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Abstract: A novel 10-Watt-Level high-power microwave rectifier with an inverse Class-F harmonic
network for microwave power transmission (MPT) is presented in this paper. The high-power
microwave rectifier circuit comprises four sub-rectifier circuits, a 1 × 4 power divider, and a parallel-
series dc synthesis network. The simple inverse Class-F harmonic control network serves dual roles:
harmonic control and impedance matching. The 1 × 4 power divider increases the RF input power
fourfold, reaching 40 dBm (10 W). The parallel-series dc synthesis network enhances the resistance
to load variation. The high-power rectifier circuit is simulated, fabricated, and measured. The
measurement results demonstrate that the rectifier circuit can reach a maximum RF input power of
10 W at 2.45 GHz, with a maximum rectifier efficiency of 61.1% and an output dc voltage of 23.9 V,
which has a large application potential in MPT.

Keywords: microwave rectifier; high power; inverse Class-F; microwave power transmission (MPT)

1. Introduction

In recent years, the continuous development of new energy technology has resulted
in an increased demand for cable-free charging and high-power charging solutions. As a
research area within the field of wireless power transmission [1–3], MPT [4–7] represents a
wireless charging system that transmits microwave energy for wireless charging. This tech-
nology offers the advantages of wireless charging, long-distance transmission [8,9], high
power [10], and high flexibility [11], and it can be applied in a range of contexts [12], includ-
ing smart factories, smart homes, smartphones, and new energy vehicles. Consequently, it
has become a focus of increasing interest among scholars.

As a pivotal component within the MPT system, the microwave rectifier circuit serves
to transform microwave energy received at the antenna end into direct current (dc) energy,
thereby facilitating the charging of devices situated in its wake. The functionality of
the microwave rectifier circuit is of paramount importance, as it directly influences the
overall performance of the MPT system. Consequently, a comprehensive investigation of
this circuit is essential for the advancement of microwave technology. The performance
index of the rectifier circuit is reflected in a number of key areas [13], including high
power [14,15], wide power [16,17], micro-power [18], wide bandwidth [19], wide load [20],
small size [21], and so on. However, as society develops, there is a growing demand for
high-power charging, particularly for smartphones and new energy vehicles. A high-power
wireless charging system can significantly reduce charging times, enhancing convenience
in people’s lives. Therefore, it is essential to investigate the high-power performance index
of the rectifier circuit.
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The power capacity of a rectifier circuit is primarily contingent upon the reverse
breakdown voltage (BV) of the core device diode [22]. When the diode’s reverse BV is
elevated, the rectifier circuit is capable of withstanding a greater input power. However,
if the voltage at the ends of the diode surpasses the reverse BV, the diode will undergo
a breakdown, rendering the rectifier circuit incapable of sustaining its functionality. To
enhance the reverse BV of the diode, third-generation semiconductor technology can
be employed to fabricate GaN Schottky diodes [23], which exhibit a high reverse BV.
In paper [24], a GaN Schottky diode is employed to design a high-power microwave
rectifier circuit, which exhibits a remarkably high reverse BV of 164 V, a low junction
capacitance of 0.32 pF, and a low series resistance of 4.5 Ω, which are attributable to the
sophisticated nature of the process. The 5.8 GHz high-power microwave rectifier circuit
is designed based on a GaN Schottky diode and exhibits a maximum rectifier efficiency
of 71% at an input power of 34 dBm, and its maximum input power can reach 38 dBm,
which provides excellent performance. Nevertheless, this GaN Schottky diode has not
been widely commercialized due to technological and economic constraints associated
with the production process. Consequently, the most viable alternative is to utilize Si-
based Schottky diodes with a comparatively lower reverse breakdown voltage, which
are widely used commercially. In order to design high-power rectifier circuits using Si-
based Schottky diodes, employing multiple diodes in series and parallel configurations
or implementing a power divider network are viable solutions. In paper [25], an Si-based
Schottky diode HSMS-282P is employed to design a high-power microwave rectifier circuit.
The HSMS-282P (BV of per core = 15 V) comprises four series-parallel structured cores
within the package, which significantly augment the power capacity of the diode with a
single core. A high-power rectifier circuit with a doubled voltage structure based on the
HSMS-282P has been designed. This circuit can reach 76% rectifier efficiency at an input
power of 30 dBm and frequency of 433 MHz. A similar scheme is shown in paper [26]
where four HSMS-282Ps are connected to realize the high-power rectifier, not only the
series-parallel connection of the core but also the series-parallel connection of the diode,
which greatly increase the input power capacity at 2.45 GHz. The measured maximum
input power is 33 dBm and the rectifier efficiency is 66.8%. The series-parallel structure of
papers [25,26] can indeed improve the power capacity of the rectifier circuit, but its power
capacity is still not large enough. Therefore, we need to explore the use of other Si-based
Schottky diodes with a higher reverse breakdown voltage in series and parallel to design a
higher-power rectifier.

In this paper, a novel 10-Watt-Level high-power microwave rectifier with an inverse
Class-F harmonic network for MPT is proposed. Firstly, a Si-based Schottky diode HSMS-
270C (BV of per core = 25 V) with a high reverse breakdown voltage is selected. This
diode is contained within a diode package chip comprising two cores, rather than the
single core found in conventional chips HSMS-270B. This improvement in the number
of cores within the chip allows for a doubling of the input power capacity of a single
package chip. Secondly, this paper employs a remarkably simple structure for an inverse
Class-F harmonic control network, comprising a section of short-circuited λ/8 microstrip
line and a section of open-circuited λ/12 microstrip line. This configuration not only
achieves harmonic control but also facilitates impedance matching, and four sub-rectifier
circuits are designed based on an inverse Class-F harmonic network. Once more, this
paper employs a 1 × 4 microstrip power divider to link four sub-rectifier circuits, enabling
the RF input power to be multiplied by a factor of four (6 dB) and ultimately reaching a
high-power input of 40 dBm (10 W). In conclusion, the dc synthesis method of parallel
and then series at the output is employed to complete the dc power synthesis, thereby
enhancing the rectifier circuits’ resilience to load fluctuations and improving circuit stability.
The 10 W class high-power rectifier circuit was simulated and designed using ADS 2020
software. The circuit was then cast for processing and actual testing, resulting in a 40 dBm
(10 W) high-power input, 61.1% rectifier efficiency, 6.1 W dc output power, and 23.9 V
dc output voltage at 2.45 GHz. In comparison to previous studies [23,24], the Si-based
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diode utilized in this research is more readily available for purchase. Additionally, the total
input power after incorporating the power divider and sub-rectifier is greater than that
observed in the aforementioned studies. However, the BV value of a single GaN-based
core is considerably larger than that of an Si-based core. Consequently, subsequent studies
may wish to consider purchasing GaN diodes for rectifier circuit design. In comparison to
the studies referenced [25,26], it can be observed that the single-core BV of the HSMS-270C
diode utilized in this paper is larger than that of a HSMS-282P diode. Consequently, the
rectifier circuits designed in this paper have a significantly enhanced input power compared
to those in the aforementioned studies. In other words, this paper demonstrates a notable
improvement in terms of power capacity.

2. Design of a High-Power Rectifier

The schematic of a novel 10W Level inverse Class-F high-power microwave rectifier
circuit is illustrated in Figure 1. The rectifier circuit comprises three principal components:
four sub-rectifier circuits, a 1 × 4 power divider, and parallel-series dc synthesis. Each
sub-rectifier circuit comprises an inverse Class-F harmonic control network of λ/8 and λ/12
microstrip lines, a low-pass filter (Lout, Cout), an isolation capacitor (Cin), a Schottky diode
HSMS-270C, and a resistor load (RL). A 1 × 4 microstrip power divider is employed at the
center frequency point of 2.45 GHz. The parallel-serial dc synthesis structure is connected
between the rectifier dc output and RL.
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Figure 1. Schematic of the 10 W high-power rectifier.

2.1. Design of a Sub-Rectifier

This section presents the design of a single sub-rectifier circuit and illustrates its
schematic in Figure 2a. The sub-rectifier is a 2.45 GHz sample inverse Class-F high-
efficiency rectifier circuit with a shunt diode rectifier structure. It comprises the following
main components: the circuit comprises a Schottky diode HSMS270C, an inverse Class-F
harmonic control network, an LC low-pass filter (Lout, Cout), an isolation capacitor (Cin),
and a resistor load (RL).
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Figure 2. Design of the sub-rectifier: (a) schematic; (b) simulation of efficiency and Vout with Pin.

The inverse Class-F harmonic control network comprises two distinct sections: a
λ/8 microstrip line and λ/12 microstrip line. This harmonic control network serves to
reduce diode loss through waveform reshaping, while simultaneously reflecting the second
and third harmonics back to the diode, thereby facilitating re-rectifier and enhancing
rectifier efficiency. In accordance with the inverse Class-F harmonic impedance control
theory [27–29], when all even harmonics exhibit high impedance and all odd harmonics
exhibit low impedance, the voltage at both ends of the diode in the time domain manifests
as a half-sinusoidal waveform; the current assumes the form of a square wave; and the
diode’s loss is zero when the voltage and current waveforms are completely staggered by
90 degrees. The ideal rectifier efficiency of the inverse Class-F is 100%. In consideration of
the dimensions of the rectifier circuit and the insertion loss of the harmonic control network,
it is sufficient to address the second and third harmonics. The λ/8 short microstrip line is
connected in series between the diode and grounded, while the λ/12 open microstrip line is
connected in parallel to the diode. From the input impedance calculation Formula (1), the
impedance values of the λ/8 microstrip line and the λ/12 microstrip line at the fundamental
frequency and its harmonics can be calculated. The impedance calculation formula is as
follows (2) and (3): from the aforementioned equation, it can be observed that the λ/8
shorted microstrip line has a high impedance of ∞ at the second harmonic, while the λ/12
open microstrip line has a low impedance of 0 at the third harmonic. This outcome aligns
with the harmonic control theory of the inverse Class-F.

Zin = Z0
ZL + jZ0tan(βl)
Z0 + jZLtan(βl)

(1)

Zλ/8(ω) = +jZ8tan
(
π

4
ω

ω0

)
=

{
jZ8 ω = ω0
∞ ω = 2ω0

(2)

Zλ/12(ω) = −jZ12cot
(
π

4
ω

ω0

)
=

{
−1.73jZ12 ω = ω0
0 ω = 3ω0

(3)

The following section presents the derivation of the fundamental impedance match-
ing process. The input impedance Zin0 of the λ/8 short microstrip line oriented inwards
towards the grounded is (4) and can be considered to be equivalent to a series-connected
inductor. The input impedance of the diode is Zind = a − jb, where a and b are unknown,
and the input impedance Zin1 subsequent to the connection of both in series is (5). Fur-
thermore, the parallel λ/12 open microstrip line fundamental impedance of −1.73jZ12,
which is equivalent to a parallel-connected capacitor, allows us to conclude that the entire
parallel end of the input impedance Zin2 is (6). Furthermore, since the output LC low-pass
filtering end of the fundamental is entirely filtered out, its input impedance can be equated
to infinity ∞. Therefore, the input impedance Zin of the whole sub-rectifier is Zin2 in (7). In
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other words, the entire rectifier circuit input impedance Zin can be considered equivalent
to the parallel end of the input impedance Zin2. In order to ensure that the rectifier circuit’s
input impedance is matched to 50 Ω, allowing the maximum possible RF signal to enter the
rectifier, it is necessary to set Zin = 50 Ω; the impedance matching of the whole sub-rectifier
can be completed (8). In order to obtain the values of the four variables Z8, Z12, a, and b in
(8), they can be analyzed in the following three steps: Firstly, the equivalent circuit model
of the diode can be simulated in ADS to obtain the value of the diode input impedance
a − jb= 42− j4 Ω; consequently the values of a = 42 and b = −4 can be acquired. Secondly,
the values of Z8 and Z12 variables are unknown, and these two variables represent the
characteristic impedance of λ/8 and λ/12 microstrip lines, respectively. When we first
arbitrarily choose a section of the microstrip line’s characteristic impedance to be fixed at a
certain value, then the characteristic impedance of another microstrip line can be calculated.
Ultimately, based on this premise, if Z8 is initially established as 23 Ω, and a = 42 and
b = −4 are known, Z12 can be calculated as 62.4 Ω. Thus, the fundamental impedance
match theory of the rectifier circuit has been completely derived.

Zin0 = jZ8 (4)

Zin1 = Zin0 + Zind = a + j(Z8 − b) (5)

Zin2 = Zin1 ∥ (−1.73 jZ12)
= [a + j(Z8 − b)] ∥ (−1.73jZ12)

(6)

Zin = Zin2 ∥ ∞ = Zin2 (7)

Zin = [a + j(Z8 − b)] ∥ (−1.73jZ12) = 50 (8)

The straight-through filtering at the conclusion of this section employs a capacitor
and inductor to form a low-pass filter, which prevents the fundamental and harmonics
from passing through the direct current (dc). The values of Lout and Cout are 51 nH
and 68 pF, respectively. The RF input port is connected in series with a capacitor of
24 pF, which is designated as Cin. The use of capacitor Cin is intended to prevent the
flow of dc signals into the RF input port, which could result in damage to the signal
source and introduce dc losses. The capacitor Cin has a limited effect on the rectifier input
impedance and plays a minimal role in the matching process because of its small impedance
value. Furthermore, the capacitor and inductor are modeled in accordance with Murata’s
0402 package specifications. The dc output RL is 120 Ω. The diode utilized is the Schottky
diode HSMS-270C, which is modeled after the datasheet. The rectifier circuit was simulated
in ADS software, and the resulting simulation is shown in Figure 2b. From Figure 2b, it can
be observed that the single sub-rectifier operates at 2.45 GHz; the rectifier efficiency of the
left-pointing arrow is 70%, and Vout of the right-pointing arrow is 17 V when the input
power is 35 dBm.

2.2. Design of a Power Divider

A 1 × 4 microstrip power divider is employed in this paper, which incorporates four
sub-rectifier circuits to enhance the input power of the high-power rectifier. As previously
stated, the maximum input power of a single sub-rectifier circuit is 35 dBm. Following
connection of the power divider to four rectifier circuits, the input power is expanded to
35 dBm + 6 dB = 41 dBm, resulting in a 40 dBm high-power rectifier circuit with a 1 dB
power margin reserved.

The 1 × 4 microstrip power divider described in this paper is constructed from three
one-spart-two power dividers that have been spliced together. The design process of the
one-spart-two microstrip power divider is presented next. As illustrated in Figure 3, the
port 1 input impedance of the one-part-two power divider is 50 Ω, thus Zc = 50 Ω. Given
that it is an equal division power divider, the input impedance of the two parallel terminals
satisfies Equation (9), and then one can compute ZA = ZB = 100 Ω. The two outputs
of the microstrip line are λ/4 microstrip lines, and the load on the outputs is 50 Ω, thus
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satisfying Equation (10), and then Za = Zb = 70.7 Ω can be computed, which completes
the design of the one-part-two power divider. As illustrated in Figure 4a, the layout of
three 1 × 2 power dividers have been integrated into a 1 × 4 power divider, and the size is
60.4 mm × 19.1 mm. The simulation outcomes in ADS are presented in Figure 4b. It can
be observed that at the 2.45 GHz frequency point, the return loss S11 of the 1 × 4 power
divider is indicated by the arrow pointing to the left, and S11 is −26.9 dB. The distribution
loss S21 of the 1 × 4 power divider is indicated by the arrow pointing to the right, and S21
is −6.07 dB. In distribution loss S21, 0.07 dB of insertion loss is included. The 1 × 4 power
divider meets design specifications.{

ZA ∥ ZB = ZC = 50
ZA = ZB

(9)

{
ZA × 50 = Z2

a
ZB × 50 = Z2

b
(10)
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2.3. Design of Dc Synthesis

The conventional dc synthesis approach for rectifier circuits is typically a direct parallel
synthesis (parallel-parallel), which is susceptible to high sensitivity to load variations. In
this paper, first parallel and then series (parallel-series) dc synthesis is employed to enhance
the rectifier circuit’s resistance to load variations (load-carrying capacity) and the circuit’s
stability. As illustrated in Figure 5a, for the sake of simplicity, the four sub-rectifier circuits
are equated to four dc sources, which are then connected to resistor loads for parallel-
parallel and parallel-series dc synthesis, respectively. As illustrated in Figure 5b, two dc
synthesis methodologies are simulated in ADS for a 10 W high-power rectifier circuit. For a
rectifier efficiency exceeding 50%, the load of the parallel-parallel dc synthesis varies from
15 Ω to 75 Ω, with a load variation width of 60 Ω. The load variation range of parallel-series
dc synthesis varies from 50 Ω to 325 Ω, with a load variation width of 275 Ω. This indicates
that the load variation width of parallel-series dc synthesis is 215 Ω wider than parallel-
parallel dc synthesis. Consequently, it can be concluded that parallel-series dc synthesis
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has a stronger load-carrying capability. Accordingly, this paper employs parallel-serial dc
synthesis to enhance the circuit’s load-carrying capability and, consequently, its stability, as
opposed to parallel-parallel dc synthesis.
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3. Simulation and Measurement of a High-Power Rectifier

The four sub-rectifier circuits in Sections 2.1–2.3, a 1 × 4 power divider, and a parallel-
series dc synthesizing network are combined to form a novel 10-Watt-Level high-power
microwave rectifier circuit with a simple inverse Class-F harmonic network. A Rogers
RO4003C, with a relative dielectric constant of 3.55, loss angle tangent of 0.0027, and
thickness of 0.5 mm, was selected as the material for the board utilized in this rectifier
circuit. The simulation design of this rectifier circuit was conducted using the industrial
design software ADS. In this paper, the rectifier circuit is subjected to simulation, cast board
processing, and measurement. The layout and physical diagram of the rectifier circuit are
presented in Figure 6.

In contrast to the conventional approach of measuring low-power microwave rectifier
circuits, the rectifier circuit cannot be directly connected to the signal source for measure-
ment when measuring at high power. The high-power rectifier circuit, as illustrated in
Figure 7, was connected to the framework in order to measure the aforementioned circuit.
The Signal Generator (ROHDE&SCHWARZ SMN 100A) was utilized to generate 2.45 GHz
microwave signals; the Circulator (UIYBCC3234A) was employed to isolate the reflex RF
signal in order to prevent damage to the device. The PA (RFAMP–004060G-20W) was
employed for the generation of high-power RF signals, which were utilized to drive the
rectifier circuit. The Directional Coupler (SHWDCP-0506-30SFFF) was employed to couple
the low-power signals to the spectrometer, which were utilized for rectifier input power
measurements. The Spectrum Analyzer (KEYSIGHT CXA N9000A) was used for power
measurements and readings. The Multimeter (KEYSIGHT 34465A) was used to read the
voltage across the resistor load. Once the error value of the entire test apparatus had been
compensated, the RF input power value of the rectifier circuit and the voltage value at
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the two ends of the resistor load could be obtained, allowing the efficiency of the rectifier
circuit to be calculated using Formula (11), and the variables of the formula are defined
as follows:
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E f f iciency expresses the conversion efficiency of the rectifier.
Pout denotes the dc output power of the rectifier.
Pin signifies the microwave input power of the rectifier.
Vout represents the dc voltage across the resistor load.
RL is the resistor load.
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E f f iciency =
Pout
Pin

× 100% =
Vout2/RL

Pin
× 100% (11)

The simulated and measured curves of the 10 W Level inverse Class-F high power
microwave rectifier circuit are presented in Figure 8. In the simulation, the maximum
microwave input power is 41 dBm (12.45 W), with a rectifier efficiency of 66%, dc output
power (Pout) of 8.2 W, dc output voltage (Vout) of 27.8 V, and RL of 94 Ω at an operating
frequency of 2.45 GHz. The load variation range of simulation varies from 50 Ω to 325 Ω,
with a load variation width of 275 Ω. In the measurements, the maximum microwave input
power was observed to be up to 40 dBm (10 W), with a rectifier efficiency of 61.1%, dc
output power (Pout) of 6.1 W, dc output voltage (Vout) of 23.9 V, and RL of 94 Ω. The input
power from a 30 dBm (1 W) to 40 dBm (10 W) range of rectification efficiency is higher
than 50% and has a large power range width. The load variation range of measurement
varies from 50 Ω to 250 Ω, with a load variation width of 200 Ω. And the rectifier size is
64.7 mm × 48.5 mm. These results demonstrate that the expected high-power design has
been achieved, and that the measurement aligns with the desired 10 W high-power design.
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Figure 8. Simulation and measurement results: (a) Efficiency-Pin; (b) Vout-Pin; (c) Pout-Pin;
(d) Efficiency-RL.

As illustrated in Figure 8, differences between the simulation data and the measured
data remain evident in the performance curves of E f f iciency, Vout, Pout, and RL. However,
the overall differences are not significant. The differences between the simulation and
measurement results can be attributed to the following factors: First and foremost, the
ADS simulation of the diode equivalent circuit model is not sufficiently accurate relative to
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actual diodes, resulting in different diode input impedances with the same input power
and frequency. This ultimately gives rise to differences between the final simulation curve
and the actual curve of the degree of conformity. Secondly, differences may also arise
between the simulation model and the actual model due to the use of a Murata capacitor–
inductor model in ADS. Additionally, differences may be observed between the same type
of capacitor–inductor in different batches of production. These differences may contribute
to a poor match between the simulation curve and the actual curve. Lastly, other secondary
factors contribute to the differences between the simulation and measurement curves. These
include soldering errors, SMA connector insertion loss compensation errors, temperature-
related measurement errors, dielectric substrate parameter errors in actual production,
and ADS simulation errors related to grounding hole setup, and so on. Collectively, these
differences result in a poor match between the simulation and measurement curves.

As illustrated in Table 1, pertinent prior research is enumerated and evaluated. In
regard to [24], it can be observed that a compact 5.8 GHz high-power rectifier circuit can be
constructed with a single GaN Schottky diode, which is capable of attaining 71% rectifica-
tion efficiency at an input power of 34 dBm. This represents an exemplary performance;
however, it is regrettable that GaN Schottky diodes are not yet widely commercially avail-
able. In [15,25,26], a HSMS-280 series of silicon-based Schottky diodes were employed,
resulting in a satisfactory input power and rectification efficiency. In [25,26], a four-cores
HSMS-280P is employed to achieve rectification efficiencies of up to 79% at 30 dBm input
power and 66.8% at 33 dBm input power, respectively. While the rectifier efficiencies
of [25,26] are relatively high, their input powers remain insufficient in comparison to the
present paper. In [30], the relatively uncommon four-core diode HSMS-270P is employed,
with a single core voltage that is 10 V higher than that of the HSMS-280P. This indicates that
the input power capacity of the HSMS-270P will exceed that of the HSMS-280P. The study
in [30] achieves a rectification efficiency of 79% at 2.45 GHz with 38 dBm input power. The
use of HSMS-270P to design a high-power rectifier represents a valuable approach that this
paper should emulate. However, the maximum input power of this rectifier does not reach
40 dBm. In [31], the same method of a multiplexed power divider plus rectifier circuits is
also used. When combined with a HSMS-2702 diode, this achieves a rectification efficiency
of 62% at 41 dBm, thereby realizing a slightly greater input power and efficiency than this
paper. However, the rectification efficiency in [31] operates at 0.92 GHz. Comparatively, the
loss (including diode loss and dielectric substrate loss) incurred by operating at a higher
frequency of 2.45 GHz in this paper becomes larger, which inherently causes a little decrease
in the rectification efficiency.

Table 1. Comparison of rectifiers with high power.

Ref. Freq. (GHz) Pin (dBm) Eff. (%) Vout (V) RL (Ω) Size (mm2) Model BV (V)

[24] 5.8 34 71 23.1 300 \ GaN 164
[25] 0.433 30 79 \ \ 30 × 30 HSMS-282P 15
[26] 2.45 33 66.8 23 400 60 × 50 HSMS-282P 15
[15] 2.45 30 74.4 11.8 190 80 × 20 HSMS-2820 15
[30] 2.45 38 79 31.5 200 30 × 36 HSMS-270P 25
[31] 0.92 41 62 8.76 10 \ HSMS-2702 25

This work 2.45 40 61.1 23.9 94 64.7 × 48.5 HSMS-270C 25

4. Conclusions

A novel 10-Watt-Level high-power microwave rectifier with an inverse Class-F har-
monic network for MPT is presented in this paper. The rectifier circuit is capable of realizing
a high-power RF input of 40 dBm (10 W). Compared to existing technology, this paper’s
rectifier achieves a larger input power capacity than GaN-based diodes and other Si-based
diodes by using the easy-to-purchase Si-based diode HSMS-270C. A 1 × 4 power divider,
four sub-rectifier circuits with a simple inverse Class-F harmonic network, and a parallel-
series dc synthesis network are used to form the high-power rectifier circuit. The RF power
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distribution and parallel-series dc synthesis structure proposed in this paper represent a
novel approach that not only extends RF power capacity but also increases the resistance
variation range and enhances circuit stability. These were not considered in previous
studies. The high-power rectifier circuit was measured at 2.45 GHz, achieving a maximum
RF input power of 40 dBm (10 W), a peak rectifier efficiency of 61.1%, and an output DC
voltage of 23.9 V. This high-power microwave rectifier circuit can be well applied in the
MPT system to meet the demand of high-power energy transmission.
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