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Abstract: Dimensional aspect-based sentiment analysis (dimABSA) aims to recognize aspect-level
quadruples from reviews, offering a fine-grained sentiment description for user opinions. A quadru-
ple consists of aspect, category, opinion, and sentiment intensity, which is represented using con-
tinuous real-valued scores in the valence–arousal dimensions. To address this task, we propose a
hybrid approach that integrates the BERT model with a large language model (LLM). Firstly, we
develop both the BERT-based and LLM-based methods for dimABSA. The BERT-based method
employs a pipeline approach, while the LLM-based method transforms the dimABSA task into a text
generation task. Secondly, we evaluate their performance in entity extraction, relation classification,
and intensity prediction to determine their advantages. Finally, we devise a hybrid approach to
fully utilize their advantages across different scenarios. Experiments demonstrate that the hybrid
approach outperforms BERT-based and LLM-based methods, achieving state-of-the-art performance
with an F1-score of 41.7% on the quadruple extraction.

Keywords: aspect-based sentiment analysis; BERT; large language models; dimensional sentiment analysis

1. Introduction

Sentiment analysis, a continually evolving and increasingly prominent subfield of
natural language processing, has attracted widespread attention [1,2]. Within this domain,
aspect-based sentiment analysis (ABSA) poses a critical and challenging problem, focusing
on recognizing aspect-level sentiments and opinions of users [3]. ABSA research typically
involves four sentiment elements, which are defined as follows: (1) aspect term (a), which
refers to the entity mentioned in the sentence; (2) aspect category (c), a predefined category
that represents specific facets and dimensions under evaluation; (3) opinion term (o), the
sentiment word or phrase directed towards the entity; and (4) sentiment polarity, which
classifies the sentiment into positive, neutral, or negative categories [4,5]. For example,
given the review “the crust is thin, the ingredients are fresh, and the staff is friendly”, the
quadruples are (crust, food#quality, thin, positive), (ingredients, food#quality, fresh, positive)
and (staff, services#general, friendly, positive).

Existing ABSA research has predominantly treated sentiment as coarse-grained polari-
ties, thereby neglecting the complexities inherent in sentiment dimensions. Pioneering this
field, Lee et al. [6] introduced dimensional aspect-based sentiment analysis (dimABSA),
which quantifies sentiment states as continuous real-valued scores in valence–arousal
dimensions. Valence measures the positivity or negativity, and arousal evaluates the de-
gree of emotional activation [7]. As illustrated in Figure 1, dimABSA comprises three
subtasks. Subtask 1 is intensity prediction, which focuses on predicting the valence–arousal
scores, val-aro, of the given aspect. Subtask 2 is triplet extraction, which aims to extract
the triplets composed of (a, o, val-aro) from the given sentence. Subtask 3 is quadruple
extraction, extracting the quadruples composed of (a, c, o, val-aro) from the given sentence.
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In Subtask 1, the valence–arousal scores are evaluated on a continuous scale, whereas in
Subtasks 2 and 3, they are assessed at the integer level. Compared to traditional ABSA
tasks, the main challenge of the dimABSA tasks lies in accurately identifying fine-grained
sentiment intensity.

Subtask Input Output Task Type

Intensity prediction
1 1- 1

Regression
2 2- 2

Triplet Extraction
𝑆 1 1 1− 1 Extraction & Pairing & 

Regression
2 2 2− 2

Quadruple Extraction
1 1 1 1− 1 Extraction & Pairing &  

Classification & Regression
2 2 2 2− 2

∶ 吐柴主艺文总店除了餐点好吃之外，这里的用餐环境也很特别。

1: 6.5

1: 5.75

1: 食物#品质
(food#quality)

1: 6.5

1: 6.0

1: 氛围#概括
(ambience#general)

1 1 2 2

(In English: Besides the tasty meals at the main art store of Tuchai, 

the dining environment here is also quite special.)

Figure 1. Illustration of the three-dimensional aspect-based sentiment analysis (dimABSA) subtasks.
In this visualization, aspect terms are highlighted in cyan, aspect categories in green, and opinion
terms in red to facilitate clear identification. Additionally, the terms “val” and “aro” denote the
valence and arousal intensities, respectively, which quantify the sentiment dimensions on a scale
from 1 to 9.

Based on the definition of dimABSA tasks, Lee et al. [6] constructed a Chinese restau-
rant dimABSA dataset and organized a competition at the ACL SIGHAN 10 workshop. Our
system [8] achieved first place among all participating teams. (This article is a revised and
expanded version of a paper entitled “HITSZ-HLT at SIGHAN-2024 dimABSA Task: Inte-
grating BERT and LLM for Chinese Dimensional Aspect-Based Sentiment Analysis”, which
was presented at the ACL SIGHAN 10 workshop in Bangkok, Thailand, on 16 August).
Our participating system employs a hybrid approach. This approach synergizes the BERT
model with a large language model (LLM), leveraging the strengths of both, which are
two dominant paradigms for ABSA tasks. Specifically, we developed the BERT-based and
LLM-based methods and explored their performance to underscore their advantages. The
BERT-based method follows a pipeline paradigm, sequentially conducting aspect–opinion
extraction, pairing and classification, and intensity prediction. To boost performance, we
implemented three enhancements, i.e., domain-adaptive pre-training, negative pairs con-
struction, and disabling BERT’s internal dropout. The LLM-based method formulates
dimABSA tasks into text generation tasks and fine-tunes a unified LLM through a multi-
task learning strategy. Inspired by recent works [9,10], we designed code-style prompts
to better align LLMs with extraction tasks. In addition, QLoRA [11] is utilized to reduce
memory usage during model training.

We carried out preliminary experiments to investigate the advantages of the BERT-
based and LLM-based methods. Our results yield two key observations. Firstly, for
the task of extracting structures, specifically in aspect–opinion extraction and pairing,
the BERT-based method significantly surpasses the LLM-based method. Secondly, in
intensity prediction, the BERT-based method demonstrates superior performance with
continuous values, whereas the LLM-based method is more effective in integer-level values.
Consequently, we opted to utilize the BERT-based method for Subtask 1, i.e., intensity
prediction. For Subtasks 2 and 3, we employed the BERT-based method to determine the
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aspects, categories, and opinions, which are subsequently input into an LLM to predict
integer-level intensity.

Our contributions are summarized as follows:

• We introduce innovative solutions based on BERT and LLM for dimABSA tasks, along
with a variety of strategies to optimize their effectiveness.

• We evaluate the advantages of the BERT-based and LLM-based methods across differ-
ent tasks and devise a hybrid approach that leverages the advantages of both methods.

• We conduct comprehensive experiments on the dimABSA benchmark. Our results
demonstrate that our hybrid approach achieves state-of-the-art performance. Further,
ablation studies confirm the effectiveness of each component in our approach. We also
provide detailed discussions to offer deeper insights into our findings.

2. Background
2.1. Aspect-Based Sentiment Analysis

Aspect-level Sentiment Classification (ASC) is the core task within ABSA, targeting
the determination of the sentiment polarity towards the given aspect terms in a sentence [3].
Early methodologies primarily employed LSTM networks to learn contextual representa-
tions of sentences and incorporated attention mechanisms to model the interactions between
aspect terms and their contexts [12–15]. Other approaches captured aspect-specific features
from the contexts through relative position [16–18], memory networks [19,20], or gating
mechanisms [21]. With the rise of pre-trained models [22,23], fine-tuning existing pre-
trained models has emerged as the mainstream method for ASC tasks, with representative
works including Sun et al. [24], Zhang et al. [25]. Subsequent research has explored post-
training [26–28] or contrastive learning [29,30] to refine pre-trained language models for
better representations. Additionally, some studies have incorporated syntactic information
using graph neural networks [31,32]. Recent works have leveraged large language models
(LLMs) to address ASC tasks, applying LLMs to ASC tasks using in-context learning [33,34],
chain-of-thought prompting [35], or supervised fine-tuning [36,37]. Their results show LLMs
can achieve performance comparable to current state-of-the-art (SOTA) methods without
training. Additionally, some approaches generated sentiment explanations using LLMs
and then utilized these explanations as supplementary features to enhance existing model
training [38].

Aspect Sentiment Triplet Extraction. Aspect term extraction has been widely explored
in previous research [39–43]. Opinion terms are crucial for extracting aspect terms and
determining their associated sentiment polarities. This importance has spurred an increas-
ing amount of research focused on the simultaneous extraction of both terms [44–47]. To
explicitly delineate the relationship between aspect terms and opinion terms, Fan et al. [48]
introduced the target-oriented opinion words extraction task, which focuses on extracting
the opinion terms associated with a specific aspect term. Building on this, Peng et al. [49]
proposed the aspect sentiment triplet extraction (ASTE) task, which aims to extract aspect
terms along with their corresponding opinion terms and sentiment polarities. Subsequent
research has approached this task through various methods, including formulating it into
a reading comprehension problem [50–52], a span-relation extraction problem [53–55], a
table-filling problem [56–58], and a sequence generation problem [59–61].

Aspect Sentiment Quad Prediction (ASQP) represents the most comprehensive task
within ABSA. It is an extension of the ASTE task, seeking to predict all aspect-level quadru-
ples from a review sentence [4,5], where each quadruple consists of an aspect term, aspect
category, opinion term, and sentiment polarity. Existing ASQP methodologies can broadly
be classified into two categories: discriminative methods and generative methods. Repre-
sentative discriminative methods include Cai et al. [4] and Zhou et al. [62]. These methods
utilize extract–classify techniques or table-based methods to extract aspect–category and
opinion–sentiment pairs jointly. Generative methods cast the ASQP task to a text genera-
tion problem [5,63] or a tree generation problem [64,65]. Subsequent work augments the
training of generative models by considering different permutations of quadruples [66,67],
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utilizing data augmentation techniques [68–71], or incorporating unlikelihood learning
objectives [72]. In addition to these two methods, recent works attempted to apply LLMs to
the ASQP task using in-context learning methods [73] or leveraged the rationales generated
by the LLM as additional features to enhance existing model training [74].

Existing ABSA research treats sentiment as a three-class polarity rather than as a more
granular sentiment intensity. This limitation inspired Lee et al. [6] to propose dimensional
aspect-based sentiment analysis (dimABSA), which uses continuous real-valued scores in
the valence–arousal dimensions to represent sentiment.

2.2. Dimensional Sentiment Analysis

Dimensional sentiment analysis offers a more nuanced approach to understanding
sentiments expressed in text, moving beyond traditional positive, negative, or neutral clas-
sifications. Instead of categorizing sentiment into discrete classes, this method quantifies
sentiment on continuous scales, typically across dimensions like valence (pleasantness) and
arousal (intensity) [7]. Valence assesses whether an emotion is positive or negative, and
arousal measures the level of excitement or calmness associated with an emotion. As shown in
Figure 2, emotions can be mapped onto a two-dimensional plane using these two dimensions.
The strength of this model lies in its ability to capture the continuity and interrelationships
between different emotions rather than dividing them into distinct categories.

alert

excited

elated

happy

clam

relaxed

serene

contented

tense

nervous

stressed

upset

bored

depressed

sad

AROUSAL

VALENCE

Figure 2. Russell’s circumplex model of affect.

Prior research has developed many multi-dimensional affective resources, including
lexicons [75] and sentence-level corpora [76,77]. Meanwhile, several studies produced multi-
granularity Chinese dimensional sentiment resources, thereby addressing the gap in Chinese-
language resources [78,79]. To effectively predict dimensional scores, early research pre-
dominantly utilized LSTM-based architectures. Notable implementations include a densely
connected LSTM for phrase-level predictions [80], a relation interaction model for sentence-
level predictions [81], and a regional CNN-LSTM model for text-level predictions [82,83].
With the rise of the Transformer architecture [84], researchers have increasingly adopted pre-
trained language models to enhance performance. For example, Deng et al. [85] introduced a
multi-granularity BERT fusion framework, and Wang et al. [86] proposed soft momentum
contrastive learning for pre-training. Distinguishing our approach from these efforts, our
work extends the use of LLMs for dimensional score prediction, enabling deeper exploration
and discussion.

3. Task Definition

The dimABSA benchmark contains three subtasks: intensity prediction, triplet extrac-
tion, and quadruple extraction. They are formally defined as follows.
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• Subtask 1: Intensity prediction. This task aims to predict sentiment intensities of
given aspect terms in valence–arousal dimensions. The input includes a sentence
S = [w1, w2, · · · , wT ] consisting of T words, along with a predefined aspect term a,
which is a substring of the sentence. The output is the sentiment intensity, denoted
as val-aro. As illustrated in Figure 1, given the sentence “吐柴主艺文总店除了餐点
好吃之外，这里的用餐环境也很特别” (in English: “Besides the tasty meals at the main
art store of Tuchai, the dining environment here is also quite special”) and two aspect terms
“餐点” (meals) and “用餐环境” (dining environment), this subtask requires systems to
predict valence–arousal scores of 6.5#5.75 and 6.5#6.0, respectively.

• Subtask 2: Triplet Extraction. This task focuses on identifying aspect-level sentiments
and opinions from given review sentences, outputting them as sets of triplets. The
input is a sentence, and the corresponding output is a set containing all identified
triplets. Each triplet consists of an aspect term a, an opinion term o, and sentiment
intensity val-aro. For example, given the sentence “吐柴主艺文总店除了餐点好吃之
外，这里的用餐环境也很特别” in Figure 1 (in English: “Besides the tasty meals at the
main art store of Tuchai, the dining environment here is also quite special”), this subtask
requires systems to produce the triplets {(餐点, 好吃, 6.5#5.75), (用餐环境, 很特别,
6.5#6.0)} (in English: {(meals, tasty, 6.5#5.75), (dining environment, quite special, 6.5#6.0)}).

• Subtask 3: Quadruple Extraction. This task builds on Subtask 2 by additionally re-
quiring the identification of the aspect category, thus forming a quadruple. The aspect
category falls within a predefined classification space, including餐厅#概括 (restau-
rant#general),餐厅#价格 (restaurant#prices),餐厅#杂项 (restaurant#miscellaneous),
食物#价格 (food#prices), 食物#品质 (food#quality), 食物#份量与款式 (food#style&
options), 饮料#价格 (drinks#prices), 饮料#品质 (drinks#quality), 饮料#份量与款式
(drinks#style&options),氛围#概括 (ambience#general),服务#概括 (services#general),
and 地点#概括 (location#general). The specific meanings of each category can be
found in the guideline [87]. For example, given the sentence in Figure 1, this subtask
requires systems to produce the quadruples {(餐点,食物#品质,好吃, 6.5#5.75), (用餐
环境,氛围#概括,很特别, 6.5#6.0)} (in English: {(meals, food#quality, tasty, 6.5#5.75),
(dining environment, ambience#general, quite special, 6.5#6.0)}).

Valence and arousal scores are continuous values that range from 1 to 9. For these
dimensions, a value of 1 indicates extremely negative and low-arousal sentiments, respec-
tively. Conversely, a score of 9 signifies extremely positive and high-arousal sentiments.
Meanwhile, a value of 5 represents a neutral sentiment and medium arousal. In Subtasks 2
and 3, the aspect term a can either be explicit substrings of the sentence S or be expressed
implicitly, in which case they are denoted as “NULL”. For instance, for the sentence “一
口咬下去是真的很好吃” (in English: “A bite is really delicious”), the quadruple would be
(NULL,食物#品质,真的很好吃, 7.33#7.0) (in English: (NULL, food#quality, really delicious,
7.33#7.0)).

4. Methods

This paper develops two solutions for the dimABSA task. The first solution is a
pipeline approach leveraging the BERT model, while the second is an end-to-end solution
that utilizes an LLM. We subsequently combine the strengths of both approaches to develop
a hybrid method.

4.1. BERT-Based Method

We decompose the quadruple extraction of dimABSA into three subtasks: aspect–
opinion extraction; aspect–opinion pairing and category classification; and intensity pre-
diction. Additionally, we incorporate domain-adaptive pre-training to enhance the BERT
model’s domain awareness. Our framework is illustrated in Figure 3. A detailed description
of each module follows.
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① Domain-adaptive Pre-training

5.2M Chinese Restaurant Reviews

Word Segmentation

& Concatenation
Masked Language 

Modeling
1.5M Pre-training Data DAPT-BERT

②Aspect-Opinion Extraction

④ Intensity Prediction

Review

Sentence

Regression & 

Classification

Invalid or Category

B
E

R
T

Aspects

Opinions

B
E

R
T

Valence-Arousal

B
E

R
T

Initialization

BIO

Tagging

Classification

③ Pairing & Category Classification

Figure 3. Overview of our BERT framework, consisting of four steps: (1) domain-adaptive pre-
training, (2) aspect–opinion extraction, (3) aspect–opinion pairing and category classification, and
(4) intensity prediction.

4.1.1. Domain-Adaptive Pre-Training

Previous research has demonstrated that pre-training language models on domain-
specific sentiment-dense corpora can significantly improve their performance on down-
stream sentiment analysis tasks [26,28]. Consequently, we pre-train the BERT model on
Chinese restaurant reviews before quadruple extraction, aiming to enhance its contextual
understanding specific to the Chinese restaurant domain. Our data collection process
contains three steps. Firstly, we collect 5.2 million open-source Chinese restaurant re-
views. These reviews mainly consist of 4.4 million reviews from https://www.heywhale.
com/mw/dataset/5e946de7e7ec38002d02d533/content accessed on 15 September 2024,
0.46 million reviews published on Li [88], and 0.33 million reviews from the AI Challenger
2018: sentiment analysis dataset (https://github.com/AIChallenger/AI_Challenger_2018/
accessed on 15 September 2024). Secondly, we cleanse these data to remove duplicates.
Finally, we concatenate all the reviews and segment them based on the maximum sequence
length, set at 512. This process yields a pre-training corpus containing 1.5 million samples.

After obtaining the pre-training corpus, we utilize the masked language modeling
objective [22] to pre-train BERT. Unlike the static masking employed by Devlin et al. [22],
we adopt the dynamic masking strategy proposed by Liu et al. [23], which randomly selects
different tokens to mask in each training epoch. Additionally, we implement a whole-word
masking strategy, which applies masking at the word level instead of the token level [89].
For Chinese word segmentation, we utilize the LTP tool [90]. We refer to our pre-trained
BERT model as DAPT-BERT.

4.1.2. Aspect–Opinion Extraction

The objective of this step is to leverage our DAPT-BERT model to extract aspect terms
and opinion terms from sentences. We employ the BIO tagging scheme to implement
term extraction [91]. In this scheme, aspect terms and opinion terms in the sentences are
represented by the token-level tags, with the tag space {B-Aspect, I-Aspect, B-Opinion,
I-Opinion, O}. Subsequently, we superimpose a linear classifier on DAPT-BERT to identify
these token-level tags. Furthermore, we augment the given sentence by prepending a

https://www.heywhale.com/mw/dataset/5e946de7e7ec38002d02d533/content
https://www.heywhale.com/mw/dataset/5e946de7e7ec38002d02d533/content
https://github.com/AIChallenger/AI_Challenger_2018/
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special token [NULL] to identify implicit terms. This token is added to the vocabulary, and
its embedding is initialized accordingly. The overall process can be formulated as follows:

h0, h1, · · · , hT = DAPT-BERT(S′), (1)

P(yt) = softmax(Linear(ht)), (2)

where S′ = [[NULL], w1, · · · , wT ] represents the augmented sentence and yt denotes the
tag for the t-th token in the sentence. We optimize the model along the linear classifier
using a cross-entropy loss.

4.1.3. Aspect–Opinion Pairing and Category Classification

This step aims to match the aspect terms and opinion terms extracted in the pre-
vious step and to determine the aspect categories of each matched pair. We approach
aspect–opinion pairing and category classification as a unified classification problem. The
class space encompasses the aspect category space and includes an “unpaired’ category.
Specifically, we input the augmented sentence S′ along with the aspect term a and opinion
term o into DAPT-BERT to generate a discriminative representation, denoted as h[CLS].
Subsequently, h[CLS] is fed into a linear classifier to determine the pairing and possible
categories of the given aspect and opinion terms. We formulate this step as follows:

h[CLS] = DAPT-BERT(S′, a, o), (3)

P(c) = softmax(Linear(h[CLS])), (4)

where c ∈ {unpaired, 餐厅#概括, 餐厅#价格, 餐厅#杂项, 食物#价格, 食物#品质, 食物#份
量与款式,饮料#价格,饮料#品质,饮料#份量与款式,氛围#概括,服务#概括,地点#概括} (in
English: {restaurant#general, restaurant#prices, restaurant#miscellaneous, food#prices,
food#quality, food#style& options, drinks#prices, drinks#quality, drinks#style&options,
ambience#general, services#general, location#general}). We use the cross-entropy loss
function to optimize the model and the linear classifier.

We introduce the strategy of negative pairs construction to mitigate error propagation,
a common issue in pipeline methods. In the training phase, the input aspect and opinion
terms are ground truths; however, during inference, they are predictions from the previous
step, potentially containing errors. The discrepancy between training and inference can
cause the classifier to be insensitive to minor boundary errors in the aspect and opinion
terms, leading to further error propagation. To mitigate this, we construct negative pairs
using incorrect aspect and opinion terms identified during the k-fold cross validation of
the extraction model. These incorrect terms are then paired and labeled as “unpaired”. We
use these negative pairs, along with the correct terms, to train the relation model, thereby
enhancing its ability to robustly handle errors.

4.1.4. Intensity Prediction

This step focuses on predicting the sentiment intensity of aspect–opinion pairs, namely,
the valence–arousal scores. We develop two methods for this prediction. The first one
approaches intensity prediction as a regression problem, employing a regression-based
method. The second method transforms intensity prediction into a classification problem,
subsequently utilizing a classification-based method. Detailed descriptions of these two
methods are provided below.

The regression-based method inputs the sentence S′ along with the aspect term a and
opinion term o into DAPT-BERT. The resulting discriminative representation, h[CLS], is then
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fed into two separate linear layers to predict the valence score sval and arousal score saro,
respectively. This process can be formulated as follows:

h[CLS] = DAPT-BERT(S′, a, o), (5)

ŝval = Linear(h[CLS]), (6)

ŝaro = Linear(h[CLS]). (7)

We calculate two losses using mean squared error (MSE) for each score and then com-
pute the average to determine the overall regression loss. Furthermore, in the regression-
based method, we employ the strategy of disabling BERT’s internal dropout, a technique
discussed in a Kaggle forum [92]. This approach is motivated by the concerns that BERT’s
internal dropout could introduce inconsistencies in the variance of neuron activations
between training and inference phases, potentially compromising the numerical stability of
the regression.

The classification-based method initially converts the continuous valence and arousal
scores into categories through equidistant binning, with each bin having an interval of 0.25.
Subsequently, we overlay two linear layers with softmax on DAPT-BERT to predict these
categories, denoted as cval , caro. This process can be formulated as follows:

h[CLS] = DAPT-BERT(S′, a, o), (8)

ĉval = softmax(Linear(h[CLS])), (9)

ĉaro = softmax(Linear(h[CLS])). (10)

We calculate two losses using the cross-entropy function for each category and then
compute the average to determine the overall classification loss. During inference, we
convert these categories back into scores. For example, if the predicted valence category is
“[1–1.25]”, the corresponding score after conversion is 1 + 1.25

2 = 1.125.

4.2. LLM-Based Method

Unlike the BERT-based method, the LLM-based method does not decompose quadru-
ple extraction into multiple subtasks; instead, the LLM-based method transforms it into
a text generation task for an end-to-end solution. We enhance the performance of the
LLM through multi-tasking learning and code-style prompts [9]. Additionally, we employ
the QLoRA [11] method to fine-tune the LLM under resource constraints. The overall
framework is illustrated in Figure 4.

Multi-task learning: Wang et al. [93] highlighted that fine-tuning on similar multi-
tasks can facilitate the capture of common structural information for information extraction
tasks. Inspired by this insight, we develop a multi-task learning strategy for dimABSA. In
addition to quadruple extraction, we incorporate five typical tasks: aspect term extraction,
aspect intensity prediction, aspect–opinion intensity prediction, aspect–opinion–intensity
triplet extraction, and aspect–category–opinion triplet extraction. The reason we chose
these five tasks is that they are typical and complementary subtasks of quadruple extrac-
tion. Among them, aspect term extraction and aspect intensity prediction are fundamental
subtasks that help the model enhance its understanding of basic aspect terms and sentiment
intensity concepts. Aspect–opinion intensity prediction, which builds on aspect intensity
prediction by incorporating opinion terms, enables the model to better grasp the relation-
ship between sentiment intensity and opinion terms. The two triplet extraction tasks build
upon the above subtasks, aiding the model in generating tuple-format outputs. We train
the LLM by merging the data from these six tasks. We believe that such comprehensive
training will enable the LLM to thoroughly acquire aspect-related knowledge.

Code-style prompt: LLMs are typically pre-trained on natural language. However, the
output for quadruple extraction is a structured object, which deviates from the pre-training
data. Li et al. [9] suggested that using code-style prompts can enhance the performance of
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LLMs, as the structured nature of code more closely mirrors the requirements of information
extraction tasks, and LLM pre-training corpora often include code snippets. Inspired by
this, we apply code-style prompting in the dimABSA tasks. As shown in Figure 4, we
convert the samples from dimABSA tasks into code-style instructions and outputs using
the Python code format.

Aspect Term Extraction

Aspect Intensity Prediction LLM

Aspect-Opinion-Intensity Triplet 

Extraction

Aspect-Category-Opinion Triplet 

Extraction

Aspect-Category-Opinion-Intensity 

Quadruple Extraction

Aspect-Opinion Intensity Prediction

Multi-task Learning

Code-style  Prompt

output

['餐点', '用餐环境']

# According to the sentence, extract aspect.

def aspect_extraction(target_sentence):

"""aspect is the entity to which the emotion in target_sentence points"""

aspect_list = []

for aspect in aspect_list: 

assert aspect in target_sentence 

return aspect_list 

print(aspect_extraction("吐柴主艺文总店除了餐点好吃之外，这里的用餐环境也很特别"))

Input

Input-Output Pair1

Input-Output Pair2

Input-Output Pair3

Input-Output Pair4

Input-Output Pair5

Input-Output Pair6

Training Data QLoRA

(In English: "Besides the tasty meals at the main art store of Tuchai, the 

dining environment here is also quite special")   

(In English: 'meals', 

'dining environment')

Figure 4. Overview of our LLM framework, which uses code-style prompts to build input–output
pairs, trains the LLM on six tasks jointly, and optimizes the LLM via QLoRA methods.

Optimization with QLoRA: Fine-tuning LLMs is highly memory-intensive. To address
this, we explore parameter-efficient fine-tuning methods. One such method, QLoRA [11],
offers a novel and efficient fine-tuning approach that significantly reduces memory usage
during the fine-tuning phase. QLoRA is an extension of the LoRA technique [94], which
incorporates a small set of learnable low-rank adapters and then optimizes these adapters
while keeping the original model weights unchanged. Building on LoRA, QLoRA intro-
duces 4-bit NormalFloat formatting and double quantization techniques to quantize the
model to 4 bits and introduces paged optimizers to prevent GPU memory overflow. Using
QLoRA, we effectively optimize a 7b sized LLM on a 40G A100 GPU.

During inference, we set the temperature to 1 and use beam search for decoding, with
the number of beams set to 2.

4.3. Ensemble Strategy

We carry out preliminary experiments to explore the comparative advantages of the
BERT-based and LLM-based methods. Our results reveal that the BERT-based method
excels in continuous intensity prediction and aspect–opinion extraction and pairing. We
believe the reasons are as follows: (1) LLMs lack task-specific structures, preventing the
model from learning task-specific representations; and (2) generating dimABSA labels in
LLMs using an autoregressive approach is neither natural nor straightforward. In addition,
the LLM-based method outperforms the BERT-based method in integer-level intensity
prediction. We hypothesize that these differences stem from the inherent nature of LLMs,
whose natural language generation output format may hinder precise comprehension
and extraction of continuous values. However, LLMs tend to deliver superior results in
coarse-grained predictions due to their larger parameter sizes.

We develop a hybrid approach that capitalizes on the advantages of both BERT-
based and LLM-based methods. For Subtask 1, we combine the predictions from the
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regression and classification models in the BERT-based method by averaging them. For
Subtasks 2 and 3, we employ the BERT-based method to extract aspect–category–opinion
tuples. Subsequently, we feed all valid aspect–opinion pairs into the LLM, utilizing the
aspect–opinion intensity prediction prompt to generate integer-level predictions for valence
and arousal.

5. Experiments
5.1. Experimental Setup

The dataset used for the experiments originates from Lee et al. [6]. Initially, they
collected restaurant reviews from Google reviews and the online bulletin board system
PTT. Subsequently, annotators were organized to label aspects, categories, opinions, and
intensities. To address inconsistencies in the annotations, for aspect–category–opinion, a
majority vote method was applied, while sentiment intensity values were averaged after
excluding samples with significant discrepancies. The dataset is available in two versions:
one using Traditional Chinese characters and the other in Simplified Chinese characters.
We select the Simplified Chinese version for our experiments. Table 1 presents the statistical
information of this dataset. This dataset encompasses 12 predefined aspect categories, with
their distribution depicted in Figure 5a. Notably, the “food#quality” category constitutes
nearly three-quarters of the entire dataset. The distribution of valence–arousal scores across
these categories is illustrated in Figure 5b.

Figure 5. Data distribution: (a) category distribution, and (b) intensity distribution. The English trans-
lation of the non-English characters in subfigure (a) are restaurant#general, restaurant#prices, restau-
rant#miscellaneous, food#prices, food#quality, food#style& options, drinks#prices, drinks#quality,
drinks#style&options, ambience#general, services#general, and location#general.

Table 1. Data statistics. The terms #Sent, #Char, and #Tuple denote the number of sentences,
characters, and tuples in the dataset, respectively. Additionally, #Unique and #Repeat indicate the
number of aspects or opinions that occur only once or more than once, respectively.

Subtask Dataset #Sent #Char #Tuple
Aspect Opinion

#NULL #Unique #Repeat #Unique #Repeat

ST1
train 6050 85,769 8523 169 6430 1924 - -
dev 100 1.109 115 0 115 0 - -
test 2000 34,002 2658 0 2658 0 - -

ST2 and ST3
train 6050 85,769 8523 169 6430 1924 7986 537
dev 100 1280 150 0 78 72 143 7
test 2000 39,014 3566 52 1693 1821 3263 303

Evaluation metrics: The performance of Subtask 1, i.e., intensity prediction, is assessed
using the mean absolute error (MAE) and the Pearson correlation coefficient (PCC). These
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metrics measure the discrepancy between the model’s predictions and the human-annotated
scores. They are defined as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (11)

PCC =
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)√
∑n

i=1(yi − ȳ)2
√

∑n
i=1(ŷi − ¯̂y)2

, (12)

where yi and ŷi represents the gold truth and prediction, n denotes the number of samples,
and ȳ and ¯̂y are the means of gold truths and predictions, respectively. The minimum value
for MAE is 0, and the PCC ranges from −1 to 1. A lower MAE and higher PCC signify
more accurate predictions.

The performance of Subtasks 2 and 3, namely, triplet and quadruple extraction, is
evaluated using the F1-score. A tuple is considered correct only if all elements match
the gold truth, where valence and arousal values are rounded to the nearest integer. The
F1-score is calculated using the following equation:

F1 =
2 × P × R

P + R
, (13)

where P represents the precision, defined as the number of correct tuples divided by the
total number of extracted tuples, and R represents the recall, defined as the number of
correct tuples divided by the total number of gold tuples. Higher F1 values indicate better
performance. Additionally, each metric is calculated independently for the valence and
arousal dimensions or in combination.

Implementation details: For the BERT-based method, we utilize ernie-3.0-xbase-zh [95]
as the backbone, which contains 296M parameters. The pre-training setup includes a
batch size of 32, gradient accumulation steps of 12, bf16 mixed precision, a total of five
training epochs, an initial learning rate of 1 × 10−4, and a maximum sequence length of 512.
During the fine-tuning phase, the learning rate is adjusted to 2 × 10−5, with the batch size
maintained at 32. The fine-tuning duration is set to seven epochs for the aspect–opinion
extraction, pairing and classification, and the classification model for intensity prediction,
and six for the regression model for intensity prediction. All models are fine-tuned using
five different random seeds to ensure robustness, with the results aggregated through a
voting mechanism.

For the LLM-based method, we employ deepseek-7b-instruct-v1.5 [96] as the backbone.
The fine-tuning setup includes the learning rate of 1 × 10−4, five epochs, batch size of four,
bf16 mixed precision, and maximum sequence length of 2048. Additionally, we set the rank
of QLoRA fine-tuning to eight and the scaler factor to 16. LLM fine-tuning is implemented
using the PyTorch framework on an NVIDIA A100 GPU.

Comparison models: We compare our hybrid approach with other participating
systems, including yangnan, DS-Group [97], YNU-HPCC [98], TMAK-Plus [99], USTC-IAT,
SUDA-NLP, BIT-NLP, JN-NLP [100], ZZU-NLP [101], and CCIIPLab [102]. Furthermore,
we compare our hybrid approach with individual BERT-based and LLM-based methods,
including the following: (1) BERTREG, which utilizes the regression model for intensity
prediction; (2) BERTCLS, which employs the classification model for intensity prediction;
(3) LLMINT, which trains the LLM with integer-level intensity; and (4) LLMDEC, which
represents intensity using one decimal place.

5.2. Experimental Results

Comparison with other participating systems: Table 2 displays the performance
of different participating systems in the ACL SIGHAN 10 shared task on dimABSA, as
reported by Lee et al. [6]. Our method achieves the best results across all three subtasks,
significantly outperforming other systems. Notably, in Subtasks 2 and 3, our VA-F1 scores
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are approximately three points higher than the second-best system. These results indi-
cate that the proposed hybrid approach achieves state-of-the-art (SOTA) performance,
demonstrating its effectiveness.

Table 2. Comparison results with other participating systems across three subtasks. V for valence, A
for arousal, T for triplet, and Q for quadruple. We highlight the best results in bold. ↑ indicates that a
higher value is better, while ↓ indicates that a lower value is better.

Methods
Subtask 1 Subtask 2 Subtask 3

V-MAE ↓ V-PCC ↑ A-MAE ↓ A-PCC ↑ V-T-F1 ↑ A-T-F1 ↑ VA-T-F1 ↑ V-Q-F1↑ A-Q-F1 ↑ VA-Q-F1 ↑

yangnan 1.032 0.877 1.095 0.097 - - - - - -
DS-Group 0.460 0.858 0.501 0.490 - - - - - -
YNU-HPCC 0.294 0.917 0.318 0.771 - - - - - -
TMAK-Plus - - - - 0.269 0.307 0.157 - - -
USTC-IAT - - - - - - - 0.438 0.437 0.312
SUDA-NLP - - - - 0.475 0.448 0.326 0.487 0.444 0.336
BIT-NLP - - - - 0.490 0.450 0.342 0.470 0.434 0.329
JN-NLP - - - - - - - 0.482 0.439 0.331
ZZU-NLP - - - - 0.542 0.507 0.389 0.522 0.489 0.376
CCIIPLab 0.294 0.916 0.309 0.766 0.573 0.522 0.403 0.555 0.507 0.389

Ours 0.279 0.933 0.309 0.777 0.589 0.545 0.433 0.567 0.526 0.417

Comparison with BERT-based and LLM-based methods. Our hybrid approach
integrates BERT-based and LLM-based methods. We compare this hybrid approach against
individual methods and their variants. The results, as shown in Table 3, lead to the
following four observations:

• Firstly, the hybrid approach outperforms the individual approaches on the majority
of metrics, indicating that it effectively leverages the strengths of both BERT-based
and LLM-based methods to achieve enhanced performance. Note that the A-Q-F1
metrics for the hybrid approach are slightly lower than those for BERTCLS, indicating
that the advantage of large model methods in arousal scores is relatively weak, as also
reflected in the A-T-F1.

• Secondly, despite having significantly fewer parameters (296M) compared to the LLM-
based method (7B), the BERT-based method exhibits superior performance across all
metrics. We attribute this advantage to two main limitations of LLMs: (1) LLMs lack
specific structures or designs to model the interactions among sentiment elements or
between sentiment elements and context. This deficiency hinders the model’s ability to
learn task-specific representations. (2) The mapping from representations to dimABSA
labels in LLMs is unnatural. Specifically, representing continuous valence–arousal
scores as text reduces the semantic information inherent in the numerical values.

• Thirdly, within the BERT-based approaches, the regression model performs better
in Subtask 1, while the classification model excels in Subtasks 2 and 3. This sug-
gests that the regression model is more advantageous for fine-grained intensity
assessments, whereas the classification model is more effective for coarse-grained
intensity assessments.

• Finally, in the LLM-based methods, representing scores as decimals (LLMDEC) yields
better results in Subtask 1, while integer representations (LLMINT) are more effective in
Subtasks 2 and 3. This mirrors the conclusions drawn from the BERT-based methods.
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Table 3. Comparison results between the hybrid approach and separate methods across three subtasks.
V for valence, A for arousal, T for triplet, and Q for quadruple. We highlight the best results in bold.
↑ indicates that a higher value is better, while ↓ indicates that a lower value is better.

Methods
Subtask 1 Subtask 2 Subtask 3

V-MAE ↓ V-PCC ↑ A-MAE ↓ A-PCC ↑ V-T-F1 ↑ A-T-F1 ↑ VA-T-F1 ↑ V-Q-F1 ↑ A-Q-F1 ↑ VA-Q-F1 ↑

BERTREG 0.287 0.930 0.311 0.773 0.574 0.526 0.405 0.555 0.511 0.393
BERTCLS 0.279 0.930 0.316 0.766 0.583 0.543 0.425 0.564 0.527 0.411
LLMINT 0.367 0.884 0.394 0.683 0.530 0.498 0.392 0.512 0.482 0.379
LLMDEC 0.294 0.919 0.331 0.738 0.457 0.437 0.312 0.443 0.426 0.302

Hybrid approach 0.279 0.933 0.309 0.777 0.589 0.545 0.433 0.567 0.526 0.417

6. Discussion

We conduct further experiments and analyses to discuss our proposed approach in
more depth, providing technical insights that will inform subsequent work.

6.1. Analysis of Ensemble Strategy

We conduct experiments to compare different ensemble strategies. We establish four
ensemble strategies: (1) voting1, where predicted intensities from the regression model
and classification model are averaged; (2) voting2, where predicted intensities from the
regression model, classification model, and LLM-based method are averaged if the aspect–
category–opinion tuples are consistent; (3) replace, where predicted intensities from the
BERT-based methods are replaced with those from the LLM-based methods if the aspect–
category–opinion tuples are consistent; (4) pipeline, where the BERT-based method outputs
aspect–category–opinion tuples and these tuples are fed to the LLM to obtain the integer-
level intensity. As shown in Table 4, we observe that the pipeline ensemble strategy achieves
the best performance, meaning that the pipeline strategy can more effectively leverage the
advantages of both BERT-based and LLM-based methods.

Table 4. Comparison results of different ensemble strategies on Subtask 3. We highlight the best
results in bold.

Methods Type V-Q-F1 A-Q-F1 VA-Q-F1

Voting1 BERT 0.557 0.509 0.393
Voting2 BERT&LLM 0.563 0.526 0.413
Replace BERT&LLM 0.565 0.526 0.416
Pipeline BERT&LLM 0.567 0.526 0.417

6.2. Ablation Study

Ablation of the BERT-based method: In the BERT-based method, we implement three
enhancements: domain-adaptive pre-training, negative pair construction, and disabling
BERT’s internal dropout. Therefore, we conduct experiments to investigate the effectiveness
of these components, with the results presented in Table 5. Firstly, removing domain-
adaptive pre-training results in a decrease across all metrics, confirming its effectiveness in
enhancing the performance of the BERT model. Secondly, enabling BERT’s internal dropout
has a significant negative impact on MAE, suggesting that dropout indeed introduces
instability in numerical values for the regression model. We also find that enabling BERT’s
internal dropout has a smaller effect on PCC, indicating that dropout’s impact on correlation
metrics is relatively minor. Lastly, the removal of negative aspect–opinion pairs also leads
to performance declines in Subtasks 2 and 3, underscoring their necessity.
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Table 5. Ablation results of the BERT-based method. w/o pre-training denotes removing domain-
adaptive pre-training, w/o disabling-dropout represents enabling BERT’s internal dropout, and w/o
negative-pair means removing negative pair construction in pairing and classification. We highlight
the best results in bold. ↑ indicates that a higher value is better, while ↓ indicates that a lower value
is better.

Methods
Subtask 1 Subtask 2 Subtask 3

V-MAE ↓ V-PCC ↑ A-MAE ↓ A-PCC ↑ V-T-F1 ↑ A-T-F1 ↑ VA-T-F1 ↑ V-Q-F1 ↑ A-Q-F1 ↑ VA-Q-F1 ↑

BERTREG 0.287 0.930 0.311 0.773 0.574 0.526 0.405 0.555 0.511 0.393

w/o pre-training 0.294 0.924 0.313 0.771 0.565 0.520 0.401 0.544 0.502 0.386
w/o disabling-dropout 0.337 0.933 0.348 0.779 0.537 0.503 0.365 0.521 0.487 0.354
w/o negative-pair - - - - 0.567 0.518 0.399 0.549 0.502 0.387

Ablation of the LLM-based method: In our LLM-based method, we transform
dimABSA tasks into text generation tasks and employ two additional strategies to en-
hance performance: multi-task learning and code-style prompting. As shown in Table 6,
eliminating multi-task learning results in a general performance decline, indicating that
LLMs can benefit from improved generalization through multi-task learning. Furthermore,
replacing code-style prompts with natural language prompts leads to significant perfor-
mance reductions across all tasks, underscoring the importance of code-style prompts.
During the inference phase, we use the beam search strategy for decoding. We observe that
replacing this with greedy decoding also leads to a slight performance drop, confirming its
necessity. We also observe that removing certain components sometimes results in slight
improvements in a few metrics, which we attribute to the randomness in model training.

Table 6. Ablation results of the LLM-based method. w/o multi-task denotes removing multi-task
learning, w/o code prompt represents replacing code-style prompts with natural language prompts,
and w/o beam search means using greedy decoding. We highlight the best results in bold. ↑ indicates
that a higher value is better, while ↓ indicates that a lower value is better.

Methods
Subtask 1 Subtask 2 Subtask 3

V-MAE ↓ V-PCC ↑ A-MAE ↓ A-PCC ↑ V-T-F1 ↑ A-T-F1 ↑ VA-T-F1 ↑ V-Q-F1 ↑ A-Q-F1 ↑ VA-Q-F1 ↑

LLMINT 0.367 0.884 0.394 0.683 0.530 0.498 0.392 0.512 0.482 0.379

w/o multi-task 0.381 0.876 0.406 0.632 0.535 0.481 0.381 0.514 0.464 0.367
w/o code prompt 0.367 0.882 0.394 0.672 0.515 0.472 0.373 0.495 0.454 0.358
w/o beam search 0.377 0.880 0.391 0.670 0.531 0.489 0.388 0.511 0.472 0.374

6.3. Effect of Pre-Trained Language Models

The choice of pre-trained language models (PLMs) is a critical factor affecting per-
formance. We select five representative Chinese PLMs for experimentation in Subtask 1,
including chinese-roberta-wwm-ext and chinese-roberta-wwm-ext-large [89], ernie-3.0-base-zh
and ernie-3.0-xbase-zh [95], and erlangshen-deberta-v2-320m-chinese [103]. The experimen-
tal results, shown in Table 7, indicate that models with larger numbers of parameters
tend to perform better. Among these, ernie-3.0-base-zh, with a moderate parameter size,
demonstrates superior performance, balancing training efficiency with excellent results for
our system.
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Table 7. Comparison of different pre-trained language models on Subtask 1. We highlight the best
results in bold. ↑ indicates that a higher value is better, while ↓ indicates that a lower value is better.

Model Params
Valence Arousal

MAE ↓ PCC ↑ MAE ↓ PCC ↑
chinese-roberta-wwm-ext [89] 102M 0.300 0.918 0.310 0.766
ernie-3.0-base-zh [95] 118M 0.300 0.915 0.313 0.762
ernie-3.0-xbase-zh [95] 296M 0.286 0.926 0.309 0.776
erlangshen-deberta-v2-320m-chinese [103] 320M 0.284 0.930 0.310 0.774
chinese-roberta-ext-large [89] 326M 0.289 0.923 0.314 0.769

6.4. Error Analysis

We conduct an error analysis to understand the limitations of the proposed approach.
As shown in Table 8, we find that errors related to aspect–opinion pairing and category
classification are minimal, accounting for less than 7% of the total errors. However, errors
in aspect and opinion terms are more substantial, comprising 40.46% of the errors. The
most significant issue is sentiment intensity prediction errors, which contributed to 52.72%
of the total errors. These findings suggest that future work should focus on improving term
extraction and intensity prediction.

Table 8. The proportion of different errors in wrong predictions.

Aspect Opinion Pairing Category Valence Arousal

Error proportion 18.68% 21.78% 2.34% 4.48% 25.90% 26.82%

7. Conclusions and Future Works

This paper introduces a hybrid approach for dimensional aspect-based sentiment
analysis (dimABSA), combining the strengths of BERT and LLM across various scenarios.
Our method participated in the ACL SIGHAN 10 shared task, achieving the highest
scores in multiple subtasks, thus validating the effectiveness of our proposed approach.
Additionally, we conducted extensive experiments and provided technical discussions
that contributed valuable insights and established a robust foundation for future inquiries.
Although we conducted experiments solely on Chinese restaurant reviews, we believe that
our approach can achieve promising results for dimABSA tasks in other languages and
domains as well.

Despite its innovative integration of BERT and LLM for the dimABSA task and its no-
table performance, our study has several limitations. Firstly, it primarily explores ensemble
methods such as voting and pipeline strategies, leaving more sophisticated integration tech-
niques like knowledge distillation and the development of hybrid architectures unexplored.
These approaches could potentially enhance performance by leveraging a wider array of
benefits from both models. Secondly, our research is constrained by limited computational
resources, which hampers our ability to deploy more advanced LLMs that may offer im-
proved accuracy and generalization. Lastly, this study does not utilize existing dimensional
sentiment resources, such as sentiment lexicons and annotated datasets, which could fur-
ther refine sentiment dimension predictions. Future work should aim to incorporate these
resources to augment the robustness and accuracy of sentiment analysis.
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