Robust Reversible Watermarking Scheme in Video Compression Domain Based on Multi-Layer Embedding
Abstract
:1. Introduction
2. Preliminary Concepts
2.1. H.264/AVC Video Compression Standard
2.2. Reference Frame Conversion Technique
2.3. QP Value under Recompression Attack
3. Proposed Scheme
3.1. Watermark Preprocessing
3.2. Embedding Location Selection
3.3. Watermark Embedding
3.3.1. Robust Watermark Embedding
Algorithm 1: Robust embedding algorithm |
Input: Robust watermark , original reference frame |
Output: Embedded reference frame , auxiliary information |
Begin:
|
The modified sub-block is passed back to the encoder to complete the encoding, generating . |
3.3.2. Reversible Watermark Embedding
Algorithm 2: Reversible embedding algorithm |
Input: Original frame , reversible watermark |
Output: Embedded frame |
Begin:
|
The modified motion vector is passed back to the encoder to complete the encoding, generating . |
3.4. Watermark Extraction and Original Video Recovery
Algorithm 3: Watermark extraction and original video recovery algorithm |
Input: Embedded reference frame , embedded frame |
Output: Robust watermark , original video |
Begin:
|
With the above steps, we can get . The recovered sub-blocks and are passed back to the decoder to get the original video . |
4. Experimental Results and Analysis
4.1. Invisibility Experiment
4.1.1. Subjective Invisibility Experiment
4.1.2. Objective Invisibility Experiment
4.2. Anti-Recompression Test
4.3. Anti-Requantization Test
4.4. Bit Increase Rate Test
4.5. Complexity Experiment
4.6. Reversibility Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mareen, H.; Courteaux, M.; Praeter, J.D.; Asikuzzaman, M.; Wallendael, G.V.; Pickering, M.R.; Lambert, P. Camcording-resistant forensic watermarking fallback system using secondary watermark signal. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3403–3416. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhou, Y.M.; Qian, Z.X.; Li, S.; Zhang, X.P. Review of robust video watermarking. J. Image Graph. 2022, 27, 27–42. [Google Scholar]
- Di, F.; Sun, W.; Zhao, H.; Kang, W. Audio and video matching zero-watermarking algorithm based on NSCT. Complexity 2022, 3445583. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Huang, H.; Chen, Q. Research on scalable video watermarking algorithm based on H.264 compressed domain. Optik 2021, 227, 165911. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, X.; Liu, J.; Zhang, F.; Li, C. An anti-Recompression video watermarking algorithm in bitstream domain. Tsinghua Sci. Technol. 2021, 26, 22–30. [Google Scholar] [CrossRef]
- Coltuc, D.; Chassery, J. Distortion-free robust watermarking: A case study. In Security, Steganography, and Watermarking of Multimedia Contents IX, 65051N, Proceedings of the Electronic Imaging 2007, San Jose, CA, USA, 28 January–1 February 2007; SPIE: Bellingham, DC, USA, 2007; Volume 6505, p. 6505. [Google Scholar]
- Tian, L.; Dai, H.; Li, C. A semi-fragile video watermarking algorithm based on chromatic Residual DCT. Multimed. Tools Appl. 2020, 79, 1759–1779. [Google Scholar] [CrossRef]
- Nguyen, T.S. Reversible Data Hiding Scheme Based on Coefficient Pair Mapping for Videos H. 264/AVC without Distortion Drift. Symmetry 2022, 14, 1768. [Google Scholar] [CrossRef]
- Shoitan, R.; Moussa, M.M.; Elshoura, S.M. A Robust Video Watermarking Scheme Based on Laplacian Pyramid, SVD, and DWT with Improved Robustness towards Geometric Attacks via SURF. Multimed. Tools Appl. 2020, 79, 26837–26860. [Google Scholar] [CrossRef]
- Huan, W.; Li, S.; Qian, Z.; Zhang, X. Exploring Stable Coefficients on Joint Sub-Bands for Robust Video Watermarking in DT CWT Domain. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 1955–1965. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, S.; Liu, J.; Xiong, P.; Zhou, M. A discrete wavelet transform and singular value decomposition-based digital video watermark method. Appl. Math. Model. 2020, 85, 273–293. [Google Scholar] [CrossRef]
- Manjunath, K.K.; Kunte, R.S. A Robust Reversible Data Hiding Framework for Video Steganography Applications. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 430–441. [Google Scholar]
- Suresh, M.; Sam, I.S. Optimized interesting region identification for video steganography using Fractional Grey Wolf Optimization along with multi-objective cost function. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 3489–3496. [Google Scholar] [CrossRef]
- Suresh, M.; Sam, I.S. Optimized interesting region identification for video steganography using multi-objective cost function. Multimed. Tools Appl. 2023, 82, 31373–31396. [Google Scholar] [CrossRef]
- Dhall, S.; Gupta, S. Multilayered Highly Secure Authentic Watermarking Mechanism for Medical Applications. Multimed. Tools Appl. 2021, 80, 18069–18105. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Zhang, Y.; Li, J.; He, P.; Meng, S. A Robust DCT-Based Video Watermarking Scheme Against Recompression and Synchronization Attacks. In Digital Forensics and Watermarking, Proceedings of the IWDW 2021, Beijing, China, 20–22 November 2021; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Fan, D.; Zhao, H.; Zhang, C.; Liu, H.; Wang, X. Anti-Recompression video watermarking algorithm based on H.264/AVC. Mathematics 2023, 11, 2913. [Google Scholar] [CrossRef]
- Liang, Y.; Niu, K.; Zhang, Y.; Meng, Y. A dual domain robust reversible watermarking algorithm for frame grouping videos using scene smoothness. CMC-Comput Mater. Contin. 2024, 79, 5143–5174. [Google Scholar] [CrossRef]
- Tao, X.; Xiong, L.; Zhang, X. Robust video watermarking scheme based on QDCT global equalization strategy. Comput. Sci. 2023, 50, 168–176. [Google Scholar]
- Wang, Y.; Huang, J.; Chen, Y.; Zhang, J.; Chen, X. Algorithm for H.264/AVC adaptive watermarking. J. Xidian Univ. 2023, 50, 95–104. [Google Scholar]
- Zhu, B.; Fan, X.; Zhang, T.; Zhou, X. Robust Blind Image Watermarking Using Coefficient Differences of Medium Frequency between Inter-Blocks. Electronics 2023, 12, 4117. [Google Scholar] [CrossRef]
- Ding, H.; Tao, R.; Sun, J.; Liu, J.; Zhang, F.; Jiang, X.; Li, J. A compressed-domain robust video watermarking against recompression attack. IEEE Access 2021, 9, 35324–35337. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Z.; Lei, Y.; Niu, K.; Yang, X. A Multi-Domain Embedding Framework for Robust Reversible Data Hiding Scheme in Encrypted Videos. Electronics 2022, 11, 2552. [Google Scholar] [CrossRef]
- Chan, K.; Im, S.K. Using Four Hypothesis Probability Estimators for CABAC in Versatile Video Coding. ACM Trans. Multimed. Comput. Commun. Appl. 2022, 19, 1–17. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Pei, Q. Independent Embedding Domain Based Two-Stage Robust Reversible Watermarking. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2406–2417. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Pei, Q. Compression Domain Reversible Robust Watermarking Based on Multilayer Embedding. Secur. Commun. Netw. 2022, 1, 4542705. [Google Scholar] [CrossRef]
- Qiu, F.; Niu, K.; Zhao, H.; Ning, Z. Reversible Steganography Algorithm for High Capacity Video Based on Motion Vector Multi Histogram Correction. In Proceedings of the CAIBDA 2022, 2nd International Conference on Artificial Intelligence, Big Data and Algorithms, Nanjing, China, 17–19 June 2022. [Google Scholar]
- Meng, Y.; Niu, K.; Liang, Y.; Shi, L.; Zhang, Y. Reversible Video Information Hiding Based on Multi-pass Motion Vector Ordering. J. Inf. Secur. Res. 2024, 10, 698–705. [Google Scholar]
Parameter Type | Parameter Value |
---|---|
Coding grade | Baseline |
GOP structure | IPPPP |
Frame rate | 30 fps |
Quantitative parameters | 20 |
Entropy coding type | CACVL |
Videos | ΔSSIM | ||
---|---|---|---|
Proposed | Yang et al. [16] | Fan et al. [17] | |
Bus | 0.019 | 0.020 | 0.018 |
Foreman | 0.016 | 0.015 | 0.020 |
Hall | 0.017 | 0.016 | 0.018 |
Mobile | 0.021 | 0.020 | 0.025 |
News | 0.012 | 0.014 | 0.015 |
Stefan | 0.008 | 0.009 | 0.009 |
Compression Times | Evaluation Metrics | Carphone | Foreman | Hall | Mobile | News | Stefan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ours | Ref. [17] | Ours | Ref. [17] | Ours | Ref. [17] | Ours | Ref. [17] | Ours | Ref. [17] | Ours | Ref. [17] | ||
First compression | NC | 0.996 | 0.986 | 0.993 | 0.981 | 0.993 | 0.983 | 0.998 | 0.987 | 0.996 | 0.986 | 0.994 | 0.987 |
BER | 0.0048 | 0.0073 | 0.0054 | 0.0085 | 0.0090 | 0.0112 | 0.0068 | 0.0085 | 0.0027 | 0.0051 | 0.0038 | 0.0053 | |
Second compression | NC | 0.994 | 0.983 | 0.993 | 0.979 | 0.990 | 0.981 | 0.997 | 0.983 | 0.993 | 0.985 | 0.991 | 0.985 |
BER | 0.0049 | 0.0079 | 0.0052 | 0.0092 | 0.0095 | 0.0123 | 0.0073 | 0.0096 | 0.0035 | 0.0063 | 0.0043 | 0.0062 | |
Third compression | NC | 0.994 | 0.982 | 0.991 | 0.979 | 0.990 | 0.980 | 0.995 | 0.983 | 0.993 | 0.982 | 0.991 | 0.985 |
BER | 0.0051 | 0.0081 | 0.0069 | 0.0096 | 0.0107 | 0.0125 | 0.0075 | 0.0102 | 0.0038 | 0.0075 | 0.0055 | 0.0069 |
Compression Times | Evaluation Metrics | Carphone | Foreman | Hall | Mobile | News | Stefan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ours | Ref. [22] | Ours | Ref. [22] | Ours | Ref. [22] | Ours | Ref. [22] | Ours | Ref. [22] | Ours | Ref. [22] | ||
First compression | NC | 0.996 | 0.939 | 0.993 | 0.942 | 0.993 | 0.938 | 0.998 | 0.940 | 0.996 | 0.936 | 0.994 | 0.933 |
BER | 0.0048 | 0.0105 | 0.0054 | 0.095 | 0.0090 | 0.0128 | 0.0068 | 0.0115 | 0.0027 | 0.0086 | 0.0038 | 0.088 | |
Second compression | NC | 0.994 | 0.934 | 0.993 | 0.933 | 0.990 | 0.931 | 0.997 | 0.937 | 0.993 | 0.928 | 0.991 | 0.930 |
BER | 0.0049 | 0.0115 | 0.0052 | 0.0115 | 0.0095 | 0.0151 | 0.0073 | 0.0123 | 0.0035 | 0.0109 | 0.0043 | 0.0120 | |
Third compression | NC | 0.994 | 0.925 | 0.991 | 0.929 | 0.990 | 0.930 | 0.995 | 0.929 | 0.993 | 0.925 | 0.991 | 0.928 |
BER | 0.0051 | 0.0129 | 0.0069 | 0.0127 | 0.0107 | 0.0163 | 0.0075 | 0.0141 | 0.0038 | 0.0126 | 0.0055 | 0.0125 |
Evaluation Metrics | Carphone | Foreman | Hall | Mobile | News | Stefan |
---|---|---|---|---|---|---|
bit increase rate (%) | 5.8 | 7.1 | 4.4 | 6.1 | 8.4 | 2.7 |
Experiment Video | Original Encoding (s) | Watermarking Encoding (s) | Difference (%) | Original Decoding (s) | Watermarking Decoding (s) | Difference (%) |
---|---|---|---|---|---|---|
Carphone | 167.7 | 171.6 | 3.9 | 62.1 | 63.4 | 1.3 |
Foreman | 171.2 | 174.6 | 3.4 | 64.8 | 65.5 | 0.7 |
Hall | 159.8 | 162.3 | 2.5 | 70.3 | 71.0 | 0.7 |
Mobile | 184.7 | 187.5 | 2.8 | 64.9 | 65.8 | 0.9 |
News | 152.3 | 154.2 | 1.9 | 62.5 | 64.1 | 1.6 |
Stefan | 217.4 | 224.2 | 6.8 | 86.2 | 88.7 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Niu, K.; Zhang, Y.; Liang, Y.; Hu, F. Robust Reversible Watermarking Scheme in Video Compression Domain Based on Multi-Layer Embedding. Electronics 2024, 13, 3734. https://doi.org/10.3390/electronics13183734
Meng Y, Niu K, Zhang Y, Liang Y, Hu F. Robust Reversible Watermarking Scheme in Video Compression Domain Based on Multi-Layer Embedding. Electronics. 2024; 13(18):3734. https://doi.org/10.3390/electronics13183734
Chicago/Turabian StyleMeng, Yifei, Ke Niu, Yingnan Zhang, Yucheng Liang, and Fangmeng Hu. 2024. "Robust Reversible Watermarking Scheme in Video Compression Domain Based on Multi-Layer Embedding" Electronics 13, no. 18: 3734. https://doi.org/10.3390/electronics13183734
APA StyleMeng, Y., Niu, K., Zhang, Y., Liang, Y., & Hu, F. (2024). Robust Reversible Watermarking Scheme in Video Compression Domain Based on Multi-Layer Embedding. Electronics, 13(18), 3734. https://doi.org/10.3390/electronics13183734