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Abstract

:

This study presents an advanced methodology for improving electronic assembly quality through real-time, inline inspection utilizing state-of-the-art artificial intelligence (AI) and deep learning technologies. The primary goal is to ensure compliance with stringent manufacturing standards, notably IPC-A-610 and IPC-J-STD-001. Employing the existing infrastructure of pick-and-place machines, this system captures high-resolution images of electronic components during the assembly process. These images are analyzed instantly by AI algorithms capable of detecting a variety of defects, including damage, corrosion, counterfeit, and structural irregularities in components and their leads. This proactive approach shifts from conventional reactive quality assurance methods by integrating real-time defect detection and strict adherence to industry standards into the assembly process. With an accuracy rate exceeding 99.5% and processing speeds of about 5 ms per component, this system enables manufacturers to identify and address defects promptly, thereby significantly enhancing manufacturing quality and reliability. The implementation leverages big data analytics, analyzing over a billion components to refine detection algorithms and ensure robust performance. By pre-empting and resolving defects before they escalate, the methodology minimizes production disruptions and fosters a more efficient workflow, ultimately resulting in considerable cost reductions. This paper showcases multiple case studies of component defects, highlighting the diverse types of defects identified through AI and deep learning. These examples, combined with detailed performance metrics, provide insights into optimizing electronic component assembly processes, contributing to elevated production efficiency and quality.
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1. Introduction


This study is motivated by the need to improve the quality and longevity of electronic products, reduce waste, and extend device lifespans [1,2,3,4,5]. The electronics industry has traditionally relied heavily on trusted relationships within the supply chain, often skipping thorough initial inspections of components based on the established reliability of suppliers [6,7,8]. This trust-based approach assumes that supplied materials are free from errors, fraud, damage, or defects, without the use of advanced technology for initial inspections [9,10,11,12]. Subtle defects, which may be invisible to the naked eye, can have significant consequences, especially in environments that require strict adherence to rigorous standards and are subject to intense stress. Even minor imperfections in components, whether in a low-cost capacitor or a high-end processor, can lead to the failure of high-quality products [13,14,15]. This is a frustrating outcome when the fault originates from a component worth just a few cents.



The current methodologies in Surface Mount Technology (SMT) and Automated Optical Inspection (AOI) exhibit notable gaps in assessing electronic component quality and authenticity. SMT vision systems, designed primarily for precise component alignment, do not evaluate component quality, focusing instead on placement accuracy. Similarly, AOI systems concentrate on inspecting solder joints and placement post-assembly, without capabilities to assess the condition of components before or during placement. This leaves a significant void in quality assurance practices, as there is no automated process in place to comprehensively check the quality and authenticity of components prior to their integration into electronic assemblies.



Various types of defects exist, including cracks [16,17], fractures, peeling metallization [18], deformations, discoloration, mold [19,20,21], and corrosion. Other frequent issues include bent or deformed leads and mis-shaped BGA balls. Standards like IPC-A-610H [18] and IPC-J-STD [22] outline these defect classifications for assembled PCBs, providing clear guidelines for defect identification. The top view of the PCB can also be analyzed using AI technology, as presented in [23,24,25]. While there have been significant advancements in the assembly and testing phases of electronics manufacturing, the inspection of electronic components themselves has often been overlooked. There is a common misconception that machines like pick-and-place and Automated Optical Inspection (AOI) machines assess the quality of components. In reality, these machines focus on the assembly process, only detecting deviations in component placement and identifying only major defects.



In this work, we harness images captured by these production machines, using them alongside advanced algorithms. An illustration of capturing the images and examples of defective images detected based on these images are shown in Figure 1. Considering a typical production line processes about one million components daily, this approach opens a gateway to vast amounts of data. Over several years, we have collected and analyzed data from about 5 billion components across numerous Surface Mount Technology (SMT) production lines. The data include a wide variety of SMT components representing high-end electronic products from top-tier manufacturers. These data are gathered and processed on a cloud platform, enabling global data collection and centralized processing. The presented techniques for detecting counterfeit components, defects, solderability issues, and corrosion have been documented, patented, and published [14,26,27,28,29]. By applying these methods on a large scale, a unique insight into the condition of components from a statistical viewpoint [14,28] has been obtained. Corrosion related to solderability issues in passive components and documented cases where corrosion detected by the presented method were confirmed through lab analysis [29]. Furthermore, we presented a strategy to mitigate the risk of cracks in Multilayer Ceramic Capacitors (MLCCs) by detecting early signs of corrosion at soldering terminals, which we identified as a precursor to crack formation [26].



The IPC-A-610H [18] standard provides a detailed framework for evaluating assembled PCBs, detailing specific criteria for defect identification and quality assurance. While other standards elaborate on specific defect types as categorized in the IPC-A-610, this paper integrates these critical compliance parameters with an AI-driven inspection approach. We underscore the sections of the standard relevant to the method and illustrate how it can automatically detect these defects across all inspected components. The details of the detection algorithm are discussed elsewhere [14,27,28].




2. Compliance with IPC-A-610H and IPC-J-STD-001 Standards


The IPC-A-610 standard [18] serves as the fundamental guideline for assessing assembled PCBs, specifying essential criteria for defect identification and quality assurance of electronic assemblies. This section melds these compliance parameters from IPC-A-610 with an AI-driven inspection approach, emphasizing the portions of the standard that pertain to our method and showcasing its capability to automatically detect defects.



2.1. Defects on Component Leads/Terminations (Section 8.2.2 in IPC-A-610H)


The presented approach employs deep learning algorithms that meticulously analyze each lead for any damage or deformation—such as scratches, dents, distortions, peeling, and shorts—that exceed 10% of the lead’s diameter, width, or thickness. These algorithms are powered by deep neural networks that have been trained on millions of image examples. The data were labeled by an unsupervised network trained to detect the minute differences between manufacturers of the components and hence adept in finding deviations from the expected specific shape. It utilizes big data knowledge on how components of various package types should appear under normative conditions.



The algorithm processes the images into a feature map, finely tuned to recognize the standard visual features of each component type. It identifies deviations from these norms to detect statistically significant anomalies within the feature map objects. This preliminary identification illuminates the deviations, setting the stage for a secondary, classification-focused neural network to accurately pinpoint and classify the defect. Figure 1 demonstrates detected defects on the bottom side of electronic components during the mounting process on an SMT line, highlighting the practical application and effectiveness of AI-driven inspection method in a real-world manufacturing environment.




2.2. Bent or Warped Leads (Section 8.3.5.8 in IPC-A-610H)


The presented method is also used for detecting bending and indentation issues in component leads, in line with IPC-A-610H Section 8.3.5.8 [18]. Advanced evaluation techniques ensure any deviation beyond the specified threshold is flagged for further assessment. Figure 2 illustrates examples of bent and warped leads, with deviations exceeding 10% of the lead’s width.



Bent leads are significant defects [14] that impact the placement accuracy and reliability of components. Sideway bends are relatively straightforward to detect as they disrupt the parallelism of the leads. The algorithm addresses these issues by individually analyzing each lead for consistency—first on its own, then in relation to neighboring leads, and finally in relation to the component body. The analysis leverages deep neural network sets specifically trained to identify deviations from the normative shapes of leads. These networks pinpoint slight deformations, ensuring high accuracy in defect detection. This capability is required not only for regular SMT components but also for connectors and assemblies with multiple leads, where the complexity of lead formations can vary significantly. Figure 2 showcases examples of components with bent leads, captured during the pick-and-place process. These images underline the effectiveness of the AI-driven approach in identifying and categorizing lead-related defects across a variety of electronic components.




2.3. Connector Inspection and Qualification


Inspecting connectors presents unique challenges due to their complex lead arrangements and the dense packing of multiple leads [5,30,31,32,33,34,35]. These factors often limit the efficacy of traditional machine vision systems. According to the IPC-A-610 standard, rigorous criteria are set for inspecting connectors, particularly focusing on edge connector pins and press-fit connector pins—types that are commonly installed using automated processes and require thorough visual checks to verify correct assembly and functionality.



For connectors assembled on the SMT line, real-time bottom-side imaging during the mounting process is generally effective (see examples in Figure 3). However, many connectors have top-side or right-angle connections that are obscured during mounting, necessitating alternative approaches for imaging. For top-side vertical connectors, Automated Optical Inspection (AOI) systems provide the necessary images. In contrast, right-angle connectors might require a specialized vision system capable of capturing images from various angles to ensure comprehensive visibility.



The quality of the images captured is paramount for the accurate inspection of connectors. These components often feature protruding sections that must be entirely visible to the inspection algorithm for effective analysis. Optics similar to those employed in AOI systems are ideal, as they are designed to capture detailed and comprehensive images of connectors. This high level of image clarity ensures that every part of the connector is scrutinized, facilitating precise defect detection and significantly enhancing the reliability of the inspection process.




2.4. Edge Connector Pins (Section 4.3.1 in IPC-A-610H)


The standard emphasizes the correct positioning of the contact shoulder relative to the land, which must allow sufficient clearance for an extraction tool. One critical defect identified in the standard is contact positioned above the insulator, classified as a defect across all classes. The AI inspection system accurately analyzes the position of each contact, promptly flagging any misalignment to ensure compliance with the standard.




2.5. Press-Fit Pins (Section 4.3.2 in IPC-A-610H)


Press-fit pins must maintain precise alignment, height, and overall integrity to ensure both proper electrical contact and mechanical stability. Given the mechanical stress these components endure during installation, thorough inspection is essential to detect any deformation or misalignment.



The standard specifies that pins bent off-center by more than 50% of the pin’s thickness are classified as defects. The AI system is adept at recognizing even slight deviations in pin alignment, automatically flagging those that exceed the acceptable threshold. Another critical defect is twisted pins, which compromise the connector’s functionality. The AI system identifies such deformations, ensuring all pins remain properly oriented. Additionally, the height of each pin is measured by the AI inspection method, comparing it against specified tolerances to detect any pins that are out of specification (see example images in Figure 4).




2.6. Mechanical Integrity of Connectors (Section 9.5 in IPC-A-610H)


Beyond the specific criteria for edge and press-fit pins, in IPC-A-610 Section 9.5 emphasizes the importance of maintaining the mechanical integrity and functionality of the connector housing.



Defects such as burrs, cracks, and deformations that affect the housing’s mechanical integrity or functionality are considered critical across all classes. The AI inspection system can detect these issues, automatically rejecting any connectors that fail to meet the mechanical standards. Another common defect is pins bent off-center by more than 25% of their thickness or diameter, which the AI system precisely measures to ensure compliance with the stringent IPC-A-610 requirements.




2.7. Corrosion and Cleanliness (Section 10.6.4 in IPC-A-610H)


The system identifies corrosion and residues on metallic surfaces, aligning with the IPC-A-610 standards for cleanliness and surface appearance [19,21,26,28]. By detecting discoloration or corrosion, it ensures that components conform to the IPC-A-610 parameters for quality. Figure 5 showcases examples of components where corrosion and contamination have been successfully detected by the AI algorithm, illustrating the system’s capability to uphold stringent industry standards.




2.8. Cleanliness—Foreign Object Debris (FOD) (Section 10.6.2,3 in IPC-A-610H)


The IPC-A-610 standard highlights the importance of cleanliness, particularly concerning foreign object debris (FOD). The method evaluates components for contamination, identifying and documenting any debris or residues that surpass the stringent criteria set forth in IPC-A-610 in Sections 10.6.2 and 10.6.3. A crucial element of debris detection lies in accurately identifying the debris’ origin—be it from within the placement machine, degradation of component terminations on the reel, or contamination during material storage or handling—rather than solely its size or immediate risk potential, such as the likelihood of causing electrical shorts. Small debris particles, while seemingly innocuous, can migrate and accumulate, resulting in substantial damage over time. This approach extends to connectors and headers and continues through the post-assembly stages. Figure 6 showcases examples where the AI algorithm successfully detected FOD, demonstrating the system’s efficacy in maintaining high standards of cleanliness and component integrity.




2.9. Loss of Metallization, Delamination, and Peeling (Section 9.1,3 in IPC-A-610H)


Metallization loss is highlighted as a critical defect in IPC-A-610 standards, where it dictates stringent criteria for ensuring component functionality and reliability. The system identifies anomalies in metallization coverage, in accordance with IPC-A-610 Sections 9.1 and 9.3. Often, the disintegration of metallization contributes to the presence of foreign object debris, signaling a compromised bond between the metallic layer and the component body. This condition not only impacts solderability but also elevates the risk of failure rates during production. While soldering might temporarily stabilize these bonds in the production and testing phases, the inherent weakness could ultimately compromise long-term contact reliability. Figure 7 illustrates instances where our AI algorithm successfully detected metallization delamination, underscoring the precision and effectiveness of the system in maintaining high manufacturing standards.




2.10. Detection of Coplanarity Issues Using AI-Driven Inspection Method (Section 8.3 in IPC-A-610H)


Coplanarity in electronic components, especially in connector pins and leaded components, is a critical parameter that ensures reliable solder connections (see examples in Figure 8). Coplanarity refers to the condition where all component leads or pins lie in the same plane, which is essential for the uniformity of soldering during assembly. New AI methods for coplanarity detection have been presented [36,37]. Nevertheless, a robust and reliable method is not yet available.



These sections dictate that all component leads must be aligned to prevent any disruption in forming an acceptable solder connection, which is vital for the functional integrity of electronic assemblies. Detecting coplanarity issues using traditional methods can be challenging, particularly because the bottom-side view typically used during the automated mounting process does not ideally suit the detection of misaligned leads [36,37]. However, the AI-driven inspection method proposed in this work leverages advanced imaging and deep neural network algorithms to overcome these challenges. The AI system employs a technique where it analyzes the geometric shapes of the leads as captured from the bottom-side perspective. In a perfectly coplanar arrangement, leads appear as rectangular shapes when viewed perpendicular to the camera. However, any deviation from this coplanarity causes the leads to tilt upward or downward, altering their shape into a trapezoid and affecting their apparent length in the captured image. This deviation in geometry is important as it indicates a potential coplanarity issue.



The deep neural network algorithm is trained to recognize the standard rectangular shape of normal, coplanar leads. When a lead displays an altered trapezoidal shape or shows a variation in length, the algorithm detects these as anomalies, flagging them for further inspection. This method allows the AI to analyze all leads and pins on components and connectors efficiently, without necessitating rigorous individual measurements. This AI approach not only enhances the detection of coplanarity issues but also significantly streamlines the inspection process. By automating the analysis and leveraging real-time data processing, the method improves the accuracy and speed of quality control in PCB assembly. Moreover, it ensures compliance with the IPC-A-610 standards, supporting the assembly of high-reliability electronic products.





3. Model Architecture for Enhanced Defect and Corrosion Detection


The subtle nature of some defects and corrosion, such as minor dots or faint discolorations, complicates their detection. Traditional Convolutional Neural Network models often struggle with these inconspicuous defects due to their limited ability to capture fine-grained details. To overcome these challenges, we developed a specialized network architecture tailored for defect and corrosion detection as detailed in [14,26] (see Figure 9). This architecture deviates from the typical serial structure of common image classification models, which sequentially connect layers of small 3 × 3 filters. Instead, the model uses a parallel configuration of filters of varying window sizes, each designed to detect specific types of defects or corrosion within component images. These filters generate features indicative of defects, which are then concatenated into a comprehensive feature vector. This vector passes through a dense layer to yield the final defect and corrosion score.



To enhance the robustness of the model during training, we employ data augmentation techniques that artificially expand the training dataset by applying transformations such as rotation, flipping, and scaling to existing images. This conventional strategy helps mitigate overfitting and improves the model’s ability to generalize to new, unseen data, thus enriching the learning experience. Rapid processing capability is essential for real-time inspections during component assembly, facilitating immediate detection and intervention. By optimizing the model for GPU execution, we harness the parallel processing power of modern GPUs, reducing the time needed for image analysis. This combination of architecture and GPU acceleration ensures timely and effective defect and corrosion detection.



3.1. System Architecture and Optimization Strategies


This section explores the detailed architecture and strategic optimizations that enhance the performance and reliability of the defect detection solution. As demonstrated in Figure 10, the architecture handles the challenges posed by limited training data and the nuanced nature of defects and corrosion in electronic components during assembly. The system utilizes Kubernetes to orchestrate services across multiple servers at client sites, ensuring robustness and scalability. Machine learning models, stored securely in the cloud and encrypted in memory, are accessible on-demand. An external monitoring system tracks changes in remote storage, ensuring timely updates and deployment of the latest models.



Operating on Dell servers equipped with Nvidia, CA, USA RTX GPUs and adopting a Software as a Service (SaaS) model, the system uses the gRPC, Google inc., Mountain View, CA, USA, protocol for data transmission. Model execution is managed by C++ ISO/IEC C++, Geneva, Switzerland, TensorFlow, Mountain View, CA, Serving, enabling efficient asynchronous data processing and simultaneous dual AI model execution for each analyzed component. Operational commands are issued selectively to optimize efficiency. See comparison in Table 1.




3.2. Comparative Analysis: Benchmarking against Other Defect Detection Methods


To validate the efficacy of the proposed defect detection model, a comparative analysis was conducted against Robust Principal Component Analysis (RPCA), a widely used technique in anomaly detection. This evaluation involved a range of datasets featuring various electronic components, focusing on accuracy and recall and assessing their capabilities in identifying defects. Initial testing utilized datasets encompassing three specific component types: capacitors, resistors, and SOT-23-3. The outcomes, detailed in Table 2, illustrate RPCA’s performance metrics. Simultaneously, the model underwent evaluations on the same datasets, with corresponding results presented in Table 3.



The findings indicate that the model consistently outperforms RPCA across all component categories in terms of both accuracy and recall. While RPCA achieves reasonable results for components like SOT-23-3, it is less effective in reliably detecting defects in passive components such as capacitors and resistors. Conversely, the model demonstrates robust accuracy and recall across diverse component types, validating its enhanced effectiveness in defect detection.



In our study, we also evaluated the performance of YOLO (You Only Look Once) models, renowned for their efficiency in real-time object detection. While YOLO models are highly effective for general object detection tasks, they are less suited for the high-precision requirements of detecting subtle defects in electronic components. This is due to the method’s ability to integrate deep learning algorithms that are specifically trained to recognize the nuanced irregularities typical in electronic component defects, such as slight corrosion, minute cracks, and microscopic structural anomalies, which often go undetected by general-purpose detection systems like YOLO. This specialized focus ensures higher accuracy and reliability in a production setting where precision is paramount.



In addition, we also explored encoder–decoder architectures for anomaly detection [38,39]. Despite their theoretical potential, these models yielded suboptimal results in our specific application. This was primarily due to their general approach to anomaly detection, which lacks the necessary depth in understanding the nuances of electronic component deviations that our application demands. In rigorous testing, the encoder–decoder models achieved maximum accuracy of approximately 85%, which is significantly below the precision requirements for our application [40]. This discrepancy underscores the necessity for a specialized approach tailored to the intricate nature of electronic component inspection, which our AI-driven method provides.



The performance evaluation of the defect and corrosion detection algorithms was conducted with 20 production machines operating simultaneously under typical manufacturing conditions (see Figure 11) [13]. The aim was to assess the algorithms’ processing speeds during high-volume operations. The results indicated that the average processing time for both defect and corrosion detection algorithms was around 1.5 ms for each component, managing around 20 components per second. This measurement reflects the duration directly associated with the detection algorithms, excluding any preprocessing or network delays. These findings highlight the algorithms’ capability to efficiently and effectively detect defects and corrosion in real time. Additionally, it was noted that the processing performance is influenced by the size of the components being analyzed.





4. Conclusions


This paper outlines a transformative approach to electronic component assembly by integrating AI-powered deep learning techniques for real-time, inline inspection. By leveraging existing pick-and-place machine infrastructure, this method captures high-resolution images of components during assembly, which are analyzed instantaneously to detect and address various defects such as damage, corrosion, and structural irregularities. The adoption of this inspection strategy marks a significant shift from traditional reactive quality assurance practices to a proactive model that not only anticipates but actively prevents the occurrence of defects. This proactive detection is crucial for maintaining the stringent standards set by IPC-A-610 and IPC-J-STD-001, ensuring that each component meets the highest quality criteria before integration into final products.



The method demonstrated exceptional accuracy in defect detection, exceeding 99.5%, validated across more than a billion components on actual production lines. It utilizes edge AI computing with cost-effective Nvidia GPUs to support parallel processing across multiple production machines and lines. The architecture achieves an average processing speed of approximately 5 ms per electronic component, facilitating real-time responses. This capability enables the inline, real-time rejection of randomly defective components before they are mounted, significantly enhancing efficiency in full-scale production environments.



The research presented here demonstrates the efficacy of deep learning algorithms in identifying and rectifying defects, significantly enhancing the reliability and quality of electronic manufacturing processes. The integration of this technology into electronic manufacturing service (EMS) workflows not only boosts production efficiency but also reduces potential disruptions, leading to substantial cost savings and smoother production flows. This inspection method not only allows automatic all-material compliance with current manufacturing standards but sets a new benchmark for quality assurance in electronics manufacturing, offering a clear pathway for manufacturers to elevate their production capabilities. The continued development and integration of AI technologies in this field are poised to redefine the landscape of electronic component assembly, ensuring that manufacturers remain at the forefront of technological advancements and quality control.
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Figure 1. (Left) An electronic component during the pickup phase by a pick-and-place machine, where the component is held by the nozzle for underside inspection. (Right) Example images taken by the pick-and-place SMT machine during component pick-up. (A) A Small Outline (SOT) component with leads and body deformation. (B) A Ball Grid Array (BGA) component with damaged soldering balls. (C) Passive components with termination defects. 
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Figure 2. Example images taken by the pick-and-place SMT machine during component pick-up. (A) SOT component with all bent leads. (B) QFP component with bent leads. (C) IC with bent lead. 
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Figure 3. Example images of connectors. (A) Bottom view during the mounting process with detected leads’ coplanarity. (B) Bottom view of a connector with bent leads. (C) Side view of a right-angle connector with a defective pin. 
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Figure 4. Press-fit components’ inspection after assembly. (Top): Press-fit pin protruding from bottom side of PCB where the 2 left-side pins are well protruding where the right-side pin is only partly protruding. (Bottom): Left—Press-fit with soldering. Right—Press-fit with no soldering. 
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Figure 5. Bottom-view images of component with oxidation/contamination/corrosion on the soldering leads. Images taken from the bottom side during pick-and-place process. (A) Bottom Termination Component (BTC) with contamination on the soldering terminations. (B) Connectors with corrosion on the soldering leads. (C) Passive components with corrosion and burn marks on the terminations. 
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Figure 6. Examples of components with foreign object debris detected by the algorithm. (A) BGA component with foreign object debris detected. (B) BTC with foreign object debris nearing a short. (C) FOD on a passive component large enough to cause a short. The size of the debris is not the important factor as the debris is free to shift. The main issue is detecting the source of the debris and eliminating the risk at the source. 
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Figure 7. Examples of delamination identified by the algorithm: (A) BGA component insulation delamination, (B) leaded component with termination peeling, (C) passive components with termination peeling. Metallization loss reveals a fragile foundation between the termination and the component body, potentially impacting both the production failure rate and the long-term reliability of the bond. 
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Figure 8. Leaded components exhibiting coplanarity issues. (A) SOT component displaying slight coplanarity deviations. (B) SOT component with a foreign object affecting pick-up orientation, showcasing visible lead angle alterations. (C) QFP package case with an array of warped leads, demonstrating significant coplanarity challenges. 
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Figure 9. Illustration of the specialized neural network architecture developed for enhanced defect and corrosion detection in electronic components. This visualization demonstrates the parallel configuration of filters designed to target specific defect types and the subsequent layers that consolidate these detections into a comprehensive analysis. 






Figure 9. Illustration of the specialized neural network architecture developed for enhanced defect and corrosion detection in electronic components. This visualization demonstrates the parallel configuration of filters designed to target specific defect types and the subsequent layers that consolidate these detections into a comprehensive analysis.



[image: Electronics 13 03707 g009]







[image: Electronics 13 03707 g010] 





Figure 10. High-level architecture diagram of SMT over edge. 
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Figure 11. (Top) Processing time of the defects detection algorithm, (Bottom) processing time of the corrosion detection algorithm. Both running in parallel on the same images [13]. 
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Table 1. Comparative performance: old vs. new architecture. This table outlines the key performance metrics, highlighting improvements in defect detection accuracy, processing speed, and resource efficiency between the old and the newly implemented system architecture.
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	Software Ver
	CPU
	RAM (MB)
	Throughput (c/s)





	Edge (C++)
	0.10
	25.0
	460.0



	Edge (Python)
	0.141
	123.1
	4.60










 





Table 2. RPCA testing re