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Abstract: Technology keyword analysis (TKA) requires a different approach compared to general
keyword analysis. While general keyword analysis identifies relationships between keywords, tech-
nology keyword analysis must find cause–effect relationships between technology keywords. Because
the development of new technologies depends on previously researched and developed technologies,
we need to build a causal inference model, in which the previously developed technology is the cause
and the newly developed technology is the effect. In this paper, we propose a technology keyword
analysis method using casual inference modeling. To understand the causal relationships between
technology keywords, we constructed a graphical causal model combining a graph structure with
causal inference. To show how the proposed model can be applied to the practical domains, we
collected the patent documents related to the digital therapeutics technology from the world patent
databases and analyzed them by the graphical causal model. We expect that our research contributes
to various aspects of technology management, such as research and development planning.

Keywords: technology keyword; graph structure; causal inference; Poisson regression; patent
document; digital therapeutics

1. Introduction

Technology keyword analysis (TKA) involves analyzing the keywords extracted from
various technological documents such as patents and papers for technology management.
Up to now, TKA has been conducted across diverse fields [1–5]. The patent system grants
the applicant exclusive rights to use the developed technology. Patents contain more specific
and detailed descriptions of the developed technology compared to papers. Therefore,
many studies have been conducted on technology analysis models using patents [6–12].
TKA is a popular method for patent technology analysis [1,2,6,9,11]. Jun (2024) used the
synthpop and the generative adversarial network (GAN) to analyze the patent keywords [1].
This paper tried to combine the methods of statistics and machine learning algorithms to
build an analytical model for patent keyword analysis. The synthpop and the GAN are
popular generative models based on statistics and machine learning, respectively. Kim and
Jun (2015) studied a patent keyword analysis model based on a graphical causal inference
and copula regression model [11]. In the proposed model, they mainly focused on the
copula model as a graph inference model. In addition, they used the patent documents
related to the technologies of Apple. Xue and Shao (2024) conducted a patent technology
analysis to understand the hydrogen energy industry and technology using text mining [6].
The authors applied vectorization to their searched patent documents. In addition, they
performed topic clustering and constructed the associated structure between the patent
keywords to find the technological trends in the developed technology. Park and Jun (2022)
proposed a statistical method of patent keyword analysis for technology management,
such as technology forecasting and new product development [10]. The authors analyzed
patent keyword data using Bayesian inference-based analysis and network modeling. Park
and Jun (2023) also considered the zero-inflated problem in the patent keyword data [9].
In general, the number of keywords in patent data is much larger than the number of
documents, which causes the zero-inflated problem. To solve this problem, they proposed a

Electronics 2024, 13, 3670. https://doi.org/10.3390/electronics13183670 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13183670
https://doi.org/10.3390/electronics13183670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1961-0055
https://doi.org/10.3390/electronics13183670
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13183670?type=check_update&version=1


Electronics 2024, 13, 3670 2 of 13

compound Poisson regression model. That is, the authors studied patent keyword analysis
using a compound Poisson model because it was difficult to analyze zero-inflated patent
data using a general Poisson model.

Most of the existing patent keyword analysis models focused on the association
structure between keywords. That is, the technology structure was identified through
the correlation coefficients between connected keywords. However, technology is often
composed of preceding technology that has been developed and subsequent technology
that needs to be developed. In other words, there is a need to model the causal structure of
technology to be able to understand the technologies that cause and those that that result. In
other words, we need a technology analysis model that can understand the causal structure
of cause technology and effect technology. To overcome the gap between research on patent
keyword analysis and its application in real-world domains, in this paper, we carry out
a modeling study on the causal relationships between technologies. To perform a TKA
task, we have to collect the technology documents. In our research, we search the patent
documents from the world patent databases and preprocess them to build a structured
data for performing TKA. Using text mining as a preprocessing tool, we construct a matrix
consisting of patent documents and keywords, called the patent–keyword matrix [13,14].
Each element of the matrix represents the frequency value of a keyword occurring in a
document. We analyze the data matrix using a graphical causal model (GCM). The GCM
is composed of the graph structure and causal inference, so we represent the technology
keywords and their relationships as vertexes and edges in the graph. The edges show the
causal relationships between the technology keywords. We expect that our research results
will contribute to various tasks in technology management that require the quantitative
analysis of technology trends. When the government or a company tries to establish the
research and development (R&D) strategy for a new technology, they can build a more
efficient R&D strategy for the target technology using the result of our proposed model.

This paper consists of the following sections. In Section 2, we address our research
background, including graph theory and causal inference modeling. We propose a TKA
by the GCM in Section 3. In the next section, we carry out the experiments using practical
patent documents related to digital therapeutics to show how this research can be applied
to real-life domains. We explain the conclusions and contributions of our paper in the
conclusion section.

2. Graph and Causal Inference
2.1. Graph Structure

A graph is a data representation that shows the relationships between data
objects [15–17]. In general, a Graph G consists of nodes and edges, as described in (1) [15].

G(V, E), v ∈ V, e ∈ E (1)

where V and E are the sets of vertices (nodes) and edges, respectively. The v and e are each
vertex and edge, respectively. In a graph model, the vertices can be various objects, such as
variables and keywords. In addition, edges represent the relationship between different
data objects. Graphs are divided into directed and undirected graphs, depending on the
direction of the edges connecting the nodes. In technology keyword data analysis using the
graph structure, each node is a technology keyword and an edge represents the direction of
technological relationships between keywords [11]. In order to connect the different nodes
in the graph structure, we need a measure to calculate the association between the nodes.
In general, we use the correlation coefficient or the conditional probability as a measure
for computing associations. We can also consider causal inference to compute the causal
relationships between the nodes in a graph. In the next section, we explain causal inference.

2.2. Causal Inference Models

A causal model represents the relationships between causes and their effects, find-
ing the outcomes of interventions [18,19]. This cause–effect relationship is dependent on
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causal inference. Causal inference is the process of inferring a causal relationship between
one variable and another [16–20]. Correlation analysis involves finding a simple correla-
tion structure between two variables, while causal inference models the cause-and-effect
relationship between two variables. For example, a causal inference for two nodes v1 and
v2 is expressed as v1→v2. We refer to v1 and v2 as the parent and the child. In addition, v1
and v2 perform the roles of cause and effect in the causal inference model.

Most previous keyword analyses focused on the correlation between keywords [2–5,9].
Therefore, most keyword analyses models tried to find the efficient correlations between
keywords. However, since we cannot identify the cause–effect relationship between key-
words through the association analysis results, there are limitations in the use of keyword
analysis results by association. Especially in the field of technology management, where
new technologies are planned and developed based on previously researched and devel-
oped technologies, the TKA we conduct must be based on causal inference. To solve this
problem, we propose a TKA based on causal inference in the next section.

3. Proposed Method

In general, the correlation analysis can only confirm the correlation structure between
two variables, so it cannot find the cause-and-effect relationship between variables. There-
fore, we have limitations in identifying relationships between the keywords using the
correlation or association analyses. In particular, in the TKA, the keywords representing
preceding technology influence the keywords describing subsequent technology, so we
need a model that can explain the cause and effect between keywords. To overcome the
limitation of TKA, we use a causal inference model in this paper. The investigation of
causal relationships between technology keywords is a very interesting field of inquiry in
patent technology analysis. This is because, by understanding the cause–effect relation-
ships between the keywords included in patent documents, we can identify the technology
structure between sub-technologies for developing target technology. For this reason, we
propose a TKA using a causal inference model. Most statistical and machine learning anal-
ysis techniques require structured input data for learning purposes. That is, the columns
of the constructed data should be represented as variables and the rows as observations.
Therefore, using the text mining techniques, we have to transform the patent documents
into structured data for the keyword analysis. First, we search patent documents related to
target technology from the patent databases in the world because patents contain diverse
and detailed information about the developed technology. Using the following steps, we
can ontain the patent–keyword matrix data for technology analysis.

(Step 1) Collecting patent document data:

(1-1) Selecting target technology;
(1-2) Searching patents related to target technology;
(1-3) Determining valid patents.

(Step 2) Preprocessing patent text data:

(2-1) Performing tokenization;
(2-2) Performing normalization: stemming, lemmatization, lowercasing,

deleting stop words, removing punctuation and meaningless characters.

(Step 3) Building a patent document–keyword matrix:

(3-1) Finding unique vocabulary from corpus;
(3-2) Constructing a data matrix:

rows = patent documents, columns = keywords from the vocabulary;
matrix values = frequency values of each keyword in a document.

Once the target technology is determined, we first search for patent documents related
to this technology. Among the searched patent documents, we go through the process of
selecting only the valid patents that will be used for the final analysis. Next, we preprocess
the patent documents by performing tokenization and normalization. In this process,
we conduct stemming, lemmatization and lowercasing. We also carry out tasks such as
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deleting stop words, removing punctuation and meaningless characters. Finally, we build
the patent document–keyword matrix by finding unique vocabulary from the corpus. The
row and column represent patent documents and keywords, respectively. The matrix value
is the frequency of each keyword in a document. Therefore, Figure 1 shows our structured
data for the TKA.
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In Figure 1, we use a patent–keyword matrix for the TKA for the causal inference
models. This matrix consists of patents as rows and keywords as columns, respectively. In
addition, the element of the matrix, Xij, is the frequency of Keywordj included in Patenti.
As a result, we analyze the matrix data for our model. To visually represent the struc-
tural causal relationships between the patent keywords, we use a graph causal inference
model based on the graph structure. Table 1 shows the graph structure and the patent–
keyword matrix.

Table 1. Comparing the graph structure and patent–keyword matrix.

Graph Representation Patent–Keyword Matrix

Node Variable Keyword

Edge Cause Technology relationship

A graph consists of a pair of V and G, represented by G(V, E), where V and G are a set
of nodes and edges [16]. E is a set of the conditional probabilities between variables. A node
in the graph is a variable representing a technology keyword in the patent–keyword matrix.
In addition, an edge representing the cause refers to the relationship between the keywords
that represent sub-technologies. For constructing the GCM, we consider two approaches:
learning the causal structure and estimating causal effects. The proposed method is based
on the PC (Peter and Clark) algorithm using a conditional independence test (CIT) [16,17].
We start from fully connected nodes in an undirected graph. In this graph, we examine the
conditional independence of a pair of nodes through the CIT. We do this until finishing the
CIT for all node pairs.

A representative method that performs causal inference between the nodes included
in a graph structure using the CIT as a basic component is the PC algorithm [16,17]. That
is, the PC algorithm uses the CIT to infer a causal structure model from the data. The PC
algorithm refines the graph structure iteratively while depending on the CIT. The algorithm
starts with a complete graph and removes the meaningless edges according to the CIT
results. Therefore, we use the PC algorithm in this paper. The process of the PC algorithm
for the TKA is as follows:

(Step 1) Building a complete undirected graph based on technology keywords.
(Step 2) Performing a conditional independence test:

(2-1) Determining the significance level α;
(2-2) Using subsets of adjacency sets related to all pairs of technology keywords.

(Step 3) Deleting the edges of a pair of nodes with conditional independence.
(Step 4) Constructing a graphical causal model using the remaining edges.
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A graphical model is a dependence structure based on probability distributions. The
nodes in the graph are random variables, and the edges represent the dependence between
the variables (keywords). In this paper, we also consider a DAG as a GCM. Because the
DAG represents conditional dependencies between nodes, we can use the former node (A),
representing the cause, to infer the latter node (B), representing the result A→B. That is, the
relationship A→B, describing the frequency value of the keyword B, is directly influenced
by the value of the keyword A. In this relationship, A is a parent of B and B is a child of A.
Using the PC algorithm, we perform the graphical causal modeling, such as constructing
a DAG.

A graphical model of the keywords
(
W1, W2, . . . , Wp

)
is represented by the conditional

independence relationship, as follows [16,17]:

P
(
W1, W2, . . . , Wp

)
=

p

∏
i=1

P(Wi|PAi) (2)

where PAi is a subset node of the keywords that precede the keyword Wi. We construct a
DAG represented by the parents of Wi, which directly influence Wi. In addition, we apply
Equation (2) to the independencies and the carry out the CIT as follows [16,17,20]:

(Step 1) Skeleton of directed acyclic graph (DAG):

(1-1) Estimating the DAG skeleton;
(1-2) Starting with a complete undirected graph.

(Step 2) Testing the constraint of each edge (between Wi and Wj):

(2-1) Defining the conditional set C;
(2-2) Deleting Wi and Wj if Wi and Wj are conditionally independent given C;
(2-3) Building the separation set (Wi,Wj).

In the graphical causal inference for the TKA, the graph model is represented as
M(W, P). In this model, W is a keyword set, and P is the edge representing the conditional
probability between the keywords. That is, P is defined by the ith keyword Wi and
the parent keywords of Wi, PAi. For example, if four keywords, W1, W2, W3 and W4
have the same graph structure as W1 → W2 → W3 → W4 , we can use the joint probability
distribution to perform graph causal inference, as in Equation (3).

P(W1, W2, W3, W4) = P(W1)P(W2|W1)P(W3|W2)P(W4|W3) (3)

In the M(W, P), the keyword included in W is a random variable. We can also see
how a particular keyword affects another keyword through a set of edges, P. That is, P
represents the causal relationships between the technology keywords. Therefore, using the
process of the graphical causal modeling, we can build the visualization of the technological
keywords. If there is an edge between Wc and We, Wc → We , we consider a generalized
linear model to understand the causal relationship in more detail about this edge. In
this relationship, Wc and We are cause and effect keywords, respectively. To examine the
relationship between the two keywords in more detail, we build a generalized linear model
(GLM) where We is the dependent variable and Wc is the independent variable. In this
paper, we use the Poisson regression model as a GLM for the edge because the given data
are count-type. In the Poisson regression model, the We is a random variable with the
following Poisson distribution [21–24]:

f (We) =
e−mmWe

We!
, We = 0, 1, 2, . . . (4)

In the Equation (4), m is the parameter of Poisson distribution and represents the mean
value. Therefore, the Poisson regression model is represented as follows [25–28]:

log(m) = β0 + β1Wc1 + β2Wc2 + · · ·+ βpWcp (5)
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In the regression model of Equation (5), Wc1, Wc2, . . . , Wcp are the independent vari-
ables (keywords), and β0, β1, β2, . . . , βp are the model parameters. Using Equation (5), we
can obtain the regression equation for m, as follows:

m = eβ0+β1Wc1+β2Wc2+···+βpWcp (6)

According to Equation (6), we estimate the model parameters from the given data
and compute m to predict We. In addition, we carry out the hypothesis testing to find the
statistical significance of each parameter, as follows [26]:

H0 : βi = 0 vs. H1 : βi ̸= 0 (7)

When we reject H0 in Equation (7), we determine that the keyword Wci, corresponding
to βi, is statistically significant. In this paper, we use the p-value to decide to reject H0 or
not. The threshold of p-value is determined according to significance level α(0 ≤ α ≤ 1).
For example, in the 95% confidence interval, the value of α is 0.05 and we can reject H0
when the value of α is less than 0.05.

In this paper, our proposed method performs the TKA by four sub-methods from M1
to M4, as follows:

(M1) Building the patent–keyword matrix;
(M2) Graphical causal inference modeling;
(M3) Poisson regression modeling;
(M4) Constructing the keyword diagram of cause and effect technologies.

In the first sub-method (M1), we build the patent–keyword matrix from the searched
patent documents using text mining techniques. Next, we apply the GCM to the patent–
keyword matrix in the second sub-method (M2), and we find the causal structure for the
target technology. In the third sub-method (M3), we perform Poisson regression modeling
using the cause and effect keywords from the GCM results. Finally, we construct the
technology keyword diagram of causes and effects in the fourth sub-method (M4). We
can use these results in various fields of technology management. In various technology
domains, once the target technology is decided on, we collect relevant patent documents
from patent databases around the world and perform text preprocessing by selecting only
valid patents. The patent–keyword matrix data constructed through this process is used in
graph causal inference modeling. Using the results of graph causal inference modeling, we
perform Poisson regression analysis and ultimately construct a technology diagram for the
target technology. We expect that the technology keyword analysis method proposed in
this paper can be utilized in various fields of technology management.

4. Experimental Results
4.1. Experimental Data

We used the patent documents in our experiments for the technology keyword analysis.
We searched the patents related to digital therapeutics technology from the world patent
databases [29,30]. Digital therapeutics refer to software provided to patients to prevent,
manage, and treat diseases and disorders [31–33]. The technology of digital therapeutics is
still in the early stages of development worldwide, and much research on this technology
is underway in various fields. In this paper, we collected data from patent documents
related to digital therapeutics technology and analyzed them using the graph causal
inference model. First, we extracted technology keywords from the patent documents and
constructed a patent–keyword matrix, shown in Figure 2.

As shown in Figure 2, we finally selected 12 technology keywords from 2685 valid
patents. The elements of this matrix represent the frequency of specific keywords included
in each patent document. Fqi,j represents the frequency of Keywordi included in Patentj.
In addition, the selected keywords are as follows: analysis, compute, digit, generate,
intelligent, learn, machine, network, sensor, signal, smart, therapeutics. In the next section,
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we built a graph causal inference model using the patent–keyword matrix data in Figure 2.
We used the data language R and its provided packages for our experiments [14,34,35].
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4.2. Analyzing Technology Keyword Data Using Graphical Causal Modeling

A single technology field is made up of a causal structure in which many different
sub-technologies influence each other. Likewise, the digital technology field also exhibits a
causal structure, with causal technologies influencing other technologies and the resulting
technologies being influenced in turn. Therefore, we tried to construct the causal structure
of digital therapeutics technology using our proposed method in our experiments. To
understand the technology of digital therapeutics, we have three questions, as follows:

(Q1) What are the causes within the field of digital therapeutics technology?
(Q2) What are the effects within the field of digital therapeutics technology?
(Q3) What is the mediator that connects cause and effect in the field of digital therapeutics?

In questions 1 and 2 (Q1 and Q2), we look for patent technology keywords that cor-
respond to causes and effects within the field of digital therapeutics. Additionally, in
question 3 (Q3), find the patent keywords corresponding to mediating technologies that
connect the causes and effects in the field of digital therapeutics. To address the three ques-
tions, we analyzed patent–keyword matrix data using the graph causal
inference model.

First of all, to analyze the technology keyword data, we applied the GCM to analyze
the patent–keyword matrix. We carried out the GCM according to the significance level
of the individual conditional independence tests. Figure 3 shows the GCM result with
α = 0.05.
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This is an undirected and fully connected graph of the initial skeleton. Overall, we
were able to find that the three keywords, digit, generate and signal, were highly connected
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to other keywords. The keyword digit is connected to the five keywords, analysis, compute,
generate, network and signal. That is, the technology of digit is related to the technologies
based on the five keywords. Next, we show the GCM result by PC algorithm with α = 0.05.

In Figure 4, we represent the direction of each keyword with in- and out-directions.
The keywords with the out-direction perform the role of cause node (vertex) in the graph.
In addition, the keywords with the in-direction are influenced by the keywords with
the out-direction. Therefore, the keyword signal is affected by the keywords compute,
generate, sensor and therapeutics. The keyword digit is influenced by the keywords
analysis, compute, signal and smart. In addition, the keyword generate receives influence
from the keywords digit, intelligent, learn, machine, sensor and therapeutics. Next, Figure 5
represents the initial skeleton result of GCM with α = 0.01.
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In Figure 5, the GCM result of the initial skeleton with α = 0.01 is similar to the GCM
result with α = 0.05. However, there is a difference in the size of in- and out-directions. In
this graph, the edge size of the keyword signal is the largest. On the other hand, in the
GCM graph result with α = 0.05, the keyword generate had the largest number of edges,
while the keyword signal had the second largest number of edges. Next, we show the GCM
result based on the PC algorithm with α = 0.01 in Figure 6.
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This adds the in- and out-directions to the graph of Figure 5. We found that the
number of in-directions for the keyword signal is five, so this keyword is influenced by the
five keywords compute, digit, generate, sensor and therapeutics. The four keywords digit,
generate, network and sensor all have three in-directions each. That is, these keywords
are influenced the most by the graph structure of Figure 6, following the keyword signal.
Therefore, we represent the in- and out-directions of all keywords in Table 2.

Table 2. Causes and effects of technology keywords.

Keyword
α = 0.05 α = 0.01

In Out In Out

analysis 0 3 0 2
compute 1 4 1 4

digit 4 3 3 3
generate 6 1 3 2

intelligent 2 2 0 2
learn 3 1 3 0

machine 0 2 0 2
network 3 1 3 1
sensor 2 2 3 1
signal 4 1 5 0
smart 0 2 0 2

therapeutics 0 3 0 2

This shows the in- and out-edges according to the keywords at significance levels of
α = 0.05 and 0.01. First, at the significance level of α = 0.05, the in-direction of the keyword
generate is the largest. The keywords of digit and signal are second largest. Therefore, we
found that the keywords digit, generate and signal are mainly affected by other keywords.



Electronics 2024, 13, 3670 10 of 13

Next, in the out-direction, the numbers associated with the keywords compute, digit and
therapeutics are larger than those of the other keywords. Therefore, these three keywords
perform the role of cause in the GCM. Second, at the significance level of α = 0.01, we found
that the keywords digit, generate, network, sensor and signal have relatively larger values
compared to the others. Therefore, these keywords are influenced by other keywords in
the graph model. The keywords compute and digit have relatively larger numbers of the
out-direction. We also see that the keyword digit acts as both a cause and effect because it
has large values in both in- and out-directions. We identified which keywords were acting
as cause and effect. Using this, we performed a Poisson regression analysis with keywords
corresponding to cause and effect as the independent and dependent variables, respectively.
Table 3 shows the result of the Poisson regression analysis, using the GCM results with a
significance level of α = 0.05.

Table 3. Poisson regression model using the GCM results with α = 0.05.

Dependent Independent |β| p-Value

digit

analysis 0.7398 <0.0001
compute 0.0395 0.0503

signal 0.1952 <0.0001
smart 0.6709 <0.0001

generate

digit 0.3594 <0.0001
intelligent 0.5361 <0.0001

learn 0.3201 <0.0001
machine 0.2507 <0.0001
sensor 0.1344 <0.0001

therapeutics 0.0110 0.6130

signal

compute 0.1045 <0.0001
generate 0.3181 <0.0001
sensor 0.1756 <0.0001

therapeutics 0.1421 <0.0001

First, we found that in the model with the keyword digit as the dependent variable,
the remaining three keywords, analysis, signal and smart, excluding compute, statistically
significantly explained the keyword digit. Next, in the case of the regression model where
the keyword generate was the dependent variable, the remaining five keywords, digit,
intelligent, learn, machine and sensor, excluding the keyword therapeutics, statistically
significantly explained the keyword generate. Finally, in the model where the dependent
variable was the keyword signal, all four keywords, compute, generate, sensor and thera-
peutics, used as independent variables, had a statistically significant effect on the keyword
signal. We also represent the Poisson regression result using the GCM results, with α = 0.01
in Table 4.

Table 4. Poisson regression model using the GCM results with α = 0.01.

Dependent Independent |β| p-Value

signal

compute 0.0975 <0.0001
digit 0.2816 0.0006

generate 0.3122 <0.0001
sensor 0.1682 <0.0001

therapeutics 0.1533 <0.0001

Since the number of the in-direction decreases as the α decreases in the GCM, only
one regression model with the keyword signal as the dependent variable was performed
in Table 4. In this regression model, we confirmed that all five keywords, compute, digit,
generate, sensor and therapeutics, used as independent variables, statistically significantly
explained the keyword signal. Using all the experimental results conducted so far in this
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paper, we created the technological relationship structure related to digital therapeutics
depicted below.

In Figure 7, the technology of digital therapeutics consists of two technological groups,
according to effect and cause. The effect group is represented by technologies based on
the sub-technologies generate and signal. In addition, the technology corresponding to
the cause group is based on the sub-technologies analysis, compute, intelligent, machine,
smart and therapeutics. We also found that the sub-technology related to digit corresponds
to both the effect and cause groups. In the following sections, we present our conclusions
of this paper and suggest directions for future research related to our research.
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5. Conclusions

The goal of this paper was to create the causal structure for target technology using
TKA. In this paper, we proposed a TKA using graph modeling and causal inference, called
the GCM. We searched the patent documents from the world patent databases to collect
technology keyword data. Using text mining techniques, we preprocessed the patent
documents to construct the patent–keyword matrix. We used the patent document data
for our research because a patent contains various information related to the developed
technology, such as title, abstract, claims, citations, etc. Therefore, we applied the GCM to
the patent–keyword matrix to build the causal structure of technologies. We chose digital
therapeutics as our target technology for the TKA. Using the patent–keyword matrix related
to digital therapeutics technology, we developed the causal structure of the technology
based on the results from the PC algorithm, in- and out-directions and Poisson regression
modeling. In our experimental results, we found that the keywords analysis, compute,
intelligent, machine, smart and therapeutics correspond the cause technologies in the field
of digital therapeutics. In addition, we confirmed that the keywords that play an effect
role are generate and signal. Finally, we could see that the keyword digit serves the role of
mediator between cause and effect.

The significance of our study is that it models the causal structure that explains cause
and effect between technology keywords. Most existing technology keyword analyses have
focused on identifying correlation structures between keywords. However, since most
technologies are developed based on previously developed preceding technologies, the
causal analysis of technology is important. Therefore, our research can contribute to the
analysis and management of technology across various fields. A company can establish an
efficient strategy for new R&D related to target technology using our proposed method.

In our future work, we will apply topological data analysis (TDA) to the GCM for
a more advanced understanding of the causal structure between technology keywords.
Topology applies low-dimensional geometric structure to high-dimensional complex data
to show how local parts are connected globally [36,37]. Therefore, we use TDA to identify
the topological structure between technology keywords. This allows us to explain not
only the causal relationships between individual keywords, but also the causal structure
between all keywords. We call this new method TDA-GCM. By using the TDA-GCM
method, we can understand the overall causal structure of technology and, based on this,
conduct various technology management activities for target technologies.
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