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Abstract: Camouflaged object detection (COD) is a challenging task that involves identifying objects
that closely resemble their background. In order to detect camouflaged objects more accurately,
we propose a diffusion model for the COD network called DMNet. DMNet formulates COD as a
denoising diffusion process from noisy boxes to prediction boxes. During the training stage, random
boxes diffuse from ground-truth boxes, and DMNet learns to reverse this process. In the sampling
stage, DMNet progressively refines random boxes to prediction boxes. In addition, due to the
camouflaged object’s blurred appearance and the low contrast between it and the background, the
feature extraction stage of the network is challenging. Firstly, we proposed a parallel fusion module
(PFM) to enhance the information extracted from the backbone. Then, we designed a progressive
feature pyramid network (PFPN) for feature fusion, in which the upsample adaptive spatial fusion
module (UAF) balances the different feature information by assigning weights to different layers.
Finally, a location refinement module (LRM) is constructed to make DMNet pay attention to the
boundary details. We compared DMNet with other classical object-detection models on the COD10K
dataset. Experimental results indicated that DMNet outperformed others, achieving optimal effects
across six evaluation metrics and significantly enhancing detection accuracy.

Keywords: camouflaged object detection; diffusion model; computer vision; feature fusion;
location refinement

1. Introduction

In the military field, camouflage technology ensures the survivability of weapons, equip-
ment, and personnel on the battlefield by reducing the differences between objects and their
surrounding environment. With the development of camouflage technology, the environments
in which military camouflaged objects are located have become intricate and complex, with
widespread overlapping and obstruction. These objects exhibit high concealment and low
recognizability [1]. The task of camouflaged object detection (COD) faces significant challenges.

Camouflaged object detection can be classified into two categories: visible light and
non-visible light. In military applications, non-visible-light technologies such as hyperspec-
tral imaging, laser, radar, and infrared are often used to detect camouflaged objects [2–4].
Visible-light detection employs traditional camouflaged object-detection algorithms such as the
Deformable Part Model (DPM), the Histogram of Oriented Gradients method, and Support Vec-
tor Machines [5]. However, due to the weak feature expression capabilities of these traditional
methods, it is difficult to detect camouflaged objects in complex backgrounds.

With the rapid development of deep learning technology, object-detection algorithms
under visible-light conditions [6–11] have seen significant improvements both in accuracy and
speed. However, when detecting camouflaged objects, these deep learning-based algorithms
still suffer from missed detections, false detections, and poor accuracy. Therefore, researching
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how to enhance the detection accuracy of camouflaged objects based on deep learning in the
visible-light spectrum is particularly crucial.

Addressing the practical needs of military applications, we propose a Diffusion Model
for Camouflaged Object-Detection Network (DMNet) under visible-light conditions. DMNet
treats the object-prediction bounding box as a generation task based on a diffusion model.
It adds Gaussian noise to the ground-truth bounding box in order to obtain noisy random
bounding boxes, and the model iteratively refines these noisy bounding boxes to obtain the
final prediction results. This is shown in Figure 1, which illustrates the difference between
the proposal bounding box-generation approach guided by the diffusion model and that of
common models. To enhance the features extracted by the backbone network, we design
a parallel fusion module (PFM) and a progressive feature pyramid network (PFPN). These
modules enhance the representation of object features by parallelly integrating asymmetric
convolutions and gradually fusing feature layer information. The PFPN includes an upsample
adaptive spatial feature fusion (UAF) module that balances information from different feature
layers. Furthermore, a location refine module (LRM) is constructed to enable the network to
effectively focus on local detail features and produce clear localization information. Finally, by
improving the diffusion model head (DiffHead) that is more suitable for the COD task, it can
fully extract and analyze the features of camouflaged objects, thereby enhancing the detection
accuracy. To summarize, the main contributions of this paper are as follows:

1. We construct a camouflaged object-detection network, DMNet, based on the diffusion
model to improve the accuracy of COD detection;

2. We propose a progressive feature pyramid network-connection method and design
an upsampling adaptive spatial feature-fusion module to achieve the gradual fusion
of adjacent feature layers, thereby enhancing the expressive power of the features;

3. We propose that PFM, LRM, and Diffhead, respectively, increase the receptive field,
enhance the representation learning of low-level boundary detail information in
camouflaged objects, and become more sensitive to spatial information, thereby
enhancing detection accuracy.

4. The constructed DMNet exhibits exceptional performance on the COD10K dataset,
surpassing the classic algorithm in six evaluation metrics, thereby demonstrating its
effectiveness in enhancing COD accuracy.
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Figure 1. Different ways of generating suggestion boxes. (a) Normal generation method of proposal
boxes; (b) The diffusion model leads to produce proposal boxes. (The different colors in the figure
represent different proposal boxes).

The rest of this paper is structured as follows: In Section 2, we introduce the related
work. Section 3 describes the network structure of DMNet in detail, as well as its mathemat-
ical derivation process, training and inference strategies. Section 4 provides a discussion of
the experimental results. Finally, we summarize the research content in Section 5.

2. Related Work
2.1. Deep Learning-Based Object Detection

Object detection is one of the most important tasks in the field of computer vision,
which aims to identify objects of interest in images and locate their positions in the images
through bounding boxes. Deep learning-based object-detection algorithms can mainly be
classified into two categories: two-stage object detection and one-stage object detection.
One-stage object-detection algorithms directly predict the target positions and categories in
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images through neural networks in an end-to-end manner, without the need to generate can-
didate regions for further classification and localization. These one-stage object-detection
algorithms are simpler and more efficient in design, usually with faster inference speeds.
Common one-stage object-detection algorithms include YOLO [6], SSD [7], EfficientDet [8],
etc. Two-stage object-detection algorithms divide the object-detection task into two stages:
firstly, generating candidate regions, and secondly, classifying and refining the localization
of these candidate regions. Common two-stage object-detection algorithms include Sparse
RCNN [9], Swin-RCNN [10], SPP-Net [11], etc. Due to the high similarity between cam-
ouflaged objects and their surrounding environments, it is difficult to accurately identify
camouflaged objects. Therefore, we adopt the idea of two-stage object-detection algorithms.
In recent years, researchers have proposed many methods to improve the accuracy and
speed of object-detection algorithms, which has promoted the wide application of deep
learning-based object-detection technology in fields such as autonomous driving [12],
industrial quality inspection [13], medical image analysis [14], etc.

2.2. Deep Learning-Based Camouflaged Object Recognition

Camouflaged object recognition (COR) aims to accurately identify targets hidden in
complex backgrounds within images. The difficulty of COR lies mainly in two aspects:
firstly, the contrast between the foreground and background is not distinct, making it
challenging to capture the edges of camouflaged objects; secondly, there are interfering
factors such as obstacles and shadows in the environment that hinder the recognition of
camouflaged objects. Figure 2 introduces the tasks related to camouflaged object recogni-
tion, including camouflaged object detection, camouflaged object segmentation (COS), and
camouflaged instance segmentation (CIS).
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Figure 2. The illustration of camouflaged objects and COR. (The different colors in the figure represent
different objects that have been identified).

2.3. Diffusion Model

A diffusion model is a type of probabilistic generative model aimed at learning the
sampling distribution over the sample space and gradually generating samples from
the distribution by removing noise. This model does not require adversarial training in
content generation and is trained using the two-step process. First, during the training
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process, the forward diffusion process gradually adds noise to a reference (usually an
image) according to a predefined schedule. In inference process, the reverse diffusion
process generates random initial noise, and the model gradually eliminates the noise until
it forms data points of the training distribution, converting them into samples of the object
distribution being modeled. Currently, research on diffusion models is primarily based on
three types: Denoising Diffusion Probabilistic Models (DDPMs), Score-based Generative
Models (SGMs), and Stochastic Differential Equations (SDEs).

Diffusion models have been applied to many fields, such as text-to-image guided
synthesis [15], 3D-shape generation [16], molecular prediction [17], video generation [18]
and image restoration [19]. In 2022, Wu et al. proposed MedSegDiff, the first medical image
segmentation framework based on DDPM, which aims to achieve precise results during
the adaptive calibration process [20]. In 2023, Zhao Peiang et al. from the University of
Science and Technology of China [21] proposed a general lesion-detection algorithm based
on diffusion model, named Diffusive Universal Lesion Detection (DiffULD), to address the
issue of insufficient targets. This strategy provides additional high-quality training objects
while avoiding significant performance degradation. In 2024, Lv et al. [22] introduced
the first model that incorporates a diffusion model into the multi-object tracking task to
address nonlinear motion prediction (Diffusion-based Multiple Object Tracker (DiffMOT)),
optimizing the diffusion process with fewer sampling steps. This paper aims to construct a
diffusion model for the camouflage object-detection algorithm.

3. Methods

As illustrated in Figure 3, we undertake the network architecture design for DMNet,
which is predicated on denoising diffusion implicit models (DDIMs). This encompasses
both forward and backward processes.
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3.1. Mathematical Derivation

We propose DMNet in this paper, which is designed based on DDIMs. A DDIM can
be seen as a model that mimics the diffusion process in nature, with its core idea being to
gradually remove noise from images and ultimately generate clear and realistic images.
This method can be applied to generating high-quality images, text, or other types of data.

Set the input for object detection as (x, b, c), where x is the input image, and b and c are,
respectively, a set of bounding boxes and category labels for image x. The ith box in the set
is formalized as boxi = (xi, yi, wi, hi), where (xi, yi) represents the center coordinates of the
bounding box, and (wi, hi) represents the width and height of the bounding box. Unlike
DDPMs, which use Markov properties, DDIMs can define a forward process with fewer
steps and achieve sampling acceleration by directly defining q(xt−1|xt, x0). According
to the data distribution x0 ∼ q(x0), by gradually adding Gaussian noise with variance
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βt ∈ (0, 1) at each time step t, a forward Markov noise process x1, x2, . . . , xT is generated
for the data sample q. This allows for the direct sampling of data xt at any time step t
without repeatedly applying q.

DMNet generates bounding boxes through the application of reverse learning in
diffusion models—a process that modifies the prior distribution of noise to align with the
learned distribution of the bounding boxes. It gradually adds noise boxes boxt that satisfy
Gaussian noise distribution to the training images, where box0 represents the ground-truth
box of the original image, with 0 indicating T = 0; boxt is the noise box added at time t.

The inference distribution is defined as

qσ(box1:T |box0) = qσ(boxT |box0)
T

∏
t=2

qσ(boxt−1|boxt, box0) (1)

qσ(boxT |box0) = N(
√

αTbox0, (1 − αT)I) (2)

When, for t ≥ 2,

qσ(boxt−1|boxt, box0) = N(boxt−1;
√

αt−1box0 +
√

1 − αt−1 − σ2
t

boxt −
√

αtbox0√
1 − αt

, σ2
t I) (3)

In the formula, a is a real number, and different settings will result in different dis-
tributions, so qσ(box1:T |box0) represents a series of inference distributions. Among them,
αt := ∏t

s=0 αs; αt := ∏t
s=0 αs.

It is proved by mathematical induction that for all t, it satisfies

qσ(boxT |box0) = N(boxt;
√

αtbox0, (1 − αT)I) (4)

Calculate box0 by sampling from q(boxT) and running the inversion process
q(boxt−1|boxt).

In the generation stage, Formula (5) can be used to generate boxt−1 from boxt:

boxt−1 =
√

αt−1(
boxt −

√
1 − αtεθ(boxt, t)√

αt
) +

√
1 − αt−1 − σ2

t ·εθ(boxt, t) + σtεt (5)

where σ2
t is defined as

σ2
t = η · β̃t = η ·

√
(1 − αt−1)/(1 − αt)

√
(1 − αt/αt−1) (6)

When η = 1, at this time, σ2
t = β̃t, and the generation process is the same as the DDPM;

when η = 0, the generation stage is a deterministic process. Once the initial random noise
boxt is determined, the sample generation of DDIM is a deterministic process.

3.2. Proposed DMNet

As illustrated in Figure 4, we proposed the overall architecture design of the DMNet
network based on a DDIM. Diffusion models require multiple runs of the model during the
inference stage. Due to high complexity and difficulty in directly applying the model to
the computation process of the original image in each iteration step, the model is divided
into two parts: an image encoder and a detection decoder. The image encoder takes the
original image as input and extracts image features. Then, the detection decoder takes
the features extracted by the encoder as input, iteratively denoises the noise boxes, and
finally refines the camouflaged object prediction boxes by calculating the loss between the
predicted boxes and the true boxes.
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3.2.1. Feature Extraction Backbone

Due to the multiple iterations required by the diffusion model to generate data samples,
using the original image as input in each iteration directly would increase the computational
load and complexity of the network. Therefore, DMNet first extracts camouflaged object
features through the image encoder and then uses these features as input to the detection
decoder for predicting detection boxes.

In the image encoder, the DMNet algorithm takes the original image as input and
uses a model based on Swin Transformer to extract camouflaged object features. Similar to
the hierarchical structure of convolutional neural networks (CNNs), Swin Transformer’s
hierarchical structure is not only flexible but is also capable of providing feature information
at various scales. The specific computation process is as follows: First, input an image of size
H × W × 3. Then, the input image is divided into blocks through the Patch Partition layer,
with each block consisting of 4 × 4 adjacent pixels. Next, these blocks are concatenated in
the channel dimension. Shown in Figure 5 is the structural composition of Swin Transformer
(Swin-T) Block, which is capable of extracting multi-scale features of camouflaged objects.

Before entering Stage 1, each pixel’s channel data undergo a linear transformation
through the linear embedding layer, which employs a fully connected layer. After pro-
cessing by the linear embedding layer, each image patch is converted into a feature vector
of a fixed length, projecting the tensor of dimension H/4 × W/4 × 48 into an arbitrary
dimension C. In DMNet, after passing through Stage 1, the dimension H/4 × W/4 × 48 is
transformed into H/4 × W/4 × 128.

Four stages are used to construct feature maps of different sizes, and each time, when
the sampling is downscaled by two times, the number of channels is doubled. Swin-B is a
variant of the Swin Transformer model, usually referring to the Swin Transformer model
with specific parameter settings. Swin-B has more parameters, which can capture more
complex features, thereby enhancing the model’s representational capacity.
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3.2.2. PFPN

We need to input the extracted camouflaged object features into the DMNet for box
detection. However, due to the significant differences in features between non-adjacent
stages, it is unreasonable to directly perform feature fusion on the features of the four
stages. Moreover, detecting camouflaged objects often has a greater demand for low-level
features such as edges and textures.

To address the above issues, in this section, we propose a progressive feature pyramid
network (PFPN) that gradually fuses features from different layers to extract more infor-
mation, allowing semantic information with larger differences between different layers
to be approximated through progressive fusion. As shown in Figure 6, the framework
extracts the last layer of features from each feature layer of the backbone, resulting in a set
of features of different scales, denoted as {Z1, Z2, Z3, Z4}. Initially, we input the low-level
features Z1 and Z2 into the network, then add the intermediate-level feature Z3. Finally,
the high-level feature Z4 is fused. After feature fusion, a set of multi-scale features {P1, P2,
P3, P4} is generated.
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In order to prevent the loss of feature information during fusion between distant layers
and to alleviate the conflicts between information from different levels, we fuse features
from adjacent stages in the PFPN to retain useful information for features fusion. We use the
PFPN to reduce this semantic gap by fusing adjacent feature layers separately, enhancing
the weight of camouflaged objects, and mitigating the interference from background
information that is highly similar to camouflaged objects. During the process of adjacent
feature fusion, it utilizes the idea of adaptive spatial fusion operation for filtering. As
shown in Figure 7, in order to balance the conflicting information between levels, we design
an upsample adaptive spatial feature fusion (UAF) module to assign spatial weights for
different level features.

fmn = αmn · xmn + βmn · ymn (7)

αmn + βmn = 1 (8)
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Here, αmn and βmn represent the spatial weight parameters of two different input
layers, while xmn and ymn represent the input features of the two levels.
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Low-level networks focus more on local detail information such as the edges and
textures of camouflaged objects. However, in some cases, they may not be sufficient for
completing complex tasks, such as a semantic understanding task or object-detection task.
At the same time, they are prone to false alarms due to the influence of fine structures
or textures in image, thereby introducing misleading information from non-camouflaged
objects that can mislead detection results. On the other hand, high-level features focus
more on the semantic information of objects.

To achieve multi-scale feature fusion, the high-level features are upsampled and the
features of different levels are fused to retain more details of original features and enhance
the spatial information of feature maps. We applied upsampling to low-level features to
pass through high-level semantic features, facilitating the exploration of edge information
related to camouflaged objects.

While ensuring detection accuracy, we reduce PFPN redundant-feature connections
and retain the fusion of the high-level semantic information and low-level detail information
of camouflaged objects through upsampling and partial downsampling processes. Lateral
connections fuse the results of upsampling or are downsampled with feature maps of the
same size generated in the previous stage. After fusion, we use a 3 × 3 convolution kernel
to convolve the results, eliminating the aliasing effect caused by upsampling.

The PFPN utilizes gradual fusion between adjacent levels to reduce feature discrepan-
cies in different levels. While preserving low-level features, it repeatedly fuses low-level
and high-level features to generate richer feature information. By fusing low-level features
with high-level features layer by layer, it avoids information loss or degradation during
cross-level transmission.

3.2.3. PFM

Due to the large amount of similar structural information between the camouflaged
object and its surrounding environment, it becomes challenging for the model to distin-
guish minute differences. In order to enlarge the receptive field and extract rich feature
information from the output of the backbone network, we design a parallel fusion module
(PFM). Given an input feature f, the PFM undergoes parallel convolution and then super-
position. The parallel convolution can expand the receptive field, further enhancing the
model to learn features of different scales.

We designed the PFM’s structure, which is shown in Figure 8. The module architecture
leverages the advantages of asymmetric convolution [23] by decomposing a standard n ×
n convolutional kernel into two smaller ones (typically 1 × n and n × 1). This approach
significantly reduces the number of parameters while maintaining the receptive field,
allowing for efficient feature extraction. In contrast to traditional convolutional operations,
where the elements in the kernel are symmetric in both horizontal and vertical directions,
asymmetric features in images are crucial for model performance in complex scenarios.
Asymmetric convolution achieves directional feature extraction by assigning different
weights, tailored to capture salient information from different orientations. The PFM
process can be represented by Formulas (9) and (10): Firstly, we use a 3 × 3 convolution to
enhance the features from the backbone network; then, we apply a 1 × 1 convolution to
reduce the number of channels and decrease model complexity. In order to learn stronger
feature information with a more pronounced receptive field, the targeted extraction of
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features in different directions is performed through 1 × n and n × 1 convolutional
layers. Subsequently, the features from the two branches are superimposed to capture
features in different directions. Finally, a 3 × 3 convolution, normalization, and ReLU
activation function (CBR) are applied to enrich contextual features. This module is capable
of understanding input feature information better and enhancing local key features in
different directions.

fi = AM(convi( f )) (9)

f̃i = CBR(conv3(conv1( f5))⊕ (conv1( f7)))) (10)

In the formula, conv1 and conv3, respectively, represent 1 × 1 convolution and 3 × 3
convolution. CRB is an abbreviation for conv3 × 3 + ReLU activation function + normaliza-
tion process. AM represents asymmetric convolution with 1 × n and n × 1 kernels, and ⊕
denotes element-wise addition.
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3.2.4. LRM

We designed a location refine module (LRM) to enhance the representation learning of
low-level feature details in camouflaged objects. In convolutional neural networks, as data
propagate through DMNet, the features extracted by each convolutional layer can be regarded
as feature representations at different levels. Low-level detail features typically refer to the
feature representations extracted closer to the input layer, which are characterized by high-
resolution feature maps and strong spatial geometric information-representation capabilities,
making it easier to locate camouflaged objects. For example, edge cues can enhance the feature
representation of the structural semantics of camouflaged objects.

The detail enhancement module is shown in Figure 9. It utilizes a 3 × 3 convolution to
further capture spatial information from shallow local detail features, obtaining the initial
enhanced features. Then, we apply global average pooling to aggregate spatial information.
Next, channel attention is obtained through a 1D convolution operation and σ function,
which reduces the number of parameters and mitigates overfitting. Finally, the channel
attention is multiplied with the input features, and a 1 × 1 convolution layer is used to
reduce the channels, resulting in the final output. This process can be represented by
Formulas (11) and (12) as follows:

fconv3 = Fconv3( f ) (11)

f g
i = Fconv1(σ(FConv1d(GAP( fconv3)))⊗ fconv3) (12)
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In the formula, GAP stands for global average pooling, which is a pooling operation
that calculates the average of each feature map across its spatial dimensions. σ represents
the Sigmoid activation function. ⊗ represents the multiplication of elements, Fconv1 is a
1 × 1 convolution, Fconv3 is a 3 × 3 convolution, and Fconv1d represents a one-dimensional
convolution operation.
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3.2.5. Detection Encoder

Figure 10 illustrates the improved detection-head structure based on the diffusion
model, named DiffHead, which is more suitable for the specific task of COD. The detection
decoder takes proposal boxes as input, crops Region-of-Interest (RoI) features from the
feature maps generated by the image encoder, and feeds these RoI features into the detection
head to identify the camouflaged objects and their locations in the image.

During the training phase, the proposal boxes are perturbed with noise from the
ground-truth boxes, and during the evaluation phase, they are directly sampled from
a Gaussian distribution. Given n random noisy boxes, the final prediction results are
generated by extracting features from each box. The detection-head module combines a
fully connected head and a convolutional head to locate camouflaged objects. The fully
connected head has higher spatial sensitivity than the convolutional head, making it more
capable of distinguishing the complete objects. Since the COD task focuses more on the
location information of targets, using the convolutional head for object prediction can better
locate these camouflaged objects.

Utilizing the idea of optimization regression, DMNet iteratively runs through multiple
stages where the detection head is re-executed, and parameters are shared across different
stages. The objective of a proposal box remains consistent throughout, allowing the object
features from the previous stage to be reused in the next stage, providing it with richer
and more informative features. This iterative process enhances the detection accuracy by
refining the predictions based on the progressively enriched feature representations of
the object.

When the number of stages in the detection head is excessive, although it can provide
more comprehensive feature information and facilitate the fusion of multi-scale features
of camouflaged objects, the model may become overly focused on detailed features while
neglecting the overall structure. This can lead to the over-extraction of camouflaged object
features and simultaneously increase the complexity and computational cost of the model.
On the other hand, when the detection head contains fewer stages, the model structure is
simpler, but its performance in complex scenarios may suffer, as it may inadequately extract
target features and lose crucial information. Therefore, by comprehensively considering
the model’s performance and the specific requirements of the COD task, the detection head
is designed to include four stages. Experimental validation is shown in Table 1, which
demonstrates that setting the number of stages in the DMNet detection decoder to four
yields optimal results.
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Table 1. Effect of number of decoder stages.

Stage AP50–95 AP50 AP75 APS APM APL

1 48.0 81.8 50.2 5.5 30.3 53.0
3 57.6 85.3 62.7 16.7 38.8 62.8
4 58.2 86.1 63.8 17.5 40.2 63.3
5 57.8 85.1 62.7 20.3 40.9 62.7
6 58.1 86.2 62.4 16.2 39.6 63.2

The values in background color are the optimal experiment results.

DiffHead replaces prediction boxes from the previous stage that are below a certain
threshold with randomly generated noise boxes. It then inputs both the boxes above
the threshold and the new random boxes sampled from a Gaussian distribution into the
sampling process of the next stage. Filtering out more prediction boxes that are close to
camouflaged objects means adding more uncertain random boxes, which increases the
difficulty of prediction. However, setting the threshold too low can result in more boxes that
are far from the target being input into the sampling process of the next stage, misleading
the prediction results. Due to the characteristic that camouflaged objects are harder to
detect than ordinary objects, setting the IoU threshold slightly below 0.5 helps retain more
prediction boxes, which is beneficial for the detection of camouflaged objects. Table 2 shows
the impact of different score thresholds on average precision (AP). The experimental results
verify that, with other parameters being the same, setting the threshold to 0.4 yields better
performance than other thresholds.

Table 2. Threshold setting.

Threshold AP50–95 AP50 AP75 APS APM APL

0.30 56.3 83.7 61.6 16.4 39.2 61.2
0.35 56.6 84.8 61.2 17.1 39.3 61.5
0.40 57.1 85.3 61.9 14.8 39.0 62.2
0.50 51.0 80.8 54.1 18.5 34.4 55.7

The values in background color are the optimal experiment results.

In the training phase, neural networks fθ(boxt, t) utilize the mean-squared error (MSE)
to calculate the average squared difference between predicted values and actual observa-
tions, serving as a measure of the discrepancy between them. This evaluation assesses the
model’s fit on the given data, ensuring that feature weights do not become excessively
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large. The training objective is minimized through the loss function, enabling the model to
make predictions. The formula for the loss function is as follows:

Ltrain =
1
2
|| fθ(boxt, t)− box0||2 (13)

In the inference stage, the noise box boxT reconstructs the object prediction box box0
through the model fθ and iterative updating by using boxT → boxT−∆ → · · · → box0 .

3.3. Training and Inference Strategies
3.3.1. Training Strategy

Algorithm 1 represents the pseudo-code for the training process of DMNet. During
the training process, the diffusion process from the ground-truth bounding boxes to the
noisy bounding boxes is first constructed, and then the model is trained in the reverse
process. Due to the variable number of camouflaged objects in the images, this algorithm
fills additional random bounding boxes following a Gaussian distribution into the images,
so that each image has the same fixed number of bounding boxes. The noise scale is
controlled by αt, which decreases monotonically with the cosine function for different
time steps t. Finally, the detection decoder takes these noisy bounding boxes as input and
performs bounding-box detection on the camouflaged objects.

αt =
f (t)
f (0)

(14)

f (t) = cos(
t/T + s

1 + s
· π

2
) (15)

In the formula, T represents the total duration; t represents the current time; and s
represents the offset.

DMNet applies the set prediction loss to the recognition of camouflaged objects and
the prediction of bounding box coordinates, positions, and sizes. The formula is as follows:

L = λcls · Lcls + λL1 · LL1 + λgiou · Lgiou (16)

In the formula, Lcls is used to determine whether the target is a camouflaged object by
calculating the loss between the predicted value and the ground-truth map. LL1 and Lgiou
represent the normalized center coordinates and the loss between the predicted bounding box
and the ground-truth bounding box, respectively. λcls, λL1 and λgiou are the weights for each
component, and the optimal values are set as λcls = 1.5, λL1 = 5 and λgiou = 2, respectively.

Algorithm 1: Training Stage

Input : Image, box0
ddim_training_loss (images, box0 ):
# Images = (B, H, W, 3); box0 = (B, N, 4)
# B: batch # N: number of proposal boxes
features = image_encoder (Images)
pb = padding (box0 )
for step, t in [T, . . ., 0]:

eps = normal (mean = 0, std = 1)
pb_crpt = sqrt(αcum(t)) ∗ pb + sqrt(1 − αcum(t)) ∗ eps

#αcum =
t

∏
i=1

αi

pb_pred = detection_decoder(pb_crpt, features, t)
loss = pre_loss (pb_pred, GT_boxes)
return loss
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3.3.2. Inference Strategy

The inference process of DMNet is a denoising sampling process from noisy bounding
boxes to object-prediction bounding boxes. The noisy bounding boxes are gradually refined
until they match the prediction results of camouflaged objects. The pseudo-code for the
sampling process is shown in Algorithm 2. After obtaining the prediction bounding boxes
at the current stage, a DDIM is used to optimize and estimate the prediction bounding
boxes for the next stage. At each sampling stage, random bounding boxes and prediction
bounding boxes from the previous sampling stage are sent to the detection decoder to
identify camouflaged objects and bounding-box coordinates. Using a DDIM can avoid the
degradation of AP with more iteration steps when directly using the output prediction of
the current step as input for the next step.

Algorithm 2: Inference Stage

Input: images, steps, T
ddim_sampling (images, steps, T):
# steps: number of sampling steps
# T: time steps
boxt = normal (mean = 0, std = 1)
times = reversed (linespace(−1, T, steps))
time_pairs = list (zip (times [: −1], times [1:]))
#boxpre:prediction boxes
for t_now, t_next in zip(time_pairs):

boxpre = detection_decoder (eps, features, t)
boxt = ddim_sampling (boxt , boxpre, t_now, t_next)
boxt= boxes_renewal (boxt )

return boxpre

4. Results
4.1. Experimental Platform Configuration

The hardware platform configuration used in the experimental training and testing
phase is shown in Table 3, which is as follows: The graphics card is an NVIDIA GeForce RTX
3090 with 24 GB of video memory, and we used the PyTorch deep learning development
framework. The CPU is Intel Xeon Gold 6148, the operating system is Windows 10, and the
Adam optimizer is used for network optimization during training.

Table 3. The hardware Platforms for model training.

Names Related Configurations

GPU NVIDIA GeForce RTX 3090
CPU Xeon Gold 6148/128 G

GPU memory size 24 G
Operating system Win 10

Computer platform CUDA 12.2
Deep learning framework Pytorch

4.2. Datasets and Evaluation Metrics
4.2.1. Dataset Settings

The COD10K dataset [1] was selected for the experiment. COD10K is currently the
largest COS dataset, consisting of 10,000 images from openly accessible photography
websites. It covers 10 super categories and 78 subcategories, including camouflaged
marine creatures, flying creatures, amphibians, etc. These images include 5066 processed
camouflaged images, 3000 background images, and 1934 unprocessed non-camouflaged
images. The dataset divides these images into a training set and a testing set at a ratio of
6:4 and marks all subcategories as foreground objects.
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4.2.2. Evaluation Metrics

The commonly used average precision (AP) is selected as the evaluation metric for
testing camouflaged object detection. Here, AP50–95 denotes the calculation of AP values
within the Intersection-over-Union (IoU) threshold range set from 0.5 to 0.95, with a step
size of 0.05, taking the average of these AP values; AP50 represents the AP value obtained
with an IoU threshold of 0.5; and AP75 is the AP value calculated with an IoU threshold of
0.75. A larger IoU threshold indicates a higher degree of overlap between the network’s
predicted bounding box and the ground-truth bounding box, resulting in more accurate
object localization. These three metrics can be used to evaluate the detection performance of
the COD network for objects of different scales, where APS measures the average precision
for small objects, representing objects with a pixel area less than 322; APM denotes the
average precision for medium-sized objects with a pixel area between 322 and 962; and
APL is the average precision for large objects with a pixel area greater than 962.

4.2.3. Training Settings

We set the initial learning rate to 2.5 × 10−5 and the weight decay to 10−4. The data
augmentation strategies include random horizontal flips, random cropping, and scale jittering
by adjusting the input image size, ensuring the shortest side is at least 480 pixels and at most
800 pixels, while the longest side is at most 1333 pixels. The training iteration is set to 60 K,
and the learning rate is divided by 10 at iterations of 40 K and 50 K, respectively. The number
of anchor boxes, iterations, and the threshold for prediction boxes are set to 300, 4, and 0.4,
respectively. The experimental data are detailed as follows:

The training process requires multiple iterations, with the number of iterations depending
on factors such as the complexity of the model and the size of the dataset. Generally, a larger
number of iterations leads to the better performance of the model on the training set. However,
as shown in Table 4, more iterations are not always better; excessive iterations can result in
overfitting when iterations = 450,000. Through experimentation, it was found that setting the
number of iterations to 60,000 results in better model performance. This is shown in Table 5,
and the detection accuracy is optimal when the inference step size of DMNet is set to four. To
investigate how the number of training anchor boxes affects inference performance, Table 6
shows the results of experiments investigating how fixing the number of anchor boxes in DMNet
affects model accuracy and training duration. By setting the number of anchor boxes to 200, 300,
500, and 2000, it was found that, with other variables held constant, DMNet performs best, and
the training duration is shortest when the number of anchor boxes is set to 300.

Table 4. Setting the number of training iterations.

Iterations AP50–95 AP50 AP75 APS APM APL

450,000 54.9 78.9 58.2 14.6 36.7 60.6
90,000 51.1 81.1 53.6 15.7 35.3 55.7
75,000 58.0 85.0 62.7 15.5 39.5 63.1
66,000 57.0 85.2 61.7 14.9 39.0 62.0
60,000 58.1 86.2 62.4 16.2 39.6 63.2
54,000 58.1 85.8 63.1 17.8 39.2 63.2
45,000 57.1 85.3 61.9 14.8 39.0 62.2

The values in background color are the optimal experiment results.

Table 5. The sampling step of DDIM.

Step AP50–95 AP50 AP75

1 58.2 85.5 61.3
2 57.9 86.0 62.8
4 58.1 86.2 63.1
8 58.0 86.3 62.8

The values in background color are the optimal experiment results.
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Table 6. The fixed number of random boxes setting.

Boxes AP50–95 AP50 AP75 Train-Duration

200 50.9 79.6 54.1 8 h
300 51.0 80.8 54.1 7.5 h
500 50.5 81.0 52.9 12 h

2000 50.4 81.1 54.0 23 h
The values in background color are the optimal experiment results.

4.3. Loss Curves Experiments

Loss functions play a crucial role in object-detection tasks. By closely monitoring
their relationship with the number of training iterations, we can optimize training process,
effectively improving the performance and stability of DMNet.

As can be observed from Figure 11, the evolution of the loss function is visualized using
data from each training iteration, the loss values of DMNet converged at 60,000 training
iterations. When the number of iterations increases, the value of the loss function tends to
decrease gradually. This is because during the continuous learning and optimization process,
the predicted information gradually approaches the true labels, resulting in a gradual reduction
in the loss value.
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4.4. Comparison Algorithms

To demonstrate the effectiveness of the proposed DMNet in this paper, in this section,
we compare DMNet with 15 classic and advanced object-detection algorithms. To ensure a
fair comparison of the detection performance of the algorithms, all algorithms are evaluated
using the experimental configuration platform proposed in Section 3.1, with experimental
parameters following the default settings.

4.5. Analysis of the Comparative Experimental Results
4.5.1. Quantitative Comparison

Table 7 presents the experimental comparison results of the DMNet algorithm pro-
posed in this paper with other 15 algorithms on the COD10K dataset, mainly demonstrating
the feature extraction capability of this network and the accuracy of detecting camouflaged
objects. As can be seen from Table 7, DMNet achieves the best performance in six evalua-
tion metrics, with the best overall ability to detect camouflaged objects, where the AP50–95
reaches 58.2%—an improvement of 8% compared to the Swin-RCNN algorithm. By ob-
serving the last two columns in Table 6, it can be determined that DMNet has significant
advantages in detecting medium and large objects. Among them, the metrics AP75 and
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APM exceed the Swin-RCNN algorithm by about 10%, which again reflects the effectiveness
and accuracy of DMNet in detecting camouflaged objects.

Table 7. Comparative experiment result on the COD10K dataset.

Methods Pub. Year AP50–95 AP50 AP75 APS APM APL

YOLACT [24] ICCV2019 36.5 69.8 34.6 6.1 19.6 41.1
Cascade RCNN [25] TPAMI2019 46.3 73.5 48.4 8.4 27.9 51.4

BlendMask [26] CVPR2020 43.6 68.6 45.5 7.6 25.2 48.9
ATSS [27] ECCV2020 45.0 73.6 45.3 11.9 30.4 49.1

CondInst [28] ECCV2020 42.8 69.4 44.6 5.8 24.7 47.9
SparseRCNN [9] CVPR2021 46.5 74.9 47.9 12.4 34.3 50.4

SCNet [29] AAAI2021 47.1 75.5 48.2 13.8 29.0 52.0
Swin-RCNN [10] ICCV2021 50.2 79.8 54.6 11.3 31.9 55.3

Tood [30] ICCV2021 47.9 73.9 49.0 12.0 32.0 52.4
VFNet [31] CVPR2021 46.6 73.9 48.0 7.9 31.2 51.1

MaskTrans [32] CVPR2022 46.3 70.0 48.8 3.5 27.7 51.4
Centernet [33] Arxiv2022 42.3 72.3 42.2 11.0 24.7 47.3

MPVIT-RCNN [34] CVPR2022 57.8 82.3 63.3 17.2 38.1 62.9
CO-DETR [35] ECCV2023 44.5 63.5 32.3 8.3 20.9 37.4

DINO [36] ICLR2023 37.1 62.1 30.6 10.5 19.6 30.0
DiffCOD ours 58.2 86.1 63.8 17.5 40.2 63.3

The values in bold are the optimal detection results

4.5.2. Qualitative Comparison

DMNet utilizes a diffusion model-based detection head named DiffHead, specifically
designed for the COD task, to guide the iterative denoising of noisy random boxes, thereby
obtaining camouflaged object-prediction boxes and enhancing detection accuracy. The PFM
module designed in DMNet incorporates asymmetric convolution in parallel, which can
enhance the features extracted by backbone. The LRM enables DMNet to more effectively
focus on difficult-to-recognize detailed features in the image, resulting in higher precision
when locating camouflaged objects. Figure 12 shows the visualization results of the com-
parative experiments on the COD10K dataset in this section. It can be observed that DMNet
can accurately detect camouflaged small objects that are obscured. The iterative feature
adaptive fusion construction of the PFPN and UAF can better extract and fuse multi-scale
features in images, obtain spatial information of camouflaged objects, and thereby improve
the problem of missed detection in multi-target detection in COD tasks to enhance the
accuracy of camouflaged object detection. As can be seen from Figure 12, in situations
where multiple camouflaged objects exist simultaneously, DMNet is able to detect the
camouflaged objects in the image completely and accurately. Qualitative analysis shows
that the DMNet algorithm proposed in this paper is more suitable for COD tasks compared
to other detection algorithms.
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4.6. Ablation Experiments

In this section, ablation experiments are designed to verify the effectiveness of the key
components of DMNet, including the PFPN, LRM, PFM, and DiffHead. All experiments
are conducted on the COD10K dataset, and the experimental results are shown in Table 8,
where the baseline network is the DiffusionNet algorithm.
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Table 8. Ablation experiment.

Baseline PFPN PFM LRM DiffHead AP50–95 AP50 AP75 APS APM APL
√ 51.8 80.8 54.1 13.7 31.8 57.2
√ √ 57.5 83.4 62.1 10.5 39.5 61.6
√ √ √ 58.1 84.6 61.9 16.0 39.3 63.3
√ √ √ √ 58.1 84.2 62.4 16.2 39.6 62.4
√ √ √ √ √ 58.2 86.1 63.8 17.5 40.2 63.3

Table 8 comprehensively displays the vertical comparison results of the ablation
experiments conducted using DMNet. The effectiveness of each submodule in improving
model performance is verified by testing the PFPN, LRM, PFM, and DiffHead separately.
By adding the LRM and PFM to the network, the detection accuracy is improved to some
extent. However, since the LRM focuses on detailed information in the image and neglects
global features, it results in slight information loss, leading to a slight reduction in detection
accuracy for large objects. Finally, after adding the improved DiffHead, all AP values are
increased by approximately 1%. Compared with the baseline network, the addition of
designed components improves the accuracy of DMNet.

4.7. Extended Experiments

The research on COD is of great significance. To prove that the proposed DMNet in
this paper is still effective when extended to generalized COD, in this section, we present
extended experiments on DMNet, aiming to verify the effectiveness and applicability of
the algorithm in practical military domains.

Figure 13 showcases the visualization results of DMNet detecting military camou-
flaged objects, where the images are sourced from the MiCOD dataset [37] and the NC4K
dataset [38]. Through observation and analysis, it can be concluded that DMNet pos-
sesses high capability in detecting military camouflaged objects, thereby demonstrating the
accuracy and practicality of DMNet.
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5. Discussions

The results from the benchmark tests discussed in Section 4 indicate that our method
has achieved excellent performance in the domain of camouflaged object detection. Al-
though it advances beyond previous studies, there are still multiple aspects that warrant
further exploration and discussion.
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5.1. Advantages of DMNet

While mainstream object-detection models currently exhibit excellent performance,
the task of camouflaged object detection differs significantly from conventional object
detection. Due to the high similarity between camouflaged objects and their backgrounds,
as well as the characteristics of blurred boundaries and confusing coloration inherent in
camouflaged objects, they are more difficult to detect compared to conventional objects.
Therefore, this paper proposes a camouflaged object-detection method based on a DDIM,
constructs a DMNet network, and introduces a diffusion model to assist the network in
better capturing image details, thereby solving the problem of low detection accuracy.

The diffusion model-guided proposal boxes differ significantly from those generated
by conventional models in that they do not require heuristic object priors or learnable
queries, which further simplifies target-candidate generation and furthers the development
of the detection pipeline. Traditional object-detection methods mostly rely on a fixed set of
learnable queries or predefined anchors, whereas the camouflage object-detection network
based on the diffusion model directly detects objects from random boxes, minimizing the
reliance on prior knowledge. Through experimental analysis, DMNet is able to reduce
the missed detection rate of camouflaged objects in complex environments and improve
detection accuracy. In summary, DMNet exhibits superior performance and is more suitable
for detecting camouflaged objects in complex scenes.

5.2. Limitations and Challenge

First and foremost, the experimental results indicate that while our current model
outperforms most existing object-detection models in terms of detection performance, there
are still some issues that need to be addressed. We have observed that our model may
occasionally produce false alarms, and when the camouflaged objects are relatively small,
the detection accuracy of DMNet remains unsatisfactory.

Secondly, the inference speed of detection tasks based on diffusion models is relatively
slow due to the fact that diffusion models encompass two primary processes: the forward
process, which gradually adds noise boxes to the original image, and the reverse process,
which progressively removes noise boxes to generate prediction boxes that conform to the
target distribution. Diffusion models optimize application results through iterative noise
processing, achieving satisfactory high-quality outcomes. However, this process consumes
significant time, computation, and storage costs during both training and inference. This is
because they rely not only on hundreds or thousands of diffusion steps but also require
network evaluations at each step of the sampling process to refine the results. This substan-
tially increases the computational and storage costs during training and inference, thereby
limiting the widespread application of our models.

Consequently, we will further research and improve upon enhancing the detection
accuracy of small-scale camouflaged objects and lightweighting the diffusion model for
camouflaged object detection.

6. Conclusions

In this paper, we introduce a diffusion model for camouflage object detection and
develop a DMNet to address the issue of low detection accuracy in COD. This network
treats the COD task as a denoising diffusion process from the noise box to the detection box.
In the training phase, Gaussian noise is added to the true bounding box to obtain a noisy
random box, and in the inference phase, the model iteratively refines the noisy random
box into a camouflage object-prediction box. A lateral comparison utilizing the challenging
COD10K dataset reveals that DMNet possesses substantial performance benefits in the
realm of camouflaged object detection (COD). Notably, DMNet’s AP50 metric surpasses
MPVIT by a margin of 4%, while its AP75 metric outperforms Swin-RCNN by an impressive
9.2%. Ablation experiments validate the efficacy of each suggested module. Moreover,
extended experiments were undertaken to affirm the prowess of DMNet in detecting
military camouflaged objects.
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In future work, we plan to introduce depth information and frequency information to
refine the detection effect and solve the problem of the incomplete detection of camouflaged
objects when the occlusion area is large. Finally, we will further investigate the diffusion
model for COD to promote the translation of research findings into practical applications.
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