen that for some scenarios of higher
fDms and lower expected SNRs, not even an error rate of 0.01 could be achieved. This
is due to the unavoidable error rate, in the same manner as it was present for single
channel evaluation.

The results shown in Figure 13 show several outcomes that could be considered
expected and several ones that provide new information. Firstly, the scenarios where the
unavoidable error is above 0.01 are more prominent, as can be seen for lower expected SNR
scenarios where multiple fields are hatched. Secondly, there are more scenarios where the
transmission error could be lower than 0.001 for higher fDms when compared to the average
shadowing. This might seem unexpected as more frequent and more heavy shadowing
is not a favorable condition. However, it is possible that for higher fDms, more frequent
shadowing adds a level of order to the noisy signal, making the NN2 better at predicting
what future SNR values will be. The “shadowed” parts of the signal provide very low
SNR values, and if the NN2 can predict these values to be quite low, then the margin
that is introduced might not need to be as high, and the overall performance could be
better. The shadowed intervals have accurately low predicted SNRs, but regular parts of
the signal could also have adequate predictions that will not be hindered by an extremely
high margin.

When observing the error transmission ranges and the obtained results, it is im-
portant to note that the next order of magnitude, i.e., having a transmission error rate
of 0.0001 or lower, was only unobtainable since the current test set has 25,000 samples,
and such an error rate would imply no more than two samples could be allowed to
be incorrectly transmitted. Furthermore, even with a larger test set, two channels and
the considered shadowing conditions would probably not allow for such a low error
to be theoretically obtainable anywhere where there is average or heavy shadowing.
This could direct future work towards analyzing three or more channels or simply an-
alyzing the performance obtainable when two channels of different shadowing levels
are combined. These scenarios are understandably of interest but would simply be
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out of scope for this paper as the goal was to perform a sort of grid analysis in terms
of ML algorithm performance for various channels and to evaluate whether a neural
network that purposefully underestimates values could be of interest considering fixed
transmission error rates.
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4.4. Discussion

When discussing the results obtained in this paper, it is not feasible to perform a direct
comparison with the metrics obtained from other related work as the experimental setup
and goals are so diverse. On the other hand, when comparing the methods and approaches
that are present, it is possible to see how the performed research is compatible with other
approaches and what could be some of the limitations of the approach considered in
this paper.

The results obtained in this paper show that neural networks can successfully be used
to predict the SNR values for channels with various characteristics. This stands in line
with the results obtained from existing work where different neural network architectures
were also shown to be successful in predicting CSI in LEO satellite systems [25,26,28]. The
presented paper also provides a thorough evaluation of a multitude of different channels
by using the implemented simulator and provides a novel approach in terms of improving
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spectral efficiency while keeping the transmission error rate above a fixed threshold. The
observed thresholds for the transmission error rate (0.01 and 0.001) are not suitable for all
applications, but the paper presents a foundation that can be used for future improvements
and provides a proof of concept that can be combined with other optimization strategies,
such as weather influence [27] and energy efficiency [20].

When discussing the barriers to the practical implementation of the proposed method
in terms of energy consumption and computation time, it is important to note that the ap-
proach uses a relatively small convolutional neural network that contains 6261 parameters
in combination with a simple subtraction of the estimated margin. The time needed to infer
a prediction on a single batch containing 64 inputs is 18.7 ms on an AMD Ryzen 7 7840HS
CPU. Depending on the usage, it is understood that the current complexity might present
an obstacle, but smaller architectures of neural networks could be tested, and the length of
the prediction could also be changed to not be a single point but rather several points so
the need for inference is not as frequent.

The presented approach has several limitations that should be mentioned. The pre-
sented work analyzes three different factors (shadowing, fDm, and expected SNR) but
does not take into account other factors that could influence the channel, so this could
be considered in future research. Furthermore, the paper observes a maximum of two
satellites, and the scaling of the proposed method into larger systems, both in terms of
implementation complexity and efficiency, is yet to be analyzed. The proposed solution
is also focused on the DVB-S2X protocol, and its applications in different communication
scenarios or with different satellite types were not in the scope of the paper. Finally, there is
also an in-depth analysis of different neural network architectures, which was omitted in
this paper as it is not the focus, but obtaining better results with smaller models always
presents a broad area for future research.

5. Conclusions

The presented paper describes a novel strategy for the application of neural networks
to optimize spectral efficiency in land mobile satellite communications. The simulated
channels are described by the Rice-shadowed model, and the DVB-S2X satellite protocol
is considered. For channel simulation, a range of expected SNR from 0 dB to 15 dB
was observed, with five different values of the fDm alongside three levels of shadowing,
resulting in a total of 90 different channels. The proposed machine learning algorithms
have shown a consistent improvement in the SNR prediction compared to the baseline OI
algorithm. For spectral efficiency improvement, the best results were obtained by using
NN2, a neural network that is penalized when overestimating predicted values, in order
to provide a sufficiently low error rate while still using the best available MODCOD. The
improvements are obtained for all single-channel scenarios but are most prominent for
fDms of 50 and 75 Hz for single-channel evaluation, regardless of the shadowing level. For
dual-channel evaluation, the improvements were most prominent for average shadowing
but were also present for all scenarios. The obtained results show promise for future
applications of neural networks with specialized loss functions for the optimization of LEO
satellite communications, including optimization for user-centric handover procedures.
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