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Abstract: As digital crime continues to rise, the preservation of digital evidence has become a critical
phase in digital forensic investigations. This phase focuses on securing and maintaining the integrity
of evidence for legal proceedings. Existing solutions for evidence preservation, such as centralized
storage systems and cloud frameworks, present challenges related to security and collaboration. In
this paper, we propose a novel framework that addresses these challenges in the preservation phase of
forensics. Our framework employs a combination of advanced technologies, including the following:
(1) Segmenting evidence into smaller components for improved security and manageability,
(2) Utilizing steganography for covert evidence preservation, and (3) Implementing blockchain
to ensure the integrity and immutability of evidence. Additionally, we incorporate Long Short-Term
Memory (LSTM) networks to enhance steganography in the evidence preservation process. This
approach aims to provide a secure, scalable, and reliable solution for preserving digital evidence,
contributing to the effectiveness of digital forensic investigations. An experiment using linguis-
tic steganography showed that the LSTM autoencoder effectively generates coherent text from bit
streams, with low perplexity and high accuracy. Our solution outperforms existing methods across
multiple datasets, providing a secure and scalable approach for digital evidence preservation.

Keywords: blockchain; evidence preservation; forensics; long-short term memory; steganography

1. Introduction and Basic Concepts

With an increasing reliance on digital devices, the performance of smart technology
like smartphones and tablets continues to advance. This progress in smart devices has
sparked significant demand among users of varying technical expertise. These devices
are used both by individuals well-versed in technology and by those with limited or no
background in this realm. Consequently, the incidence of crimes committed using these
devices has risen considerably, necessitating thorough investigation processes, making the
role of digital forensics increasingly pivotal.

Digital forensics involves investigating digital crimes, focusing on recovering, preserv-
ing, and analyzing electronic evidence crucial for supporting criminal inquiries. In this
context, preserving evidence stands as a cornerstone of the investigative process. Given the
ongoing surge in digital data production, ensuring the integrity, authenticity, and admissi-
bility of digital evidence is more crucial than ever before, demanding robust solutions to
prevent tampering.

Preserving evidence presents various challenges beyond mere retention; it entails
ensuring the credibility of evidence throughout the investigation’s lifecycle, from seizure
to its presentation in court. This might include the need to have a multi-layered security
level. These layers act as a series of hurdles, making it significantly harder for unautho-
rized individuals to access, tamper with, or corrupt critical evidence. Secure frameworks
with multi-level security enable the controlled sharing of evidence between authorized
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personnel and long-term preservation of evidence in a tamper-proof manner, which is
crucial for legal proceedings that may extend over months or even years. Blockchain
technology offers a decentralized and immutable ledger solution, ensuring highly secure
and transparent records, timestamps, and preservation of digital evidence and related
media in forensic investigations [1]. Blockchain can play a crucial role in securing digital
evidence and enhancing the solutions. The potential benefits for securing evidence by
using blockchain technology are as follows: (1) Enhanced security for evidence storage due
to its decentralized nature, immutability, and transparency, which prevent unauthorized
tampering and ensure data integrity. Each piece of evidence would be cryptographically
hashed and stored on a distributed network. (2) Creates an unbreakable chain of custody,
ensuring the court can be confident that the evidence presented is authentic and has not
been tampered with throughout the investigation. (3) The immutable ledger of a blockchain
allows for easy tracing of evidence movement. Integrating blockchain technology can
elevate the forensic process by enhancing evidence collection, preservation, and analysis in
digital forensics, ultimately refining the entire investigative procedure.

On the other hand, transferring large amounts of digital evidence across networks
can be a challenge, especially when considering security concerns. Steganography can
indeed be a helpful tool in this specific scenario. Steganography hides the evidence within
another seemingly innocuous file, like an image or text. This can be beneficial if there are
concerns about someone intercepting the data during transfer. By disguising the evidence,
it becomes less likely to attract attention. The use of steganography to conceal evidence
within a carrier file adds an extra layer of covertness during transfer, resulting in a more
robust solution to ensure the evidence remains unaltered.

This paper endeavors to introduce a novel framework for preserving evidence in digi-
tal forensics. The proposed solution aims to bolster the security, privacy, and authenticity
of digital evidence throughout the investigative process. It leverages various advanced so-
lutions in cybersecurity, including steganography, blockchain, and cryptography, to fortify
the investigation’s integrity and efficacy.

In summary, the integration of blockchain and LSTM-based steganography provides
a balanced approach to enhancing both the integrity and privacy of digital evidence,
addressing some of the core challenges in digital forensics. It is motivated by the distinct
advantages each technique offers in addressing critical challenges in digital forensics:

1. Blockchain for Integrity and Immutability: Blockchain technology is renowned for
its ability to create an immutable ledger, ensuring that once evidence is recorded, it
cannot be tampered with. This feature is crucial in digital forensics, where maintaining
the integrity of evidence is paramount. By incorporating blockchain, the framework
provides a transparent and secure chain of custody, ensuring that every action related
to the evidence (e.g., access, modifications, transfers) is logged in a verifiable, times-
tamped manner. This greatly reduces the risk of data alteration or manipulation, a key
concern in forensic investigations.

2. LSTM-based Steganography for Privacy and Confidentiality: The use of Long Short-
Term Memory (LSTM)-based steganography in this framework is designed to enhance
the privacy of digital evidence. Steganography allows for the covert embedding of
information within other forms of media, making the existence of the evidence itself
less detectable. The LSTM model is particularly effective at encoding data in ways that
are difficult to detect or reverse-engineer, thus providing a high level of confidentiality.
This is critical during the transmission or storage phases, where unauthorized access
could compromise the investigation.

3. Complementary Synergy: Blockchain and steganography are complementary tech-
niques, where blockchain secures the integrity and traceability of the evidence,
and steganography protects its confidentiality. Together, they provide a compre-
hensive solution to ensure the evidence is not only immutable but also shielded from
unauthorized access or exposure. The framework addresses both of these essential
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aspects, strengthening the overall trustworthiness and efficacy of digital evidence in
forensic processes.

In this study, we tested the model using the tiny_shakespeare dataset, which was
preprocessed through tokenization. This process involves breaking down long text strings
into smaller units, first by dividing text into sentences and then into words. Redundant
words were eliminated to create a refined vocabulary used in the bit block mapping process.
Additionally, we incorporated another dataset, Email Communication Logs, to assess the
model’s performance in forensic evidence scenarios. This dataset provides a different
context to evaluate the model’s effectiveness in handling real-world data. Our findings
indicate that the LSTM autoencoder performs exceptionally well in generating natural-
sounding text from a secret bit stream, achieving low perplexity and strong coherence
metrics. This effectiveness demonstrates the model’s suitability for text-hiding purposes,
ensuring that the embedded message is secure and remains indistinguishable from ordinary
text. Furthermore, the model exhibits high precision in recovering the original bit stream,
emphasizing its reliability in maintaining the integrity of concealed information.

1.1. Concepts of Blockchain Technology

Satoshi Nakamoto [1] introduced blockchain technology in a white paper in 2008
for the first time. Blockchain represents a decentralized peer-to-peer (P2P) network with
a distributed ledger that is both immutable and transparent [2]. In this blockchain sys-
tem, the distributed ledger takes the form of interconnected blocks, where each block is
connected to the previous one through its cryptographic hash [3]. Each block is assigned
a unique block number and a timestamp. Within each block, multiple transactions are
structured in a Merkle tree format, and each transaction is secured through cryptographic
signatures using an asymmetric digital key. The rules for managing and maintaining the
distributed ledger are determined by a governance mechanism known as the consensus
algorithm [4].

Blockchain can be either public or private. Public blockchains are accessible to every-
one, allowing anyone to view the ledger. In contrast, private blockchains restrict ledger
access to specific members. Permissionless blockchains enable anyone to engage in trans-
actions and join the consensus process, whereas permission-based blockchains restrict
these activities to chosen members [5]. To efficiently and securely encode blockchain
data, a Merkle tree is employed. Additionally, consensus algorithms play a crucial role in
achieving synchronization and establishing agreement among the numerous nodes within
a blockchain network [5].

A Merkle tree aggregates all the transactions within a block and creates a digital
fingerprint representing the entire set of operations. This fingerprint enables users to
verify the presence or absence of specific transactions within the block. The Merkle tree
is structured as a binary tree, where each leaf node represents the hash of an individual
transaction, and each non-leaf node represents the hash of a combination of its child nodes.
Moreover, the Merkle tree’s root serves as a means to verify the data within it. The Merkle
root employs a straightforward mathematical process to validate the data contained in the
Merkle tree [6].

The consensus algorithm plays a critical role in establishing the rules for maintaining
the distributed ledger [7]. The consensus algorithm is essential to achieving unanimous
agreement across the entire blockchain network when determining the validity of each
individual block because, in a blockchain, there is no central authority responsible for vali-
dating transactions or blocks. The literature showcases a variety of consensus algorithms,
each with its unique characteristics and implementations [8].

Proof-of-Work (PoW) is a consensus algorithm that is used in Bitcoin as well as
Ethereum and imposes a requirement on the peers in the blockchain network to solve a
challenging mathematical problem [9]. In a PoW system, blockchain validators continu-
ously run the data from a block’s header through a cryptographic hash function. With each
iteration, validators incorporate a random number known as a nonce. Determining the
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data added to the next block in a blockchain using PoW necessitates significant energy con-
sumption and computational resources. The participants competing to solve the problem
and validate blocks in the PoW are referred to as miners. They are rewarded based on the
computational resources they expend [10].

Many consensus algorithms have been developed in the literature to overcome PoW
cost issues such as Proof-of-Stake (PoS), Delegated-Proof-of-Stake, the Byzantine consensus
algorithm, and more [11].

1.2. Digital Forensics

Digital forensics is the procedure of identifying, preserving, analyzing, and presenting
digital evidence in a manner that meets the requirements for admissibility in a legal court,
i.e., it must maintain the integrity of the collected evidence, ensuring its reliability and
usability in a legal case [12]. The goal of a digital forensics investigation is to preserve
the evidence as it exists while also uncovering information that helps the investigator
reconstruct past events and understand not just how, but also why, they occurred the way
they did.

The digital forensic process entails five steps: identification, preservation, analysis,
documentation, and presentation [13], as shown in Figure 1.

Figure 1. The digital forensics process.

Identification serves as the initial phase in any digital forensic investigation. Dur-
ing this stage, the investigator or investigative team is tasked with recognizing the scope
of the evidence contained on the device, its storage locations, and the specific formats in
which it is stored. Digital evidence can encompass a wide range of formats, such as text
messages, emails, images, videos, web search histories, documents, transactions, and more.
This evidence can be found on various devices, including computers, smartphones, tablets,
fitness trackers, and numerous other digital platforms.

After identification, the next step in digital investigations is preservation. This phase
involves the isolation and secure safeguarding of data, as well as the creation of a copy or
image that can be subject to analysis and investigation. Preserving the original evidence in
its unaltered state is crucial in digital investigations to ensure its admissibility as evidence
in a court of law.

Analysis is the phase in a digital forensic investigation during which the forensic scien-
tist or investigator pieces together fragmented data to construct a comprehensive narrative
of the events that transpired during the crime or matter under investigation. Forensic
experts primarily rely on the evidence, drawing from their experience and expertise. It
often requires multiple attempts and examinations to formulate a well-substantiated theory
about the unfolding of the crime.

Documentation involves the creation of a record that compiles the data to be presented
in court or any other forum where the investigation is being resolved. It comprises a
narrative reconstruction of the events in question, intertwined with the evidence that
bolsters the theory. This documentation should be persuasive to an external party tasked
with determining guilt or innocence.

Presentation marks the concluding phase of the digital forensic process. The investi-
gator utilizes the documentation to articulate the conclusions they have drawn regarding
the event in question. Whether the conclusion is conveyed in a courtroom or through a
written report, the investigator’s task is to translate their expert findings into a clear and
comprehensible narrative that can be understood and assessed by individuals who are not
experts in the field, relying on the details and evidence provided.
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The investigative process commences immediately upon the incident being reported
or a crime being detected [14]. Subsequently, the investigator proceeds through the steps
depicted in Figure 1. Initially, the investigation commences with the identification of the
machine or object associated with the alleged crime or violations. Once the crime is detected,
the investigator begins gathering evidence from the objects identified as being involved
in the offense. Following this, the investigator scrutinizes these objects and compiles a
report detailing the findings. Ultimately, the last step involves reporting these findings and
apprehending the suspect [15].

Computer Forensics Domains

The computer forensics domains can be divided into eight main areas as follows:

1. Operating system forensics.
2. Disk and file system forensics.
3. Live memory forensics.
4. Web forensics.
5. Email forensics.
6. Network forensics.
7. Multimedia forensics.
8. Others.

Operating system forensics is the procedure of extracting valuable information from
the operating system of a computer or mobile device under investigation [16].

The file system is of utmost importance in computing, as it ensures the organization
and accessibility of data. Without it, files would become disorganized, making it impossible
to determine their location, starting point, or endpoint. Each instance of a file system has a
distinct size, but it can be processed by any computer supporting that particular file system
type. Different file systems come with varying structures, logic, speed, flexibility, security,
size, and other attributes [17]. File systems encompass key components such as file names,
directories, metadata, and space management. Analyzing a file system relies on the data
contained within a partition or disk. This usually entails processing data to extract the
contents of a file or retrieve the contents of a deleted file [18].

Live memory, RAM (Random Access Memory), facilitates the access and processing
of various types of information, handles, open files, decrypted data, registry entries, user
passwords, user activities, as well as connection and session details [19]. RAM permits
data access in a manner that can unveil transparent information that might be otherwise
concealed. This capability is instrumental in revealing hidden processes, detecting malware
attempting to conceal information, and identifying the use of various tool kits [20].

In web forensics, forensic information can be obtained from various sources like web
storage records, browsing sessions, search histories, and complete user activity logs. Each
operating system (OS) and web browser has its unique method for retaining these records,
which can be analyzed to trace and investigate criminal activities [21].

Email forensics is the process of gathering evidence from emails. Email serves as an
electronic means of communication over the Internet, facilitating the exchange of messages,
files, documents, and various transaction-related elements. This process involves the
examination and analysis of email content to extract valuable information for investigative
purposes [22].

Network forensic analysis centers on the monitoring of network traffic and the investi-
gation of the sources of potential attacks. This process involves the collection and analysis
of data related to network activities and events, intending to identify and mitigate security
breaches or unauthorized access [23,24].

In contemporary times, digital visual media has become one of the primary modes of
communication. Digital images are the subject of numerous digital investigations, as some
of them may contain illicit content [25]. This type of analysis seeks to uncover details about
the image’s origin, including its location and the individuals depicted in it. Image analysis
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also involves scrutinizing images for potential evidence of steganography, which is the
practice of concealing information within digital media.

There are various other domains within computer forensics. For example, cloud
forensics is employed to investigate crimes committed using cloud platforms, focusing on
digital evidence hosted in cloud environments. Database forensics, on the other hand, is
used to examine data storage systems and address privacy-related crimes, involving the
analysis of databases to uncover evidence of illicit activities.

The rising prevalence of cybercrimes worldwide, which vary in nature and complex-
ity, including content forgery, financial data fraud, and even cyber terrorism involving
large groups and government actors, has underscored the necessity for computer forensic
algorithms, solutions, and tools. In response to these evolving and multifaceted threats,
the development and advancement of forensic techniques and technologies have become
imperative for effectively combating and investigating cybercrimes.

Blockchain technology has the potential to provide various applications for digital
forensics investigations. These applications encompass evidence collection, preservation,
validation, and analysis. Researchers and investigators can harness the capabilities of
blockchain for digital forensics, as it allows for traceability and ensures the immutability
of records. This can be particularly valuable in maintaining the integrity and reliability of
digital evidence throughout the investigative process.

1.3. Steganography Technique

Steganography encompasses methods used to conceal confidential information within
other digital media, essentially hiding it in plain sight. Some definitions characterize it as
the practice of embedding one piece of information within another in a way that makes
detection challenging, akin to a form of camouflage that remains unseen by unintended
recipients or intruders [26]. Within the realm of information-hiding techniques, steganogra-
phy is regarded alongside methods like watermarks and cryptography [27]. The primary
objective of these techniques is to ensure secure transmission and communication across
insecure channels.

However, the goals of steganography differ from those of watermarks. Watermarks
primarily aim to provide proof of ownership or identification, while steganography focuses
on achieving confidentiality, integrity, and privacy through encryption. Notably, research
indicates that steganography is utilized as an anti-forensics technique, enabling the hiding
of evidence and complicating investigation processes [28]. Essentially, steganography
operates differently from cryptography, which revolves around the art of rendering secret
messages incomprehensible unless the specific key to decoding them is known.

Steganography, as a field, is broadly categorized into two primary divisions: linguistic
steganography and technical steganography. Linguistic steganography involves concealing
text within a text cover message, while technical steganography utilizes diverse types of
media as cover messages.

The most common methods employed in steganography are image steganography,
text steganography, audio steganography, and video steganography. Each method uses a
specific carrier or cover media. For instance, in text steganography [29], the carrier medium
utilized is text. Within text steganography, the process of embedding a secret message into
the carrier content can be executed through various techniques. These techniques might
include altering spacing, selecting different fonts, or manipulating letter cases to conceal
the hidden message within the text.

Indeed, the counterpart to steganography is steganalysis, which focuses on uncov-
ering or detecting the embedded message within cover media. Steganalysis involves the
investigation and detection of hidden data concealed using steganographic techniques.
This field of study is generally divided into two primary categories.

Passive steganalysis aims to categorize a cover medium as either “stego” (having
hidden data) or not and seeks to identify the steganographic embedding algorithm. On the
other hand, active steganalysis goes a step further. In addition to determining whether
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a cover medium contains hidden data and identifying the embedding algorithm, active
steganalysis endeavors to estimate the length of the embedded message and, ideally, extract
it from the cover medium [30].

2. Related Works

The study presented in [31] introduced an innovative framework known as the “Foren-
sics Chain for Evidence Preservation System for IoT-based smart city security” to address
the issues faced by forensic investigators, such as the risk of a single point of failure
and potential evidence alterations. These issues arise when digital evidence is stored on
cloud servers—it elevates the risk of evidence tampering and unauthorized sharing with
malicious third parties.

Building on a different aspect, the work discussed in [32] proposes a privacy-preserving
digital forensics (P2DF) framework. The framework’s objective is to safeguard the digital
crime scene for subsequent validation through the synchronization and analysis of evidence.
Following the confiscation of suspects’ digital media, a thorough bit-by-bit imaging process
is carried out on the original data contents. The integrity of the secure digital images
is verified at each stage using MD5 or SHA-1 hash techniques to promptly detect any
alterations in the copied image.

Another noteworthy contribution is highlighted in [33], where a digital forensic frame-
work that leverages case information, case profile data, and expert knowledge to automate
the digital forensic analysis process is developed. It also employs machine learning to
identify the most pertinent evidence, all while safeguarding data privacy. This approach
enhances the overall efficiency of digital forensic investigations without compromising the
integrity and admissibility of the evidence.

In the context of Internet-of-Things (IoT) devices, the framework presented in [34]
leverages blockchain technology to secure multimedia evidence. The authors have put forth
the “BEvPF-IoT” method, which is a framework for preserving multimedia evidence in the
context of Internet-of-Things (IoT) devices. This method is based on blockchain technology.
The framework includes the establishment of a secure and cost-effective environment
through the utilization of IPFS and the Ethereum blockchain. This implementation aims
to improve network transparency and accountability during the forensic examination of
digital multimedia evidence.

The work in [35] introduced a blockchain-powered solution tailored for the smart
home sector, addressing the tasks of gathering and safeguarding digital forensic evidence.
The system employs a private forensic evidence repository to store collected evidence,
alongside a permissioned blockchain framework that delivers security functionalities such
as integrity, authentication, and non-repudiation.

The blockchain technology was again used by the authors in [36] to provide a solution
for evidence preservation of forensics technology. The proposed framework called IoTFC
can deliver a guarantee of traceability and track provenance of evidence items. Details of
evidence identification, preservation, analysis, and presentation will be recorded in chains
of blocks. The IoTFC can increase trust of both evidence items and examiners by providing
transparency of the audit train.

Similarly, ref. [37] introduced “ForensiBlock” which is a dedicated private blockchain
solution. ForensiBlock guarantees thorough and transparent documentation throughout
the investigative journey, encompassing stages such as data extraction, access control,
and tracking of data versions.

In a different approach, ref. [38] proposed a solution based on the theory of ontology
to preserve the privacy in the area of digital forensics by abstracting the privacy attributes
in digital forensics scenarios.

Lastly, ref. [39] proposed a practical and secure CustodyBlock (CB) model, which
employs a private blockchain protocol and smart contracts. This model is designed to
facilitate the management, transfer, analysis, and monitoring of evidence in a reliable
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manner. The integration of smart contracts within CB serves to automate and enhance the
evidence preservation and handling processes, making them more efficient and secure.

The reviewed literature highlights several advancements in digital forensics, each
offering unique benefits and facing specific challenges.

1. Blockchain-Based Solutions: Several frameworks utilize blockchain technology to
enhance the integrity and immutability of forensic evidence [40]. These solutions
effectively address issues like unauthorized alterations and single points of failure
by leveraging blockchain’s decentralized and tamper-proof nature. For example,
frameworks that incorporate blockchain with IPFS or Ethereum ensure secure and
transparent storage of multimedia evidence, improving accountability. However,
these systems often encounter scalability issues and high implementation costs, which
can limit their practical adoption in large-scale forensic operations.

2. Privacy-Preserving Digital Forensics: Privacy-preserving frameworks focus on main-
taining data integrity through methods such as bit-by-bit imaging and hash verifica-
tion. These approaches are adept at ensuring the authenticity of digital evidence by
detecting alterations during the imaging process. While effective in preserving data
privacy, these methods may not fully address the security of evidence throughout its
entire lifecycle or during complex forensic analyses, making them less suitable for
dynamic forensic environments [41].

3. Automation and Machine Learning: Automation and machine learning frameworks
aim to enhance efficiency and accuracy in forensic investigations. By automating
evidence analysis and employing machine learning algorithms to identify relevant
data, these systems can significantly speed up the investigative process. However,
they may face challenges related to data privacy and the generalization of models
across various types of evidence. The reliance on quality training data also impacts
the performance and effectiveness of these methods [42,43].

4. Private Blockchain and Smart Contracts: Solutions utilizing private blockchains and
smart contracts provide secure environments for managing and automating evidence
handling. These frameworks offer benefits such as improved data management
and automated processes, reducing human error. Despite these advantages, pri-
vate blockchains may have limited flexibility compared to public blockchains and
can involve higher implementation costs, potentially restricting their adaptability
and affordability.

5. Ontology-Based Privacy Preservation: Ontology-based approaches abstract privacy
attributes to safeguard data in forensic contexts. This method offers flexibility and
adaptability by defining and managing privacy policies tailored to specific needs.
Nonetheless, the complexity of implementing ontology-based systems and their
limited integration with other technologies like blockchain or steganography can
constrain their effectiveness in comprehensive forensic solutions [44].

By analyzing the previous works, it is evident that the advancement of blockchain
technology, with its inherent qualities of integrity and immutability, has significantly influ-
enced the development of privacy-preserving solutions for forensic evidence. Blockchain
technology has spurred numerous innovative approaches aimed at safeguarding sensitive
data and transactions, ensuring their authenticity, and preventing unauthorized alterations.
This trend highlights the growing recognition of blockchain’s potential to provide robust
privacy preservation in forensic contexts. However, while existing frameworks effectively
utilize blockchain for secure storage and management, our proposed approach introduces
a novel integration of autoencoders with steganography and blockchain technology. This
multi-layered framework enhances evidence security by incorporating advanced data
embedding techniques with autoencoders, which offer improved data concealment and ro-
bustness against tampering. Additionally, our approach integrates steganographic methods
to embed forensic evidence within cover text, followed by secure storage on a blockchain,
thereby combining multiple layers of protection and innovation. This comprehensive
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solution addresses both the concealment and integrity of evidence, advancing the field
beyond the capabilities of current blockchain-based systems.

3. The Proposed Model

The proposed model consists of four main parts:

1. Evidence Preprocessing.
2. Evidence Fragmentation.
3. Cover File Creation and Evidence Hiding.
4. Evidence Storing.

Each phase is designed to ensure the integrity, privacy, and security of digital forensic
evidence throughout its lifecycle. The following principles guided the development of
the model:

1. Efficient Evidence Management: To handle diverse evidence types effectively, the first
step in the framework is to categorize evidence based on its data type (e.g., image,
text, video, PDF). This organization not only enhances the management of evidence
but also allows for more efficient and accurate processing by tailoring the subsequent
steps to the nature of the data.

2. Balancing Security and Manageability: Evidence is segmented into 10 parts, a thresh-
old chosen to enhance security through encryption and embedding, while maintaining
data integrity and ease of processing.

3. Privacy via LSTM-based Steganography: LSTM-generated stegotext is used to conceal
forensic evidence securely, ensuring the privacy of the data during transmission and
storage.

4. Blockchain for Tamper-Proof Storage: The final steganography file is stored on a
blockchain to provide immutable, verifiable records of the evidence, guaranteeing its
integrity and authenticity.

In the initial phase of our proposed model, the collected evidence is assembled for the
preprocessing phase. During this phase, the evidence is organized into groups according to
their data types, which could be image, text, video, PDF, etc. A machine learning method is
employed to cluster the evidence data.

Following this preprocessing, the next phase begins. In this phase, each piece of
evidence is divided into a set of ten chunks equal to 10. This threshold was selected based
on a balance between security and manageability. Dividing the evidence into ten parts
ensures that each chunk is small enough to be securely encrypted and embedded, while
still maintaining the integrity and coherence of the original data. This segmentation allows
for more efficient processing and enhances the robustness of the steganography method by
distributing the evidence across multiple segments, making unauthorized reconstruction
more difficult. Then, we employed a previously published method for creating the cover
file (stegotext) in the third phase of the proposed model. The authors proposed this method
in [45]. They utilized Long Short-Term Memory (LSTM) to generate steganographic text for
hiding information. The proposed model automatically generates stegotext using an LSTM.
The secret data is then embedded in the generated stegotext.

The stegotext file will be utilized in the third phase of our model to conceal forensic
evidence within it and create the steganography file, resulting in the creation of transaction
data to be stored within the blockchain in the form of a steganography file.

Lastly, the generated file is stored in the blockchain database following the execution of
the blockchain mining process. The key features of the proposed model can be summarized
as follows:

1. Ensure a heightened level of integrity, confidentiality, and privacy for digital evidence.
2. Employing a solution like blockchain offers an immutable safeguard, ensuring that

any attempt to tamper with the content of a single piece of evidence would necessitate
extensive effort.
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3. Utilizing steganography techniques to conceal evidence in forensics is crucial due to
its capacity to obscure sensitive information within seemingly innocuous data.

The detailed steps are as follows:
Preprocessing Phase: Organize collected evidence into data-type-specific groups and

use machine learning techniques for data clustering.
Fragmentation Phase: Each piece of evidence is divided into a set of chunks.
Cover File Creation and Evidence Hiding: Create the initial stegotext cover file using

the LSTM method, then embed the evidence chunks into the cover file.
Final Step: Store the stegotext file within the blockchain database after completing the

mining process.
Evidence Preprocessing
From the pool of evidence available, a specific piece stands out as the starting point

for initiating the preservation process. After receiving the evidence, it undergoes a series of
preprocessing procedures to be categorized into the appropriate dataset based on its type.
The memory pool is a data structure that holds the evidence that has not yet been included
in the mining process.

During this stage, each piece of evidence undergoes a series of data preprocessing
procedures. The evidence can exist in various formats, including text, images, audio,
video, and more. To manage these diverse data types, protocols can be implemented for
regulation. In our proposed model, we handled text data type. We integrate and organize
sets of evidence of the same data type into distinct groups, ensuring that text data is
collected in one group while another data type is collected in another.

Evidence Fragmentation
Upon completing the data preparation process, the evidence is fragmented and divided

into smaller files known as chunks.
Initially, the data is partitioned into ten distinct chunks. This threshold was selected

based on a balance between security and manageability. Dividing the evidence into ten
parts ensures that each chunk is small enough to be securely encrypted and embedded,
while still maintaining the integrity and coherence of the original data. This segmentation
allows for more efficient processing and enhances the robustness of the steganography
method by distributing the evidence across multiple segments, making unauthorized
reconstruction more difficult.

Each of these chunks is then converted into a bit stream based on the ASCII representa-
tion for the letters in the message, such as if the message is a letter A, the bit representation
for this 1000001.

Each bit stream is then divided into small blocks. The number of blocks depends on
the chosen block size. For example, if each block contains two bits, the bit stream “1000001”
is divided into blocks by dividing the total number of bits in the message by the number
of bits per block. As a result, the original message is segmented into blocks based on this
bit distribution. In the provided bit stream, the distribution across blocks would be: “10”
as the first block, “00” as the second block, “00” as the third block, and “01” as the fourth
block. If the number of bits per block increases, the number of blocks for the given message
will be reduced. For instance, if each block contains three bits, the bit stream “1000001”
would be divided into “100”, “000”, and “1”. The probability of combining more bits into
one block is based on the equation: Number of possible blocks = 2bitsperblock .

Cover File Creation and Evidence Hiding
During this stage, the objective is to generate a cover file that will serve as a steganog-

raphy container for concealing evidence within it. This is accomplished on the principles
of linguistic steganography model which is proposed by [45]. The technique relies on
embedding a hidden piece of information within a piece of text that appears to be natural
language (“stegotext”) from LSTM model. The LSTM model will generate words in natural
language based on a bit-block sequence that is generated in the previous phase. LSTM net-
works were selected for their unique capabilities in handling sequential data and capturing
long-range dependencies, which are crucial for generating realistic and coherent stegotext.
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In steganography, where the goal is to embed information within text without detection,
LSTMs offer distinct advantages:

1. Natural Text Generation: LSTMs are adept at creating natural-sounding sequences,
which helps in maintaining the integrity and readability of the cover text. This
is essential for ensuring that the embedded evidence does not disrupt the text’s
appearance or function.

2. Long-Term Context Preservation: The ability of LSTMs to remember and leverage
long-term dependencies allows for more effective and contextually appropriate em-
bedding of information, reducing the likelihood of detectable anomalies.

3. Proven Effectiveness: Prior studies have validated the effectiveness of LSTMs in gen-
erating high-quality text, reinforcing their suitability for our steganographic method.

The proposed algorithm in [45] started from ’vocabulary’—this set includes all possible
tokens that might appear in the stegotext. Typically, these tokens are words, but they can
also be punctuation marks. The process involves dividing the tokens among the blocks
without any overlapping, creating disjoint token sets. This involves randomly selecting
tokens from the vocabulary without replacement, ensuring each token appears exactly once
in a single block. Consequently, the number of tokens in each block equals the total size of
the vocabulary divided by the number of blocks as shown in Table 1.

Table 1. Tokens distribution over blocks.

Bit Block Accuracy

00 This, am, weather, . . .

01 was, attaching, today, . . .

10 I, better an, Great, . . .

11 than, NDA, . . .

The next step is to use the LSTM model to generate the stegotext. In our proposed
model, we used a LSTM autoencoder which is a neural network model for sequence
data that depends on the encoder-decoder LSTM architecture. For a sequence of data,
an encoder-decoder LSTM is designed to read, encode, decode, and reconstruct the input
sequence. The model’s performance is assessed by its accuracy in reproducing the original
input sequence. Once the model reaches the desired level of performance in recreating the
sequence, the decoder part can be removed and saved to be used for decoding the sequence
into its original message.

The LSTM model can learn the intricate patterns in the temporal order of input
sequences and utilize internal memory to retain and apply information across long input se-
quences.

In our proposed model, the encoder part starts by selecting one bit stream from the bit
block B at a time. The LSTM then selects one token from the corresponding set of tokens
for the chosen block. After reading in the entire token blocks sequence, the hidden state or
output of this model represents an internal learned representation of the entire bit block
sequence as a fixed-length vector.

Subsequently, the LSTM generates text that appears natural. For example, given the
bit string “1000011011” and the token distribution over blacks in Table 1, the LSTM can
form the partial sentence shown in Table 2.

Table 2. Example stegotext generation.

Bit Stream 10 00 01 10 11

Token I am attaching an NDA
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The output of the LSTM model is a fixed length vector that provides a representation
of stegotext file that will be provided to the blockchain for storing.

Evidence Storing. The blockchain technology is used in the proposed model as a
distributed database for evidence storing. Blockchain is a well-known technology to store
data in a secure and decentralized manner. Decentralized blockchains are immutable,
which means that the data entered is irreversible.

The data are stored in blocks linked together. When the block reaches its capacity,
the data undergoes encryption through an algorithm, resulting in the generation of a
hexadecimal number known as a hash. This hash is subsequently incorporated into the
header of the next block and combined with the remaining data within that block. This
process forms a sequence of interconnected blocks, creating a chain of information.

This phase involves adding the steganography file to the blockchain as a regular trans-
action. Adding evidence would be restricted to authorized users based on the blockchain
type. For example, in a permissioned blockchain system for digital forensics, the autho-
rized user could be law enforcement agencies, court systems or trusted third parties. This
includes the verification process which is the mining in the blockchain to add the data
into a block. A unique cryptographic hash value is created for the new block to identify it.
The blocks contain information such as transaction (steganography file), nonce, target bit,
difficulty, timestamp, previous block hash, current block hash, and block ID, etc., and the
blocks are cryptographically verified and chained up to form an immutable chain which is
the blockchain.

The pseudocode for the overall proposed approach is offered in Figure 2.

Figure 2. The proposed model.

4. Experimental Setup and Results

To implement the proposed model for creating cover files using an LSTM autoencoder,
we emphasized the use of Python and its relevant libraries for neural network integration
and evaluation. The work was implemented using a MacBook Pro with the following
specifications: a 16-core M1 Max chip, 64 GB of unified memory, and a 4 TB SSD. This
setup was chosen for its high-performance capabilities, allowing us to efficiently handle
the computational demands of training and deploying our model.

4.1. Dataset

In this paper, the tiny_shakespeare dataset is used to test model performance [46].
The dataset consists of 40,000 lines of Shakespeare from a variety of Shakespeare’s plays [46].
The tiny_shakespeare corpus is frequently used for training language models due to its
manageable size and the complexity of Shakespeare’s language. It strikes a good balance
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between computational efficiency and the ability to produce intriguing text. The dataset is
used to create vocabulary.

The dataset undergoes preprocessing, which includes tokenization. Tokenization is
the process of breaking down long text strings into smaller units called tokens. Text can
first be divided into sentences and then further into words. After that, redundant words
are removed from the token set. The new set of unique tokens formed the vocabulary of
our experiment and is then kept for use in the bit block mapping process.

Another dataset is used in this experiment for forensic evidences which is Email
Communication Logs. The Email Communication Logs dataset is a collection of email
exchanges between individuals, capturing the content, metadata, and structure of their
communications. This dataset is particularly useful for research in forensic evidence analy-
sis, social network analysis, and natural language processing [47]. The dataset contains the
following features:

1. Sender and Recipient Information:

• From: The email address of the sender.
• To: The email address of the recipient(s).

2. Timestamp:

• Date: The date and time when the email was sent.

3. Subject:

• Subject: The subject line of the email, providing a summary of the email’s content.

4. Email Body:

• Body: The main content of the email, which includes the message text.

In this experiment, we utilized a subset of 100 samples from the dataset with the Body
feature as the forensic evidence to be concealed and stored.

4.2. Experimental Setup

The experiment is conducted in several phases. In the first step, we examine the Email
Communication Logs dataset to extract each email body as a piece of evidence. Each piece
of evidence is divided into 10 chunks, with each chunk then converted into a sequence
of bit streams to create bit stream blocks. These blocks are subsequently mapped to the
’vocabulary’ tokens in the next phase.

The number of bits in each bit block plays a crucial role in the efficiency of the hiding
process. A bit block represents the number of bits per block, meaning that the bit stream of
the original secret message must be divided into blocks, each containing a specific number
of bits. The purpose of defining this number of bits is to match the bit blocks with tokens
in the token block. When the number of bits per block increases, the number of words
required to construct the carrier message decreases.

Increasing the number of bits per block expands the number of available token blocks.
This means that each token in the carrier message can represent more bits of the secret
message. As a result, fewer tokens (or words) are needed to encode the entire secret
message, effectively increasing the overall capacity.

Based on this, the selection of the number of bits per block has a significant impact
on the capacity for information hiding. In one experiment, we tested our approach using
different numbers of bits per block to observe the effects of using larger or smaller bit block
sizes. The table below summarizes the results of this experiment.

In Table 3, “Bits per Block” refers to the number of bits chosen in each experiment
to demonstrate the impact of using different bit block sizes. The “Number of Tokens per
Block” column represents the calculated number of tokens in each block, determined by
raising two to the power of the number of bits per block.

“Words Needed (Carrier Length)” indicates the number of words required in the
carrier message to encode the entire secret message. This is calculated by dividing the total
number of bits in the secret message by the number of bits each block represents.
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Table 3. Effect of using a different number of bits per block representation.

Bits per Block Number of Token per Block Words Needed (Carrier Length) Capacity

2 4 20 2

3 8 14 2.86

4 16 10 4

5 32 8 5

6 64 7 5.71

7 128 6 6.67

8 256 5 8

9 512 5 8

10 1024 4 10

Finally, “Capacity” refers to the number of bits that can be represented by a single
word in the carrier message. The capacity is calculated by dividing the total number of bits
in the bit stream by the number of words in the carrier message.

Based on the results in the table above, the capacity increases as the number of bits
per block increases. This is because the capacity refers to representing each two bits in the
secret message with one word in the carrier message. When the number of bits per block
is increased, it becomes possible to represent four bits of the secret message with just one
word in the carrier message, thereby enhancing the overall capacity.

This demonstrates that the proposed method offers a flexible solution, as the size
of the carrier message can be controlled by adjusting the number of bits per block when
constructing the bit block table.

In the next step of our experiment, we perform the mapping between the bit stream
and the token block. Before doing so, we first determine the number of bits in the bit block;
in this experiment, we chose three bits. Each bit sequence for each chunk of evidence is
then divided by the number of bits in the bit block, resulting in multiple bit blocks for each
chunk. Based on the number of bit blocks generated, we distribute the tokens over the
bit blocks to create a token block for each bit block, ensuring that each token block has an
equal number of tokens each token appears in only one token block.

To enhance the naturalness of sentences generated using the LSTM model, a set of
common tokens will be added to all blocks of tokens. The purpose of these common tokens
is to increase the naturalness of the sentences. These tokens will not convey any meaning
for the secret message during the decoding and generation of the original secret message
on the receiver’s side.

After preparing our dataset of evidence and vocabulary, we established our LSTM
autoencoder model. We defined the model architecture that expects a sequence of inputs
equal to the number of bit blocks for each chunk and the number of features equal to
the number of tokens in the token block. The output is a sequence with nine words and
one feature. The model architecture consists of two LSTM layers, each with 100 units.
We utilized Adam optimizer and trained the model for 100 epochs. Now our LSTM
autoencoder will learn to reconstruct each input sequence. The effectiveness of the decoder
ensures the integrity and security of the hidden information. The detailed steps of decoding
are as follows:

1. Processing the Generated Text:

• Tokenization: The generated text is tokenized into a sequence of tokens.
• Embedding: Each token is converted into a dense vector representation using an

embedding layer.

2. Re-encoding to Latent Space:

• Sequence Encoding: The tokenized and embedded sequence is passed through
an LSTM (or similar sequential model) to encode the sequence into a latent space
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representation. This step ensures the decoder receives an input that matches the
original encoding process.

3. Decoding the Latent Space:

• Latent Space Input: The latent space representation is input into the decoder LSTM.
• Bit Stream Generation: The decoder LSTM processes the latent representation to

generate the output sequence, which is the recovered bit stream.
• Bit-wise Output: The final layer of the decoder converts the decoder LSTM’s

outputs into bits, reconstructing the original bit stream.

We evaluated the performance of the decoder using the recovery rate metric.

4.3. Performance Metrics

To assess the effectiveness of our proposed model, we employ performance metrics,
such as perplexity, which is a standard metric for the quality of language models, capacity,
and coherence.

• Perplexity: Perplexity measures how well a probability distribution or probability
model predicts a sample. In the context of language models, it quantifies how well
a model predicts a given sequence of words. Mathematically, perplexity (PP) for a
language model is calculated as:

1
N

N

∑
i=1

log P(wi) (1)

where N is the number of words in the test set, and P(wi) is the probability assigned
by the model to the i-th word in the test set. Lower perplexity values indicate better
model performance in terms of prediction accuracy and language understanding.

• Capacity: The capacity refers to the number of bits that can be embedded or concealed
within a single word of the carrier message. It can be defined as follows:

Number of bits in the secret message
Number of words in the carrier message

(2)

In this equation, the number of bits in the secret message refers to the bits stream
generated from the chunk evidence in the first step of the proposed solution, and the
number of words in the carrier message refers to the words generated by the model
used for cover file generation.

• Coherence: Coherence is a metric used to evaluate how logically or smoothly a piece of
text flows. It assesses whether the sentences in a text are logically connected, making
sense together in a cohesive manner. For language models like GPT-3.5, coherence can
be evaluated based on factors such as sentence structure, logical flow, and clarity.

4.4. Experimental Results and Analysis

We selected three random sets of evidence from the Email Communication Logs
dataset, each with varying sizes, to conduct our experiment. This random selection was
made to ensure time efficiency and accommodate the limited resources of our laptop, which
cannot process the entire dataset at once. After each run, we generated evaluation metrics
to obtain the results. These results are presented in Table 4.

Table 4. Experiment results.

Subset Subset Size Perplexity Capacity Coherence Accuracy

1 50-words 30 4 8/10 95

2 100-words 40 26 7/10 94

3 200-words 30 52 8/10 95
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In Table 5, we present examples of words from the Email Communication Logs dataset
and demonstrate how our model converts them into consistent natural language using an
autoencoder.

Table 5. Example of generated natural language using an autoencoder.

Evidence to Be Hidden Corresponding Stegotext in Natural Language

Hi Dave, just a reminder about our meeting scheduled for Whether it’s nobler in the mind to suffer the slings and arrows of outrageous fortune

Hello Smith To be or not to be, that is the question

Thanks for the reminder, Carol The lady doth protest too much, methinks

The breakdown of our proposed model is illustrated in the following example:
The first step in the proposed solution involves generating a bit stream based on the

ASCII values of each character, as outlined below:
H: 01001000
E: 01000101
L: 01001100
L: 01001100
O: 01001111
Next, concatenate the bit representation of each character to form the following bit

sequence: 0100100001000101010011000100110001001111.
To generate bit blocks, we use a block size of 3 bits for this experiment. Based on this

distribution, the following bit blocks are created:
[010, 010, 000, 010, 001, 101, 010, 011, 000, 010, 011, 000, 010, 011, 111]
The token selected from the token blocks for each bit block is as follows:
000 → [“to”]
001 → [“be”]
010 → [“or”]
011 → [“not”]
100 → [“that”]
101 → [“is”]
111 → [“question”]
110 → [“the”]
The common tokens that used are as follows:
[“or”, “and”, “but”] [“be”, “are”, “is”] [“to”, “at”, “in”] [“not”, “no”, “none”] [“is”,

“was”, “were”] [“question”, “query”, “inquiry”]
In our experiment, we employed an LSTM autoencoder to generate text from a bit

stream of a secret message. The primary goal was to transform the bit stream into coherent
and natural text while maintaining a high level of accuracy and efficiency. We evaluated the
generated text using several metrics, including perplexity, capacity, and coherence, with the
latter assessed using both a PERplexity Transformer (PERT) model and GPT-3.

First, we explored the effect of increasing the subset size on model performance. When
we increase the subset size, we are essentially providing the model with more data to
process. However, to manage this increased data efficiently, we fragment the text into
smaller, manageable chunks. Each chunk is then processed independently by the model.
This chunking approach is necessary to ensure that the model can handle large datasets
without running into memory or computational limitations and to increase the security of
our model as mentioned previously.

On the other hand, due to the fragmentation of the text, the model deals with each
chunk separately, and the results for each chunk are then aggregated to form the final
evaluation. This chunk-wise processing means that the model’s performance on each
individual chunk remains consistent, regardless of the overall subset size. As a result,
the evaluation metrics, such as coherence, remain relatively similar whether we use a
smaller or larger subset size.
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Perplexity, as previously discussed, is a common measure in natural language pro-
cessing used to evaluate language models. Our model achieved a low perplexity score,
indicating that the LSTM autoencoder effectively converted the bit stream patterns and
generated text that closely to the natural language. This low perplexity reflects the model’s
strong performance in understanding and encoding the input data. The LSTM autoencoder
demonstrated high capacity by accurately capturing the complex patterns within the bit
stream. This high capacity allowed the model to generate text that faithfully represented
the encoded secret message, maintaining the integrity of the original information. The co-
herence of the generated text was evaluated using both the PERT model and GPT-3. Both
models provided high coherence scores, affirming that the generated text was logically
consistent and contextually appropriate. The high coherence scores suggest that the LSTM
autoencoder produced text that was fluent and readable.

• PERT Model Evaluation: The PERT model assessed the logical flow and contextual rel-
evance of the text, yielding high coherence scores. This indicates that the text generated
by the LSTM autoencoder maintained a logical structure and stayed on topic.

• GPT-3 Evaluation: Using GPT-3 for coherence evaluation provided an additional
layer of validation. GPT-3 can break down the text into tokens and compute the log
probability for each token given the previous tokens. GPT-3’s high coherence scores
confirmed that the generated text was natural and human-like, further supporting the
effectiveness of the LSTM autoencoder.

The values of coherence are heavily influenced by the perplexity score. A high
perplexity indicates lower coherence, which in turn suggests that the generated text is
less natural. Additionally, coherence is a subjective measure based on human evalua-
tion, assessing whether the content of the generated carrier message is logically related
and understandable.

In addition to generating text from a bit stream of a secret message, the LSTM autoen-
coder model can be used to reverse this process. Specifically, the decoder component can
transform the generated text back into its original bit stream. To assess the performance
of the decoder in this task, we used the recovery rate metric. This metric evaluates the
percentage of original messages that were perfectly recovered without any errors. A high
recovery rate indicates that the decoder effectively transforms the generated text back into
the original bit stream with minimal errors, ensuring the integrity of the hidden message.

Our evaluation showed that the decoder achieved a high recovery rate of 96%, demon-
strating the decoder’s effectiveness in accurately reversing the encoding process.

Our analysis shows that the LSTM autoencoder is highly effective in generating text
from a bit stream of a secret message. The model’s low perplexity, high capacity, and ex-
cellent coherence scores highlight its ability to produce accurate, natural, and coherent
text. These results demonstrate that the LSTM autoencoder can successfully transform bit
streams into meaningful text, making it a valuable tool for text hiding.

Steganography is the practice of hiding secret information within an ordinary message
to ensure that the presence of the secret information is not detectable. In our application, we
used an LSTM autoencoder model to hide a secret bit stream by generating a correspond-
ing natural text message. This method ensures that the hidden message is secure while
the generated text appears natural and coherent to any observer. The model effectively
hides secret messages within natural text, making it a powerful tool for steganographic
applications. The generated text is coherent and natural, ensuring the hidden message
remains undetectable. Additionally, the model demonstrates high accuracy in recovering
the original bit stream, maintaining the integrity and security of the secret information.
This approach combines the strengths of advanced language modeling and steganography,
providing a secure and reliable method for covert communication.

The proposed steganography model addresses the need for enhanced security in digital
communication and storage scenarios where confidentiality is paramount. It involves
segmenting the data into chunks to ensure security, encoding the data to a bit stream
and mapping the bit steam to a set of tokens, and finally using an LSTM autoencoder
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to generate stegotext in natural language. This technique provide a robust solution for
securely embedding and retrieving encrypted data within different types of carrier files
that can be summarized as follows:

• Enhanced Security: The LSTM autoencoder generates natural and coherent text,
making it indistinguishable from human-written text. This ensures that the presence
of the hidden message is not easily detected.

• Complexity for Detection: By using an LSTM autoencoder, the generated text main-
tains a high level of coherence. This complexity in language modeling makes it difficult
for detection algorithms to distinguish between regular text and text containing hid-
den messages.

• Adaptability: This approach can be adapted to different carrier file types and sizes
while maintaining data confidentiality and integrity.

4.5. Comparison with Previous Works

To evaluate the robustness of our proposed solution in hiding evidence, we com-
pared our approach against four other models proposed in the same domain of linguistic
steganography to measure its performance and effectiveness using various datasets. These
datasets were chosen to provide a thorough analysis of our model’s performance across
different types of text and to ensure that it is evaluated on multiple relevant dimensions.
This comprehensive approach strengthens the validity of our experimental design and the
robustness of our findings.

A brief description of each work and dataset is given below. In [48], the author
proposed a text steganography method called GAN-TStega, which is based on Generative
Adversarial Networks (GANs). While the Recurrent Neural Network (RNN) method has
been used by [49] to propose a linguistic steganography. The authors in [50] proposed a
multi-time-step-based steganography method for linguistic steganography. Lastly, the work
presented in [45] introduces a new linguistic stegosystem based on a Long Short-Term
Memory (LSTM) neural network. Below is a brief description of the four datasets used in
the comparison experiment.

The Shakespeare Corpus is a compilation of texts from William Shakespeare’s works,
renowned for its linguistic richness and historical importance. This dataset is especially
valuable for assessing natural language processing techniques within the realm of classical
literature. Its complexity and diverse language structures offer a rigorous challenge for
steganographic methods, pushing their ability to embed information while preserving
textual coherence.

The News Headlines dataset offers modern, concise text data commonly used to
evaluate text generation and summarization models. Its simple language and frequent
repetitive patterns create both opportunities and challenges for steganographic methods,
testing their ability to embed information while maintaining the natural flow of the text.

MSCOCO (Microsoft Common Objects in Context) dataset refers to a comprehensive
collection of images and their corresponding captions, useful for evaluating models in multi-
modal contexts. Although primarily an image dataset, the associated captions provide
textual data for steganographic evaluation.

IMDB which refers to the dataset that consists of movie reviews, which offer varied
and dynamic language use, providing a challenging environment for steganographic
methods. The dataset’s diverse vocabulary and sentiment expression are critical for testing
the effectiveness of text embedding techniques.

GAN-Stega utilizes Generative Adversarial Networks (GANs) to generate stegano-
graphic text. The generator is designed to create text capable of embedding hidden informa-
tion, while the discriminator works to detect any hidden messages. For the implementation,
the GAN model was trained on the same datasets (Shakespeare, News Headlines, MSCOCO,
IMDB) using a comparable training process. The generator’s role was to embed the secret
message into natural-sounding text, while the discriminator measured detectability. Binary
cross-entropy was used as the loss function for the discriminator, while the generator’s loss
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was a combination of adversarial loss and a perplexity-based loss to ensure text naturalness.
In the bit-driven generator, the secret bits guided the word selection process, embedding
the hidden information without sacrificing the naturalness of the text. The generated text
was evaluated based on its security (the ability to conceal the secret message) and natu-
ralness (linguistic quality). TensorFlow/Keras was employed for model implementation,
with standard preprocessing techniques like tokenization and text normalization applied
to prepare the datasets. By replicating the GAN architecture and training it on the same
datasets, we ensured a fair comparison. The model’s text generation capabilities were
assessed using perplexity and other metrics from our model, providing a consistent bench-
mark against our proposed solution. RNN-Stega employs Recurrent Neural Networks
(RNNs) to generate text that embeds hidden information within its structure. The RNN
is trained to predict the next word in a sequence, with the hidden message guiding the
word selection process. For the implementation, an RNN-based model was developed and
trained on the same datasets (Shakespeare, News Headlines, MSCOCO, IMDB). During the
text generation process, secret messages were embedded by controlling word selection
at each step, influenced by the RNN’s predictions and the bit stream. The model was
built using TensorFlow/Keras, focusing on predicting the next word based on the pre-
vious context and the secret message bitstream. The loss function used in this approach
combined traditional language modeling objectives with an additional objective to ensure
successful embedding. To maintain consistency, the RNN architecture was aligned with
the methodology described in the original paper. By using the same datasets, we ensured
that the results were directly comparable, with the evaluation centered on metrics such
as text naturalness, security, and detectability. The core of LSTM model in [45] is built on
a Long Short-Term Memory (LSTM) network, a variant of Recurrent Neural Networks
(RNNs) that excels in sequence generation tasks. The LSTM was trained on a large text
corpus to predict the next word based on previous context, enabling it to learn a robust
language model. To maintain consistency with other approaches, we applied the same
preprocessing techniques, including tokenization and normalization. Each dataset was
tokenized into words or sub-words, followed by normalization steps such as lowercasing,
punctuation removal, and other adjustments to ensure uniform input for the LSTM model.
A vocabulary was then created, reflecting the token diversity in each dataset. MSTS-Stega
relies on a multi-time-step (MTS) approach, where perfect binary tree coding is used to
map secret messages to word space. The language model is conditioned to generate text
such that each word carries a portion of the hidden message. The secret message is divided
into bits, which are mapped to a sequence of words using the binary tree coding structure.
The language model is trained on the selected datasets, with additional steps to integrate
the binary tree system, ensuring that each generated word represents part of the secret
message. At each time step, a candidate pool of words is generated based on the language
model’s predictions. The pool size is constrained by the height of the binary tree. Dur-
ing text generation, candidate word combinations are evaluated using XOR operations on
their binary codes. The combination that matches the secret bitstream and has the highest
conditional probability is selected. The final steganographic text is formed by sequentially
choosing and appending the appropriate words. In terms of evaluation, the generated text
is assessed for its ability to effectively conceal the secret message. The same evaluation
metrics, including perplexity, are used to measure the naturalness of the text, ensuring a
consistent and accurate comparison.

Table 6 presents a comparison between various solutions across different datasets and
evaluation criteria.

Various metrics are used to evaluate the effectiveness of the proposed linguistic
steganography model compared to other approaches in the same domain. The results
highlight key performance criteria, including perplexity, capacity, naturalness, security,
and detectability, which provide a comprehensive evaluation of each method’s strengths
and limitations.
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Table 6. A comparison between the proposed solution and various solutions across different datasets
and evaluation criteria.

Criterion Dataset Proposed Solution GAN TStega [48] RNN Stega [49] LSTM [45] MTS-Stega [50]

Perplexity

Shakespeare Corpus 4.8 5.54 5.12 7.35 6.6

News Headlines 5.0 5.54 5.12 7.35 6.60

MSCOCO 4.7 5.6 5.6 5.55 5.84

IMDB 4.9 4.7 4.76 4.9 5.21

Capacity Bits per block

Shakespeare Corpus 6 4 3 1 5

News Headlines 6 4 3 2 4

MSCOCO 6 4 3 2 5

IMDB 5 4 3 2 5

Naturalness

Shakespeare Corpus 8.5/10 8/10 8.2/10 7.5/10 8.3/10

News Headlines 8.3 8 8.2 7.7 8.3

MSCOCO 8.4 8.1 8.3 7.6 8.2

IMDB 8.6 8 8.1 7.4 8.1

Security

Shakespeare Corpus False Positive Rate: 2% False Positive Rate: 5% False Positive Rate: 4% False Positive Rate: 6% False Positive Rate: 3%

News Headlines False Positive Rate: 2% False Positive Rate: 5% False Positive Rate: 4% False Positive Rate: 6% False Positive Rate: 3%

MSCOCO False Positive Rate:
2.1%

False Positive Rate:
4.8%

False Positive Rate:
2.3%

False Positive Rate:
5.2%

False Positive Rate:
3.3%

IMDB False Positive Rate:
2.2%

False Positive Rate:
3.8%

False Positive Rate:
2.1%

False Positive Rate:
2.7%

False Positive Rate:
4.3%

Detectability

Shakespeare Corpus 5% Detection Rate 10% Detection Rate 12% Detection Rate 15% Detection Rate 5% Detection Rate

News Headlines 5% Detection Rate 8% Detection Rate 12% Detection Rate 13% Detection Rate 7% Detection Rate

MSCOCO 6.3% Detection Rate 8.4% Detection Rate 10.9% Detection Rate 14.1% Detection Rate 7.6% Detection Rate

IMDB 5.8% Detection Rate 8.6% Detection Rate 9.3% Detection Rate 11.9% Detection Rate 7.16% Detection Rate

Perplexity, a measure of prediction accuracy and text coherence, plays a critical role
in assessing the quality of the generated text. The proposed solution achieves the lowest
perplexity scores across most datasets, particularly excelling with the Shakespeare Corpus
(4.8) and IMDB (4.9). These values reflect a strong language model that closely aligns
with the original text structure, outperforming GAN-TStega and RNN-Stega. The lower
perplexity of our model suggests that it generates more natural and coherent text compared
to MTS-Stega, which shows higher perplexity values. This demonstrates that our model
not only hides information efficiently but also maintains a high level of readability.

Capacity, a measure of the amount of information that can be embedded in a text,
is another area where the proposed solution stands out. With a capacity of 6 bits/block
in the Shakespeare Corpus and News Headlines, it outperforms other methods such as
GAN-TStega and RNN-Stega, which achieve only 4 bits/token. This high capacity is crucial
for scenarios requiring the embedding of larger amounts of hidden information without
significantly altering the carrier message. Although MTS-Stega comes close, the proposed
solution strikes a better balance between capacity and linguistic quality, as higher capacities
in steganography often negatively affect the naturalness of the text. Our model achieves a
high capacity while still generating readable, coherent text.

Naturalness, which is evaluated through human judgment, is critical for ensuring
that the steganographic text does not arouse suspicion. The proposed model achieves a
naturalness score of 8.5/10 for the Shakespeare Corpus and 8.6/10 for IMDB, slightly ahead
of competing methods such as GAN-TStega and RNN-Stega. This indicates that our model
successfully embeds hidden messages while maintaining high linguistic integrity. LSTM
and MTS-Stega struggle more with naturalness, possibly due to their more rigid word
selection processes and higher perplexity scores, which lead to less fluent or predictable
text. By keeping the naturalness intact, our approach ensures that the stegotext remains
indistinguishable from regular text, a key goal in steganography.

Security is evaluated by the false positive rate, with lower rates indicating a more
secure system. Our model’s false positive rate of 2% for both the Shakespeare Corpus
and News Headlines reflects its strong resistance to detection, surpassing methods such
as GAN-TStega and RNN-Stega, which exhibit higher false positive rates. The low rate
ensures that legitimate text is less likely to be incorrectly flagged as containing hidden
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information, enhancing the security of the steganographic system. Although MTS-Stega
offers competitive security, the overall robustness of our approach, as seen across multiple
datasets, reinforces the reliability of our solution in real-world scenarios.

Detectability, which measures how easily a steganographic method can be identified,
is another area where the proposed solution excels. With a detection rate of only 5%, our
model demonstrates strong resilience to detection mechanisms. This low detectability is
critical in covert communication scenarios, where the goal is to ensure that the presence of
hidden information goes unnoticed. While competing methods such as GAN-TStega and
RNN-Stega exhibit higher detection rates, our approach minimizes detectability without
compromising the quality of the generated text. LSTM shows the highest detection rate,
likely due to more predictable patterns, while MTS-Stega, though competitive, still falls
short of our model’s performance. The findings from the evaluation demonstrate the supe-
riority of the proposed linguistic steganography model across key metrics, highlighting
its effectiveness and robustness. The model consistently outperforms other approaches
in perplexity, achieving lower values that indicate more coherent and natural text gen-
eration, particularly excelling with datasets such as the Shakespeare Corpus and IMDB.
Additionally, it offers a higher capacity for embedding hidden messages, managing to
conceal more information per block without significantly compromising the text’s nat-
uralness, which remains competitive with top-rated methods. Furthermore, the model
achieves excellent security, demonstrated by the lowest false positive rates, making it
highly resistant to detection. Its detectability is also minimized, with lower detection rates
compared to other models, underscoring its resilience in real-world applications where
stealth is critical. Overall, the proposed solution strikes an optimal balance between ca-
pacity, text quality, and security, solidifying its position as a highly effective approach for
linguistic steganography.

One notable drawback of our proposed approach is its reliance on extensive data
preprocessing, including tokenization, normalization, and noise reduction. These prepro-
cessing steps are time-consuming and computationally intensive. Moreover, the model’s
performance is sensitive to the quality and consistency of the preprocessing, which can
impact its robustness and generalizability across different datasets. Despite these chal-
lenges, our model outperforms other models in the domain of linguistic steganography
and demonstrates significant improvements in performance and effectiveness. This advan-
tage highlights the trade-off between preprocessing complexity and the superior results
achieved by our approach.

4.6. Potential Risks and Limitations

Despite the promising results of our proposed model, several potential risks and
limitations must be considered for its application in real-world forensic investigations.
These include scalability concerns, integration challenges, and other factors that may
impact its practical deployment as listed below.

1. Scalability Issues: One significant concern is scalability. As the volume of digital evi-
dence grows, the model’s ability to handle large datasets efficiently may be challenged.
The current implementation is designed to work with a manageable scale, but adapt-
ing it for extensive real-world applications will require addressing performance and
processing constraints to ensure it remains effective and efficient.

2. Integration with Existing Systems: The model is proposed as a standalone solution
and does not currently include detailed integration with existing forensic tools and
frameworks. Implementing it within established forensic workflows may require
additional adaptation and compatibility considerations.

3. Complexity of Implementation: The integration of steganography and blockchain
components introduces complexity. Ensuring that these components work seamlessly
together, while maintaining their respective security and performance standards, may
pose challenges during implementation.
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4. Future Technological Developments: The model’s effectiveness is based on current
technologies. Future advancements in areas such as quantum computing could
impact the security and reliability of the blockchain component, necessitating ongoing
updates and adjustments to address emerging threats.

We acknowledge these limitations and recognize the need for further research to
address scalability and other challenges. Future work will focus on refining the model to
enhance its practical applicability and integration with existing forensic practices.

5. Conclusions and Future Works

Preserving digital evidence involves more than just retention; it requires maintaining
its credibility throughout the entire investigative process, from seizure to court presenta-
tion. Multi-layered security frameworks are essential for safeguarding evidence against
unauthorized access and tampering, ensuring controlled sharing, and preserving evidence
in a tamper-proof manner. The integration of blockchain technology offers a decentralized
and immutable ledger, significantly enhancing evidence security, maintaining an unbreak-
able chain of custody, and facilitating traceability. Additionally, steganography provides
a valuable method for securely transferring evidence by concealing it within innocu-
ous files, reducing the risk of detection. Our proposed framework combines blockchain,
steganography, and cryptography to strengthen the security, privacy, and authenticity of
digital evidence.

Our analysis demonstrates that the LSTM autoencoder is highly effective in generating
natural text from a secret bit stream, with low perplexity, high capacity, and excellent
coherence scores highlighting its ability to produce accurate and coherent text. This effec-
tiveness underscores the model’s potential for text hiding applications, ensuring that the
hidden message remains secure and undetectable while appearing natural to observers.
The model’s high accuracy in recovering the original bit stream further reinforces its
reliability in preserving the integrity of the secret information.

Scalability presents a unique challenge in our framework, particularly with the use of
language models. Our algorithm begins with a vocabulary set that includes all possible
tokens appearing in the stegotext, which can be words or punctuation marks. To handle
large datasets, tokens are divided into disjoint blocks, with each token appearing exactly
once per block. The size of each block is determined by dividing the total vocabulary size
by the number of blocks. As the dataset grows, managing the relationship between the
number of bits and tokens becomes crucial. Larger datasets require more blocks, increasing
the complexity and computational power needed for processing.

For future work, we intend to explore how different encoding strategies affect the
model’s performance and to investigate improvements to the autoencoder’s architecture for
enhanced efficiency and security. Additionally, we will evaluate the model’s adaptability
to various types of carrier files and languages to increase its applicability and robustness.
We also plan to focus on optimizing token distribution and block management strategies
to improve scalability while ensuring operational efficiency. Our aim is to refine these
approaches to better manage computational load and tackle the complexities arising from
larger datasets and more advanced language models.
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