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Abstract: FusionNet is a hybrid model that incorporates convolutional neural networks and Trans-
formers, achieving state-of-the-art performance in 6D object pose estimation while significantly
reducing the number of model parameters. Our study reveals that FusionNet has local and global
attention mechanisms for enhancing deep features in two paths and the attention mechanisms play
a role in implicitly enhancing features around object edges. We found that enhancing the features
around object edges was the main reason for the performance improvement in 6D object pose esti-
mation. Therefore, in this study, we attempt to enhance the features around object edges explicitly
and intuitively. To this end, an edge boosting block (EBB) is introduced that replaces the attention
blocks responsible for local attention in FusionNet. EBB is lightweight and can be directly applied to
FusionNet with minimal modifications. EBB significantly improved the performance of FusionNet in
6D object pose estimation in experiments on the LINEMOD dataset.

Keywords: object pose estimation; convolutional neural network; Transformer; hybrid model; edge
boosting

1. Introduction

In computer vision applications such as robotics and augmented reality, accurately
determining the six-degree-of-freedom (6D) pose of objects in relation to the camera (en-
compassing 3D rotation and translation) stands as a fundamental task. Deep learning has
revolutionized this, similar to other vision tasks. Popular approaches involve feature point
matching and perspective-n-point (PnP) algorithms, where convolutional neural networks
(CNNs) play a central role in feature extraction and pose prediction [1]. CNNs form the
cornerstone of deep learning models tailored for computer vision tasks. Their prowess lies
in effectively capturing local spatial features. As deep learning continues to thrive in the
field of computer vision, conventional components such as non-maximal suppression and
region of interest cropping have been substituted with superior alternatives, facilitating
the development of end-to-end differentiable pipelines [2]. Backbone networks based on
CNNs have emerged as a prevalent and dominant approach across various vision tasks
including 6D object pose estimation [3]. However, it is worth noting that the convolutional
operation processes one local neighborhood at a time, which makes it less capable of cap-
turing long-range dependencies between features, posing a challenge to understanding the
global context of input images. Consequently, numerous studies have explored methods to
address and alleviate this issue.

Capturing long-range dependencies is a key consideration in deep neural networks
aimed at a holistic understanding of visual scenes [4,5]. In CNN-based deep learning
approaches, these dependencies are modeled indirectly by leveraging large receptive
fields formed through deep stacks of convolutional operations. However, the repetitive
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application of convolutional operations has still proven to have a limited grasp of the global
features required in various vision tasks [6,7].

Transformer architecture, originally devised for self-attention in natural language
processing (NLP), has recently made significant strides in the field of computer vision,
notably exemplified by Vision Transformer (ViT). In ViT, input images are segmented
into non-overlapping patches, treated as markers similar to tokens in NLP. These patches,
accompanied by special positional encoding for coarse spatial information, undergo pro-
cessing through repeated standard Transformer layers, effectively capturing global features
for image classification [8–10]. A hierarchical ViT has since been proposed, capturing
global and local range dependencies and inter-frame dependencies to achieve better per-
formance [11]. However, the performance of ViT-based models is still lower than that of
CNN-based models of similar size when trained on small amounts of data [12].

To bring together the benefits of CNNs and Transformers, FusionNet [13] integrates
the Transformer architecture into the convolutional architecture. For a given input im-
age, FusionNet extracts informative features through the four-stage CNN backbone and
utilizes the Transformer to enhance the features by considering long-range dependencies.
Additionally, FusionNet introduces an attention block (AtB) to improve learning on the
local context of the CNN backbone. FusionNet fuses the features from both architectures.
Combined with the EPro-PnP head [14], FusionNet has shown state-of-the-art performance
in 6D object pose estimation.

FusionNet enhances features through the attention mechanisms in two paths (the
AtBs in the CNN backbone and the Transformer), improving the ability to learn the local
and global context of input images. The attention mechanisms weigh features of different
importance and suppress features that are not conducive for 6D object pose estimation. As
shown in Figure 1c, the resulting feature maps are highlighted in object edges, indicating a
high correlation between object pose estimation and features in the edge regions. This is
more apparent in the results of AtBs. Based on these findings, we propose an approach that
improves the ability of FusionNet to learn edge features to improve its performance in 6D
object pose estimation. In this study, we attempt to enhance features in the edge regions
explicitly and intuitively. Thus, we introduce a simple yet effective attention block, Edge
Boosting Block (EBB), replace the AtBs in FusionNet with EBBs.

Figure 1. Visualization of feature maps output from Stage 1 and Stage 2 of the CNN backbone of
EPro-PnP, FusionNet, and FusionNetV2 for the same input. The feature maps of FusionNet are
highlighted around object edges. FusionNetV2 further boosts features around object edges while
strongly suppressing the rest.

The primary contributions of this study, which focuses on developing an improved
deep learning model for 6D object pose estimation, are as follows:

• We propose FusionNetV2 with the improved ability of FusionNet to learn edge features
closely related to 6D object pose estimation.
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• We propose an attention block called EBB, which is simple to implement and special-
ized for enhancing edge features.

• The performance of FusionNetV2 is validated on a benchmark dataset in various
aspects. The experiments show that FusionNetV2 outperforms FusionNet in 6D object
pose estimation.

The remainder of this paper is organized as follows. In Section 2, the problem that we
want to solve in this paper is defined. In Section 3, related works are reviewed. In Section 4,
our baseline model, FusionNet, is briefly described. Then, our FusionNetV2 is elaborated
in Section 5. In Section 6, the performance of FusionNetV2 is validated on benchmark
datasets. Finally, the conclusion and future studies are presented in Section 7.

2. Problem Definition

The 6D object pose estimation refers to the task of determining the 6D pose (repre-
senting the position and orientation of an object) of an object in a scene given an input
image. Following the framework of EPro-PnP [14], we assume that the input crop image
containing the target object is pre-acquired by an object detector. Then, our goal is to
predict the 3D object coordinates Xi and weights wi at the object pixels xi(i = 1, . . . , N)
using a deep neural network, from which a weighted PnP algorithm is used to estimate the
object pose relative to the camera. That is, the rotation matrix R and translation vector t are
calculated by minimizing the following:

arg min
R,t

1
2

N

∑
i=1

|wi{π(RXi + t)− xi}|2, (1)

where π(·) is the camera projection function.

3. Related Work

The information of depth or point cloud facilitates 6D object pose estimation [15,16].
However, depth or point cloud data are not always available or unaffordable and are
usually inaccurate or sparse. In recent years, methods using only RGB images for 6D object
pose estimation have been widely studied. In this section, we provide a brief overview of
6D pose estimation methods using only RGB images, categorizing them into CNN-based
and Transformer-based methods.

3.1. CNN-Based Method

CNN-based approaches to 6D object pose estimation fall into two main categories:
indirect and direct methods. Direct methods directly derive object poses from input im-
ages, whereas indirect methods estimate robust intermediate representations, subsequently
deducing object poses from these representations. Keypoints serve as a highly popular
indirect representation, and some previous methods based on keypoints have yielded im-
pressive results [17–21]. Pavlakos et al. [19] proposed an approach that combines semantic
keypoints predicted by a stacked hourglass CNN with a deformable shape model. This
method involves the convolutional network learning the optimal representation from avail-
able training image data, without taking texture into consideration. Oberweger et al. [22]
proposed a technique that anticipates the 2D projections of 3D points associated with the
target object. They subsequently compute the 6D pose based on these correspondences
using a geometric approach. To address occlusion challenges, they independently predict
heatmaps from multiple small patches and aggregate the results for robust predictions.
Another representation method similar to keypoints is dense prediction. In this approach,
the entire 3D model is projected onto 2D images to establish 2D-3D correspondences. The
final pose is then calculated using these correspondences. Haugaard et al. [23] proposed a
method that learns a dense, continuous 2D-3D correspondence distribution on the object’s
surface without requiring prior knowledge of visual ambiguities such as symmetry. The 6D
pose is then computed using the PnP algorithm based on the correspondence distribution.
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Chen et al. [14] proposed an end-to-end method for 6D object pose estimation, treating the
2D-3D coordinates and corresponding weights as intermediate variables. These variables
are learned by minimizing the Kullback–Leibler divergence between the predicted and
target pose distribution.

In recent studies, Hai et al. [24] introduced an unsupervised method for 6D object
pose estimation. They employed a teacher–student architecture and, during training,
generated pixel-level flow supervision signals by leveraging the geometry-guided flow
consistency between images from different views. Remarkably, their approach achieved
performance comparable to most supervised methods even in an unsupervised scenario.
Yang et al. [25] introduced a two-stage 6D object pose estimation method specifically
designed for textureless objects. The method predicts both the direction and distance from
all pixels within the object’s edge representation to specific object keypoints. Through
establishing a sparse 2D-3D correspondence based on voting, the method utilizes the
PnP algorithm to accurately determine the object’s pose. Li et al. [26] proposed a weakly
supervised reconstruction-based approach named NeRF-Pose, requiring only 2D bounding
boxes and relative camera poses during training. Following the idea of reconstructing
first and then regressing, their method initially reconstructs the object from multiple
views in the form of an implicit neural representation. Subsequently, a pose regression
network is trained to predict pixel-wise 2D-3D correspondences between the image and
the reconstructed 3D model. In contrast to previous studies, Wu et al. [27] proposed
a method that employs training a graph network to select a dispersed set of keypoints
with similar distribution votes, aiming to improve accuracy and efficiency. This deviates
from the heuristic keypoint position selection common in previous methods, leading to
high-performance improvements.

3.2. Transformer-Based Method

The successful integration of Transformer into vision tasks by ViT has sparked various
attempts to apply Transformer in the field of computer vision. Recent studies indicate that
Transformer also exhibits competitive performance in 6D object pose estimation. PoET [28]
utilizes a Transformer as the backbone. RGB images are inputted to an object detector
to generate feature maps and predict objects’ bounding boxes. Subsequently, the feature
maps are fed into the Transformer, with the detected bounding boxes serving as additional
information. The output is processed by separate translation and rotation heads. Simi-
larly, YOLOPose [29], a Transformer-based keypoint regression model for 6D object pose
estimation, incorporates bounding boxes as one of the information for pose estimation.
Additionally, they jointly estimate labels for all objects in the input image, along with trans-
lation parameters and pixel coordinates of 3D keypoints, as supplementary information
for precise pose estimation. Trans6D [30] is a Transformer-based framework designed
to predict dense 2D-3D correspondence maps from an RGB input image. An additional
module called Trans6D+, responsible for pose refinement, is also introduced. This mod-
ule learns the transformation between the predicted pose and the ground-truth pose and
contributes to further improving the performance of Trans6D. CRT-6D [31], a cascade of
Transformers for 6D object pose estimation, iteratively refines initial pose estimates by
applying self-attention to a set of sparse object keypoint features. FoundationPose [32] is
a comprehensive model serving as a foundation for both 6D object pose estimation and
tracking, accommodating both model-based and model-free configurations. The use of
Transformer-based network architectures and a contrastive learning formulation resulted
in strong generalization when trained solely on synthetic data, which allows for immediate
application at test time to a new object without the need for fine-tuning, provided that its
CAD model is available or a small number of reference images are captured.

3.3. Hybrid Method

The exploration of merging CNN and Transformer architectures to solve low-level
or high-level vision problems has been investigated [33–36]. However, to the best of our
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knowledge, FusionNet is the first and only attempt to merge the two architectures in 6D
object pose estimation, except by simply using CNNs at a pre-processing step for extracting
shallow features used as the input in Transformer-based models [28–31]. FusionNet will be
briefly reviewed in the next section.

4. Revisiting FusionNet

The key idea of FusionNet [13] is to simultaneously leverage the strengths of CNN
and Transformer, integrating them into a hybrid model. FusionNet extracts informative fea-
tures using multi-stage efficient CNN blocks while concurrently incorporating long-range
dependency between features obtained by Transformers. To enhance features and filter
out unnecessary information, FusionNet also employs a simplified attention module [7]
in the CNN structure. These allow the model to estimate a more accurate 6D object pose
while maintaining its lightweight structure. The overall structure is illustrated in Figure 2.
It consists of four stages, each containing several CNN blocks, taking RGB images of size
256 × 256 as input, and generating feature maps at different scales. The output of Stage 2 is
fed into a Transformer block, global dependency encoder (GDE), and concatenated with the
output of Stage 3. The output of Stage 4 is then input into the EPro-PnP head [14], which
consists of two subheads: one for predicting translation parameters using a regression
model, and another for extracting dense 3D coordinate maps and weight maps through
convolutional layers. A PnP block, replacing the PnP algorithm, is used to predict rotation
parameters from 3D-2D coordinate pairs.

Figure 2. FusionNet’s architecture.

In FusionNet, features are enhanced through the attention mechanisms in two paths
(the AtBs on the CNN side and the multi-head attention in GDE). The resulting feature maps
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are highlighted at object edges (Figure 1), which is a main contributor to the performance
improvement in 6D object pose estimation. However, we believe that the implicit approach
using the AtBs and GDE has limitations in enhancing the features around object edges.
Furthermore, the repeated use of AtB in CNN blocks increases the complexity of the model
structure and also reduces flexibility for modifications.

5. FusionNetV2

The purpose of FusionNetV2 is to strengthen the extraction of features around object
edges over FusionNet. Therefore, we propose a simple yet effective attention block, named
EBB, which explicitly enhances the features around the edges. We eliminate all AtBs used
in CNN blocks and add one EBB to the end of Stage 1 and Stage 2, respectively. The overall
structure of FusionNetV2 is illustrated in Figure 3.

Figure 3. FusionNetV2’s architecture. The overall structure of FusionNetV2 is exactly the same as
FusionNet, except for removing AtBs in the CNN Blocks and adding two EBBs instead. The resolution
of feature maps gradually decreases from high (4 strides) to low (32 strides) over four stages. F1, F2,
F3, and F4 are the output feature maps for each stage; only F1 and F2 are enhanced by EBB.

Inspired by [37], EBB utilizes the Sobel operator [38], composed of two 3 × 3 fixed-
parameter convolutions with a stride of 1, to compute gradient maps:

Cx =

−1 0 1
−2 0 2
−1 0 1

, Cy =

−1 −2 −1
0 0 0
1 2 1

. (2)

The resulting gradient maps (Mx and My) are then normalized by a sigmoid function,
merged through a convolution layer, and enhanced through three Conv-BN-ReLU layers.
The final attention map is fused with the input feature map Fi through element-wise
multiplication:

Fo = Fi ⊙ σ
(
Convs(σ(Mx), σ(My))

)
. (3)

Here, ⊙ represents element-wise multiplication, σ is the sigmoid function, and Convs
denotes three Conv-BN-ReLU layers. EBB improves the ability to distinguish edge regions
from non-edge regions in the feature space and filters out irrelevant details, allowing the
network to focus on extracting essential features near the target object’s edges.
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The reason why EBB is applied to both Stage 1 and Stage 2 is that shallow features
inherently contain rich spatial information at higher resolutions, which facilitates the extrac-
tion of features closely related to object edges. The object edges in deep features extracted
in Stage 3 and Stage 4 are indistinguishable because deep features contain semantic infor-
mation rather than low-level information (Figure 4). EBB with a small and fixed receptive
field is not suitable for extracting the semantic edges. Later in the experimental results, we
will show the performance difference of EBB when applied to features with different levels.

Figure 4. Output features at each stage of FusionNet.

6. Experimental Results and Discussion
6.1. Experimental Setup

FusionNet used EPro-PnP as the baseline model, and FusionNet is the baseline model
of FusionNetV2. Therefore, the performance of FusionNetV2 is evaluated by comparing it
to EPro-PnP and FusionNet. We believe that the comparison of FusionNetV2 and the other
6D object pose estimation methods is not the main concern of this paper and can be seen
from the results in [13]. The main difference between FusionNet and FusionNetV2 is the
presence or absence of EBB. First, the performance of FusionNetV2 based on the position
and number of EBBs is analyzed in an ablation study. Then, its training stability and gener-
alization ability are analyzed by visualizing the training errors and validation accuracies
and compared to that of FusionNet. Next, to show the effectiveness of EBB, another method
is attempted to enhance edge features, and its performance for pose estimation is analyzed.
Finally, the inference time of FusionNetV2 is analyzed and additional attempts to reduce
the inference time are discussed.

We conducted experiments for training and testing the models using the LINEMOD
dataset [39], which consists of 13 sequences. Each sequence comprises approximately
1.2 K images with annotations for the 6D pose and 2D bounding box of a single object.
Additionally, 3D CAD models are provided for each object. Following the approach in [40],
images were divided into training and testing sets, with approximately 200 images per
object used for training. The training data were augmented using the synthetic data used
in CDPN [41].

We use ADD(-S) and the 2D reprojection error (2DRE) as the evaluation metrics for
the final pose. ADD measures whether the average 3D distance between the vertices of the
object mesh transformed by the ground-truth pose and the predicted pose falls below a
specified fraction of the object’s diameter. For example, ADD-0.1d considers the predicted
pose accurate when the distance is below 10% of the object diameter. Moreover, 2DRE is
the average distance between the 2D projections of the object’s 3D mesh vertices under
the predicted pose and the ground-truth pose. The prediction is considered accurate if the
error is less than 5 pixels. For both metrics, the percentage of images in which the predicted
pose is accurate to all test images is measured.

For a fair comparison, the general experimental setup is kept the same as in EPro-
PnP [14] and FusionNet. The implementation utilized the open-source codes of EPro-
PnP [14] and FusionNet [13], implemented with PyTorch, on a desktop computer (i7 2.9 GHz
CPU and 32 GB RAM) equipped with a single RTX 2060 GPU. The source code is accessible
at https://github.com/helloyuning/FusionNetV2 (accessed on 21 August 2024). During
training, the RMSProp optimizer was employed with parameters α = 0.99, ϵ = 1 × 10−8,
λ = 0, and µ = 0. The learning rate and the number of epochs were set to 1 × 10−4 and
320, respectively.

https://github.com/helloyuning/FusionNetV2


Electronics 2024, 13, 3736 8 of 15

Unfortunately, due to device constraints, the batch size was reduced from 32 to 16 for
training. Under the same conditions, we focus on showing the superiority of FusionNetV2
over EPro-PnP and FusionNet. In our experiments, it was observable that the performance
of the fine-tuning strategies used in EPro-PnP and FusionNet is highly dependent on the
accuracy of the pre-trained model. To ensure a fair comparison and alleviate the undue
impact of pre-training, we opted to train all models from scratch and evaluated their
performances comparatively.

6.2. Ablation Study

Compared to FusionNet, FusionNetV2 introduces EBBs to explicitly enhance features
on object edges. However, its performance varies depending on the location of the EBB.
Therefore, the impact of having an EBB at different stages of FusionNetV2 on model
performance is analyzed. In the tables below, “s-x,y” represents that the EBBs are located at
the end of Stage x and Stage y. Table 1 shows the resulting ADD scores of having EBBs at
different stages. From the results, it can be observed that:

• The accuracy of EPro-PnP and FusionNet was not so high without pre-training. Their
ADD-0.1d scores remained at 73.78 and 83.07, respectively, although FusionNet could
significantly increase the ADD-0.1d score by employing GDE and AtBs.

• The accuracy of FusionNetV2 was dependent on which stage the EBB is placed. Com-
paring the results of placing EBB in a single stage only, placing EBB in Stage 2 was the
most effective, with an ADD-0.1d score reaching 87.09. Even with EBB in only one
stage, the ADD-0.1d score was approximately 4 points higher than FusionNet. How-
ever, placing one EBB in Stage 1 or Stage 3 could not achieve ADD scores equivalent
to FusionNet.

• Comparing the results of placing EBBs over multiple stages, additionally placing
EBB in Stage 3 or Stage 4 did not help improve accuracy but rather may impair
accuracy. It indicates that applying EBBs with a small receptive field to deep features
associated with semantic information can lead to the loss of important semantic
information. Placing EBBs in Stage 1 and Stage 2 (the stages responsible for extracting
shallow features) achieved the highest accuracy, with an ADD-0.1d score reaching
90.18. FusionNetV2 with EBBs in Stage 1 and Stage 2 achieved mean ADD scores
approximately 18.8 and 9.7 points higher than EPro-PnP and FusionNet, respectively.

Table 1. Ablation study of FusionNetV2. The values within parentheses denote the degree of
improvement achieved with each modification.

ADD(-S)

0.02d 0.05d 0.1d Mean

EPro-PnP 12.05 43.79 73.78 43.37

FusionNet 19.32 (+6.78) 55.15 (+11.36) 83.07 (+9.29) 52.51 (+9.14)
FusionNetV2 (s-1) 15.3 (+3.25) 49.18 (+5.39) 77.62 (+3.84) 47.37 (3)
FusionNetV2 (s-2) 22.62 (+10.57) 61.11 (+17.32) 87.09 (+13.31) 57.21(+13.84)
FusionNetV2 (s-3) 17.52 (+5.47) 52.52 (+8.73) 80.03 (+6.25) 50.02 (+6.65)

FusionNetV2 (s-1,2) 28.54 (+16.49) 67.79 (+23.9) 90.18 (+16.4) 62.17 (+18.8)
FusionNetV2 (s-1,2,3) 18.16 (+6.11) 53.81 (+10.32) 81.68 (+7.9) 51 (+7.63)

FusionNetV2 (s-1,2,3,4) 16.8 (+4.75) 53.59 (+9.8) 81.33 (+7.55) 50.57 (+7.2)

To further analyze the impact of placing EBBs at different stages, the ADD-0.1d scores
for each object (Table 2) were compared. For all objects, using EBB only at one stage
improved ADD-0.1d scores compared to EPro-PnP. However, using one EBB at Stage 1 or
Stage 3 had lower ADD-0.1d scores than FusionNet. It is shown that EBBs must be placed at
Stage 2 in order to obtain higher ADD-0.1d scores than FusionNet. When EBBs were placed
at Stage 1 and Stage 2, ADD-0.1d scores were the highest except for “Can” and “Eggbox”.
The variance of ADD-0.1d scores over objects was also the smallest when EBBs were placed
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at Stage 1 and Stage 2, and smaller than FusionNet, indicating that the performance was
more stable and reliable.

Table 2. Object-wise ADD-0.1d scores of EPro-PnP, FusionNet, and FusionNetV2.

EPro-PnP FusionNet
FusionNetV2

s-1 s-2 s-3 s-1,2 s-1,2,3 s-1,2,3,4

Ape 53.14 64.29 52.76 60.48 54.67 76.19 59.90 62.19
Bench vise 88.17 90.20 88.94 93.50 90.59 95.93 90.69 89.72

Camera 65.49 79.02 72.74 85.78 77.06 90.00 77.25 77.65
Can 75.10 84.25 80.22 95.47 82.97 92.22 84.45 89.57
Cat 58.38 74.65 65.07 80.64 70.56 85.13 71.56 78.14

Driller 78.39 86.92 82.85 92.17 87.12 93.46 86.32 87.71
Duck 60.28 66.67 58.50 70.99 54.65 77.37 64.13 38.69

Egg box 97.56 99.25 99.34 99.34 99.15 99.34 99.44 98.78
Glue 80.12 89.67 85.81 94.59 88.80 95.37 90.15 93.34
Hole

puncher 62.32 78.40 66.79 82.21 71.36 87.63 70.50 75.74

Iron 87.54 92.44 88.66 93.16 90.50 94.18 90.19 92.65
Lamp 88.87 96.74 93.76 98.94 95.97 98.27 96.55 94.63
Phone 63.83 77.43 73.47 84.89 76.96 87.25 80.74 78.47

Mean 73.78 83.07 77.62 87.09 80.03 90.18 81.68 81.33
Stdev. 14.13 10.84 14.09 11.40 14.28 7.31 12.32 16.28

Table 3 shows 2DRE scores of EPro-PnP, FusionNet, and FusionNetV2. The employ-
ment of EBB also led to improvements in 2DRE scores, although the degree of improvement
varied from object to object. The results were not significantly different from those of
the ADD-0.1d score in Table 2. When EBBs were placed at Stage 1 and Stage 2, 2DRE
scores showed the highest mean and the lowest variance. As a result, the 2DRE score
was increased by 1.13 over FusionNet. However, the importance of placing EBB at Stage
2 seemed to be greater, and FusionNetV2 with one EBB at Stage 2 showed comparable
(higher for several objects) performance to FusionNetV2 with EBBs at Stage 1 and Stage 2.

Table 3. Object-wise 2DRE scores of EPro-PnP, FusionNet, and FusionNetV2.

EPro-PnP FusionNet
FusionNetV2

s-1 s-2 s-3 s-1,2 s-1,2,3 s-1,2,3,4

Ape 97.52 98.00 97.81 98.86 97.81 98.48 98.00 98.38
Bench vise 96.70 95.64 95.64 96.99 96.31 98.55 96.51 97.67

Camera 95.10 98.43 97.75 99.12 98.04 99.12 97.75 97.94
Can 93.11 96.75 94.39 98.62 96.75 99.02 96.36 97.93
Cat 98.20 99.20 99.10 99.30 99.20 99.40 99.30 98.80

Driller 90.39 94.65 91.77 95.34 93.16 96.23 93.46 89.40
Duck 98.40 98.22 98.22 98.22 98.50 98.69 98.59 98.50

Egg box 98.59 99.06 98.87 99.15 98.69 99.15 98.69 98.97
Glue 93.63 97.88 95.95 98.36 96.53 98.17 95.56 97.68
Hole

puncher 98.86 98.95 99.05 99.81 98.95 99.71 99.33 99.52

Iron 91.52 94.59 92.75 95.81 93.77 95.20 92.85 94.79
Lamp 90.88 94.82 91.36 97.60 93.57 97.12 94.72 94.72
Phone 92.26 96.32 93.77 97.17 95.56 98.39 96.69 95.94

Mean 95.01 97.12 95.88 98.03 96.68 98.25 96.75 96.94
Stdev. 3.19 1.74 2.83 1.37 2.12 1.31 2.13 2.73

Figure 1 shows the feature maps output from Stage 1 and Stage 2 of the CNN backbones
of EPro-PnP, FusionNet, and FusionNetV2. The regions of brighter colors correspond to
stronger features. The feature maps of EPro-PnP have bright regions irrelevant to object
edges. FusionNet tends to boost features around object edges. However, compared to
FusionNet, FusionNetV2 is shown to enhance features around object edges more effectively
while strongly suppressing other features. This allowed FusionNetV2 to estimate 3D
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coordinate maps more accurately (Figure 5), which is why FusionNetV2 outperforms
EPro-PnP and FusionNet in 6D object pose estimation.

Figure 5. The 3D coordinate maps estimated by EPro-PnP, FusionNet, and FusionNetV2 for the same
scenes. The object boundaries are most clearly seen in the results of FusionNetV2, indicating that the
3D coordinate maps are more precisely estimated.

6.3. Training Stability and Generalization Ability

In Figure 6, the training errors over the number of epochs of FusionNet and Fusion-
NetV2 are visualized. The convergence speed of FusionNetV2 is slightly slower than that of
FusionNet, and the training errors of FusionNetV2 begin to converge at around 100 epochs.
However, it was found that the training errors decrease steadily and FusionNetV2 is stably
trained with small errors when the number of epochs is more than 100. In addition, the
validation accuracies of FusionNet and FusionNetV2 are visualized in Figure 7 to eval-
uate their generalization capabilities. Although verification accuracies increase steadily
with each epoch number, the verification accuracy of FusionNetV2 is higher than that of
FusionNet, which shows better generalization ability of FusionNetV2.

Figure 6. Training error/loss curves of FusionNet and FusionNetV2.

Figure 7. Validation accuracy curves of FusionNet and FusionNetV2.
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6.4. Using Edge Features for 6D Object Pose Estimation

The core idea of FusionNetV2 is the enhancement of edge features, which has been
demonstrated to bring performance improvements in 6D object pose estimation. Similar to
FusionNetV2, ER-Pose [25] also noted the importance of edge features in a different frame-
work. It obtained 3D-2D correspondences of keypoints using only semantic information
on object edges and showed that improved accuracy can be achieved in 6D object pose
estimation. Therefore, we attempted to adopt a similar strategy to ER-Pose and to find
out if it is valid in our framework. In this regard, we simply extracted edge maps from
input images and used them as masks to filter dense 3D coordinate maps in the EPro-PnP
head. The ADD-0.1d and 2DRE results are shown in Figure 8 and are rather less accurate
for all objects. As a result, the approach, which uses only 3D coordinates on object edges
for 6D object pose estimation, is shown to be unfavorable in the framework of EPro-PnP,
FusionNet, and FusionNetV2. In fact, this was predictable from the results in Section 6.2.
As discussed, the loss of semantic (or high-level) information such as 3D coordinates results
in compromising accuracy. In contrast, our approach to enhancing shallow edge features
has proven effective.

Figure 8. Effects of filtering 3D coordinate maps using edge maps. * indicates the result of filtering
being applied.

6.5. Inference Time

The EBB is light in weight and has little effect on the inference time of FusionNetV2.
Furthermore, all AtBs of FusionNet were eliminated, allowing FusionNetV2 to be faster
than FusionNet. As shown in Figure 9, the inference time of FusionNetV2 was 0.017 ms,
slightly shorter than that of FusionNet. The small reduction in inference time is due to AtB
being lightweight, consisting only of 1 × 1 convolution layers.

Figure 9. Inference time.

In order to further reduce the inference time of FusionNetV2, we attempted to im-
prove the GDE block of a three-layer Transformer structure. Transformers are essentially
composed of multiple layers of self-attention. Therefore, model complexity increases
quadratically with the length of the input sequence. Taking this into account, we con-
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ducted experiments to verify the performance of the linear Transformers (LTs) [42] and
fast feedforward (FFF) networks [43], which are known to improve the inference speed
of Transformers.

First, we attempted to replace the Transformers in the GDE block with LTs while
keeping the depth at three layers. To ensure a fair comparison, the original structure of
FusionNetV2 was retrained and only the GDE part was modified. The results are shown in
Table 4. It is shown that the inference time can be slightly reduced by using LT. However,
using LT resulted in a considerable drop in the ADD 0.1d score. Second, we attempted
to replace the Transformer’s feedforward network with FFF. However, the replacement
with FFF rather greatly increased the inference time. Nevertheless, the accuracy dropped
significantly. This tendency of LT and FFF was the same with FusionNet. Consequently,
the application of LT or FFF to FusionNet and FusionNetV2 is not recommended, except
for applications that require extremely high inference-time efficiency.

Table 4. Ablation experiments for LT and FFF.

FFF LT Time 1 (s) ADD-0.1d

FusionNet
- - 0.004 83.07√

- 0.009 81.8
-

√
0.003 81.05

FusionNetV2
- - 0.004 90.18√

- 0.009 82.58
-

√
0.003 81.69

1 It is the time spent on the GDE part only.

7. Conclusions

In this study, we introduced FusionNetV2, an improved version of FusionNet. Focus-
ing on the fact that FusionNet tends to enhance features around object edges, we attempted
to explicitly boost features on object edges, and for this purpose, an edge attention block
named EBB was proposed. FusionNetV2 was designed to have the same architecture as Fu-
sionNet, except for removing AtBs and adding two EBBs. Through experiments, the impact
of placing EBBs at different stages of FusionNetV2 was analyzed and it was demonstrated
that FusionNetV2 with EBBs at the end of Stage 1 and Stage 2 enhanced edge features most
effectively, achieving significantly higher accuracy than EPro-PnP and FusionNet of the
same framework in 6D object pose estimation. As a result, it was confirmed that explicitly
enhancing the features around object edges contributes significantly to improving the
performance of 6D object pose estimation. Furthermore, the simple and light EBB allowed
FusionNetV2 to be faster in inference than FusionNet. However, incorrect EBB placement
reduced pose estimation accuracy, and methods used in other frameworks to enhance
edge features for pose estimation or to improve the inference speed of Transformers were
not available in our framework. This indicates the need for more sophisticated methods
to improve edge features and improve inference speed, which needs to be addressed in
future studies.

Unfortunately, our approach to explicitly boosting edge features can be inherently
vulnerable to occlusion or clutter. Therefore, it would be an interesting future study to
analyze the performance of FusionNetV2 against occlusion or clutter and to find ways to
improve its performance.

In addition, the network structure is one of the important factors influencing the
performance of 6D pose estimation. Therefore, finding a better network structure for our
framework would be another interesting area for future research.
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