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Abstract: The effectiveness of archives, particularly those related to cultural heritage, depends on
their accessibility and navigability. An intuitive interface is essential for improving accessibility
and inclusivity, enabling users with diverse backgrounds and expertise to interact with archival
content effortlessly. This paper introduces a new method for visualizing and navigating dataset
information through the creation of semantic graphs. By leveraging pre-trained large language
models, this approach groups data and generates semantic graphs. The development of multi-layer
maps facilitates deep exploration of datasets, and the capability to handle multilingual datasets
makes it ideal for archives containing documents in various languages. These features combine
to create a user-friendly tool adaptable to various contexts, offering even non-expert users a new
way to interact with and navigate the data. This enhances their overall experience, promoting a
greater understanding and appreciation of the content. The paper presents experiments conducted
on diverse datasets across different languages and topics employing various algorithms and methods.
It provides a thorough discussion of the results obtained from these experiments.

Keywords: multi-layer semantic graph; QueryLab intangible cultural heritage portal; clustering; data
visualization; transformers; large language models; unsupervised pipeline; intuitive interactions

1. Introduction

In the current digital age, cultural heritage institutions are increasingly digitizing their
collections to increase public accessibility, a trend accelerated by the pandemic. However,
the effectiveness of these digital archives depends on their usability and navigability. Users
need to find the information they need efficiently, without having to navigate through
complex menus and options.

An intuitive user interface greatly influences how users interact with digital archives. A
logical hierarchy of information and user-friendly design can make navigating the archive
a seamless and engaging experience. In addition, simplicity enhances inclusivity and
accessibility by accommodating users with varying levels of digital literacy and cognitive
abilities, as well as those with disabilities such as visual impairments or limited mobility.

This paper presents an innovative method for visualizing and navigating information
in cultural heritage archives and datasets. The proposed approach employs pre-trained
language models to group data and create semantic graphs. The creation of multi-layer
maps enables deep exploration of archives with large datasets, while the ability to han-
dle multilingual datasets makes it suitable for archives with documents in various lan-
guages. A semantic graph visually represents words, items, or concepts and their interre-
lationships, facilitating the exploration of semantic similarities and connections between
related concepts.

Key features of this approach that improve information retrieval and user engagement
include the following:

• An unsupervised pipeline that works efficiently once hyperparameters and transfor-
mation models are optimized.
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• Layered semantic graphs for large archives that allow users to explore a manageable
number of items at a time, encouraging in-depth exploration.

• Applicability to small archives, using pre-trained linguistic models for datasets as
small as a few hundred items.

• Multilingual support, effectively handling archives with documents in multiple lan-
guages (e.g., English, French, Italian).

Multi-layer maps, knowledge [1,2], and semantic graphs are powerful tools often used
to visualize and model complex systems. They are widely used in GIS for telecommuni-
cations, smart cities, and environmental monitoring [3]. Meanwhile, semantic graphs are
commonly applied in NLP, healthcare [4], and robotics. In this paper, we explore the use of
these techniques for the visualization and interaction of archives and textual datasets. To
the best of our knowledge, this is the first experiment in the field of cultural heritage.

The paper aims to define a simple-yet-effective method that can be easily applied to
various cultural heritage archives and datasets, yielding satisfactory results without the
need for sophisticated techniques to adapt to different cases. To achieve this, we have set
the following objectives:

1. Design the pipeline to handle datasets of different sizes and in different languages,
from small collections to large-scale archives, efficiently.

2. Ensure that the method can be easily integrated with existing digital tools and plat-
forms used in cultural heritage management.

3. Develop the method in a way that allows for easy replication of results across different
datasets and archives.

4. Create an intuitive and accessible interface that can be easily utilized by users with
varying levels of technical expertise.

The pipeline has been tested with diverse datasets encompassing various languages
and topics employing a range of algorithms and methodologies. The paper discusses
the results of these experiments, accompanied by a comprehensive discussion of the
results obtained.

The paper is organized as follows: First, there is a brief review of related work on
graph usage in cultural heritage and a detailed description of the pipeline with technical
insights, followed by experimental results showing clustering and semantic graph results.
The paper concludes with a discussion of the results and future research directions.

2. Related Works
2.1. Semantic Graph Creation

In this paper, we introduce a method for unsupervised semantic graph creation, where
the graphs are constructed based on the semantic similarity of their nodes. Knowledge
graphs have been extensively studied and discussed in the literature. For instance, the journal
Heritage published a special issue in 2021 on “Knowledge Graphs for Cultural Heritage”.

Significant research has been conducted on the use of linked open data and ontologies
for knowledge graph (KG) creation. Ryen et al. [5] delve into the creation and publication
of knowledge graphs within the Semantic Web domain. Another notable example is the
study by Arco [6], which facilitates the construction of knowledge graphs based on linked
open data (LOD).

The Semantic Web for Cultural Heritage (SW4CH) project and its associated work-
shops [7] seek to leverage Semantic Web technologies to provide access to cultural heritage
data, including the development of ontologies, vocabularies, and tools for publishing and
querying these data.

In [8], the authors propose a new approach for indirect access to heterogeneous data
sources to simplify the creation of knowledge graphs. The approach is based on a unified
meta-model as a content carrier for different representations.

Kokash et al. [9] designed a pipeline to extract structured information from bibli-
ographies and index lists of existing scholarly publications, as well as to disambiguate
and export it as linked data. They applied the pipeline to a corpus of books in the
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Arts, Humanities, and Social Sciences provided by the publisher Brill to create the Brill
Knowledge Graph.

In the educational context, the use of knowledge graphs or data clustering is achieving
great success. For example, Jhajj [10] demonstrates the potential of large language models
(LLMs) in improving the process of building EduKG, a specialized KG, particularly for
course modeling.

2.2. UMAP, Clustering Algorithms, and LLMs

Recently, UMAP and clustering algorithms have been used to extract information
from texts such as open-ended questions and legal documents. The effectiveness of BERT
for automatic coding of open-ended questions has been investigated and compared with
traditional methods [11], and integrated into a pipeline with LDA [12]. DistilBERT and
UMAP have demonstrated superior performance in legal document analysis [13]. In
addition, UMAP has improved clustering results on time series data [14]. LLMs and
clustering algorithms have been investigated, in [15], to assess how embeddings influence
clustering results, the role played by dimensionality reduction through summarization,
and model size adjustment.

Recent advances in large language models (LLMs), particularly in transformer archi-
tectures, have further revolutionized semantic graph generation and knowledge represen-
tation. Models such as GPT-3 and BERT have shown remarkable capabilities in generating
semantically rich embeddings that improve clustering performance by capturing deeper
contextual relationships in textual data in various domains, including cultural heritage.
These models utilize self-attention mechanisms to model broad dependencies, making
them highly effective for tasks such as topic modeling and semantic clustering [16,17]. In
addition, the application of LLMs has been particularly impactful in multilingual settings,
where they significantly improve cross-lingual transfer learning and semantic similarity
tasks [18]. Mixture of Experts (MoE) architectures, which dynamically activate only a
subset of model parameters during inference, have been explored to further improve the
efficiency of LLMs, allowing scaling to larger model sizes while maintaining computational
feasibility and enhancing performance on specialized tasks [19,20].

Topic modeling has been applied in various domains, including course evaluations [21],
information extraction [22], banking [23], tourism, cultural policy formulation, and crisis
intervention [24]. These methods have also facilitated the study of cultural data for policy-
making [25]. In addition, Twitter, with its extensive user base and real-time data stream,
has become a valuable source for evaluating and comparing different topic modeling mod-
els [26]. Short texts from Twitter have served as a testbed for improved text clustering
approaches [27]. To the best of our knowledge, this is one of the first experiments to create
navigable semantic graphs using transformers.

3. Materials and Methods

The goal of this research is to establish a pipeline that facilitates the unsupervised
creation of a semantic graph for content navigation from textual datasets. The innova-
tive aspects of this pipeline include a set of interrelated processes and techniques that
collectively enable the automated generation of meaningful relationships and connections
between disparate data. These processes involve several critical steps, including dimen-
sionality reduction, data clustering, selection of pre-trained language models, methods for
defining a single vector representation per element, and keyword extraction to facilitate the
understanding of topics. Figure 1 and Table 1 provide a comprehensive overview of the
stages of the pipeline, which will be discussed in greater detail in the subsequent sections of
this paper.



Electronics 2024, 13, 3741 4 of 27

Electronics 2024, 13, x FOR PEER REVIEW 4 of 30 
 

 

tween disparate data. These processes involve several critical steps, including dimension-
ality reduction, data clustering, selection of pre-trained language models, methods for de-
fining a single vector representation per element, and keyword extraction to facilitate the 
understanding of topics. Figure 1 and Table 1 provide a comprehensive overview of the 
stages of the pipeline, which will be discussed in greater detail in the subsequent sections 
of this paper. 

 
Figure 1. The proposed pipeline. The steps are highlighted in red, the solid rectangles represent 
actions, and the dashed boxes represent steps that produce outputs. The rectangles on the right 
show configuration choices, such as selecting pre-trained models (LLMs) and setting hyperparam-
eters. The rectangles at the bottom show the final results, including graphs and a word cloud gen-
erated by the C-TF-IDF method. Some graphs generated from the pipeline can be accessed via the 
following URL address: http://arm.mi.imati.cnr.it/papers/Kgraphs/html/index.html, 17 Septembrer 
2024 

Table 1. Steps of the proposed approach. 

# Task 1: Dataset preparation 
- Preprocessing (possibly strip stopwords, accents, …) 
- Process data to extract items to be used 
- Output: items of interest 
# Task 2: Tokenization and vector representation 
- Choice of transformers and pre-trained models  
- Tokenization and vector representation 
- Fine-tuning of pre-trained Bert-like models to obtain the vectors  
# Task 3: Data clustering 
- Choice of hyperparameters for UMAP and HDBSCAN/Mean Shift 
- Iterative clustering to obtain multi-layer clustering 
- Evaluation of clustering results using Calinski–Harabasz Index 
- Output: centroids of clustered items, and elements of each cluster  

Figure 1. The proposed pipeline. The steps are highlighted in red, the solid rectangles represent
actions, and the dashed boxes represent steps that produce outputs. The rectangles on the right show
configuration choices, such as selecting pre-trained models (LLMs) and setting hyperparameters. The
rectangles at the bottom show the final results, including graphs and a word cloud generated by the
C-TF-IDF method. Some graphs generated from the pipeline can be accessed via the following URL
address: http://arm.mi.imati.cnr.it/papers/Kgraphs/html/index.html, 17 Septembrer 2024.

Table 1. Steps of the proposed approach.

# Task 1: Dataset preparation

- Preprocessing (possibly strip stopwords, accents, . . .)
- Process data to extract items to be used
- Output: items of interest

# Task 2: Tokenization and vector representation

- Choice of transformers and pre-trained models
- Tokenization and vector representation
- Fine-tuning of pre-trained Bert-like models to obtain the vectors

# Task 3: Data clustering

- Choice of hyperparameters for UMAP and HDBSCAN/Mean Shift
- Iterative clustering to obtain multi-layer clustering
- Evaluation of clustering results using Calinski–Harabasz Index
- Output: centroids of clustered items, and elements of each cluster

# Task 4: Multi-layer semantic graph and other data visualization

- Choice of transformers and pre-trained models, both on raw data and on clustered items
and fine-tuning

- Creation of similarity matrix using [AVG] or [CLS] tokens
- Output: semantic graphs with k most similar items, with k = 1. . .4 and word cloud

# Task 5: c-TF-IDF scores

- c-TF-IDF scores computation for each cluster and their visualization as word cloud
- Preliminary qualitative evaluation of the results with domain experts and web users

http://arm.mi.imati.cnr.it/papers/Kgraphs/html/index.html


Electronics 2024, 13, 3741 5 of 27

3.1. Innovative Elements of the Pipeline

Dimensionality reduction: Advanced techniques, such as UMAP, are employed to
effectively reduce the dimensionality of high-dimensional text embeddings while preserv-
ing local data structures. The use of dimensionality reduction techniques is necessary
to manage the high-dimensional nature of our dataset (results of the vectorization step),
to mitigate the curse of dimensionality, and to improve computational efficiency while
preserving essential information.

Uniform Manifold Approximation and Projection (UMAP) [28] is a state-of-the-art di-
mensionality reduction technique widely used in machine learning and data analysis. Com-
peting with PCA and t-SNE, UMAP is characterized by its ability to map high-dimensional
data to lower-dimensional spaces while preserving their local structure. UMAP’s effective-
ness stems from its use of manifold learning, which integrates topological and geometric
methods to handle nonlinear relationships and high-dimensional datasets. The algorithm
needs two main parameters: the number of dimensions n and the distance metric d, typi-
cally tuned to optimize performance.

UMAP : Rn → Rm (1)

where m ≪ n
Data clustering: Clustering algorithms such as HDBSCAN and Mean Shift are im-

plemented to identify clusters of different shapes, densities, and sizes, facilitating the
discovery of intrinsic data patterns without the need for predefined cluster numbers. Data
clustering has been integrated to uncover underlying patterns and groupings within the
data, facilitating a more granular understanding of the relationships between data points.

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with
Noise) [29] is a robust clustering algorithm that can identify clusters of different shapes,
densities, and sizes. Unlike traditional clustering algorithms, HDBSCAN automatically
determines the number of clusters and can identify noise points without needing a preset
number of clusters or neighborhood size. Key parameters for HDBSCAN include minimum
cluster size and the minimum samples to form a dense region.

HDBSCAN(X) = {C1, C2, . . . , Ck} ∪ {noise} (2)

where X is the dataset, Ci are the clusters.
Mean Shift, another clustering technique we use, is effective at identifying clusters

without specifying their number. It iteratively shifts data points toward the mean of
the points within a defined bandwidth. This method is particularly effective for image
segmentation and clustering high-dimensional data, handling nonlinear data shapes with
minimal parameter tuning. The primary parameter for Mean Shift is the bandwidth which
defines the neighborhood size. Mean Shift is also robust to outliers, making it a versatile
tool for various clustering applications [30–32].

Pre-trained large language models: State-of-the-art transformer-based models such as
BERT, RoBERTa, and paraphrase-multilingual-MiniLM-L12-v2 are leveraged to generate
high-quality text embeddings that capture deep semantic relationships. Transformer-based
models have been chosen for their outstanding ability to capture large-scale dependencies
and contextual relationships within the data that are critical to the tasks at hand.

Transformers, a breakthrough in NLP, have significantly advanced the field with
their self-attention mechanisms [33]. These mechanisms allow transformers to focus
on different parts of the input text, efficiently capturing long-term dependencies and
contextual information.

Self − Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (3)

where Q (query), K (key), and V(value) are matrices derived from the input embeddings.
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BERT (Bidirectional Encoder Representations from Transformers) [16] is the first pre-
trained language model to use bidirectional language modeling to understand context by
looking at the preceding and succeeding words in a sentence. Other notable models include
GPT (Generative Pre-Training Transformer) 3.5 or 4 by OpenAI, which uses a similar
architecture; RoBERTa (Robustly Optimized BERT Approach) by Facebook AI, trained
on larger, more diverse corpora; and ALBERT (A Lite BERT), a more efficient variant
from Google.

Selecting the appropriate pre-trained model depends on several factors, including the
specific task, the size of the dataset, and computational resources. BERT and its variants
provide robust performance for tasks that require deep contextual understanding. In our
experiments, we focus on paraphrase detection and semantic similarity. The languages
involved are Italian, English, Spanish, and French. For multilingual tasks, models such as
paraphrase-multilingual-MiniLM-L12-v2 are preferred because of their ability to handle
multiple languages with reduced computational overhead. In this paper, we test different
pre-trained models as described below.

Tokenization and vector representation: Methods to split texts into tokens and com-
press complex textual information into single, representative vectors for each element are
being developed, facilitating efficient data processing and clustering.

• Tokenization is a basic preprocessing step in natural language processing (NLP) where
text is broken down into smaller units called tokens. These tokens can be words,
phrases, or characters. Transformers such as BERT and GPT use specific tokeniza-
tion strategies to convert raw text into a format that can be efficiently processed by
the model.

• WordPiece Tokenization [16]: This method, used by models such as BERT, breaks
down words into subwords or smaller units. It allows the model to handle out-of-
vocabulary words by breaking them down into known subword units. For example,
the word “playing” could be tokenized to [“play”, “##ing”], where “##” denotes a
subword prefix.

• Byte Pair Encoding (BPE) [34]: Used by models such as GPT, BPE is a data compression
technique adapted for tokenization. It iteratively combines the most frequent pairs of
bytes (or characters) in a corpus. The phrase “low lying” could be tokenized to [“low”,
“lying”], but, if “ly” is a frequent pair, it could become [“low”, “ly”, “ing”].

• SentencePiece: This is a language-independent tokenization method that treats the
input as a sequence of Unicode characters and uses BPE or Unigram language models
to tokenize the text. In the following example, “Tokenization” could be segmented
into [“T”, “oke”, “n”, “iz”, “ation”].

Transformers handle multi-word phrases and sentences by embedding the tokenized
text into high-dimensional vectors that capture semantic relationships.

Multi-layer semantic graph: We create semantic graphs that visualize the relationships
and connections between items based on their semantic similarity, thereby improving
content navigation and exploration. Based on the clustering results, we again used large
language models (LLM) to construct semantic graphs, applying text vectorization to gener-
ate dense vector representations of text entities. Cosine similarity is the method used to
construct a similarity matrix, which facilitates the construction of a detailed semantic graph.
To handle large datasets, we implement a multi-level approach that iteratively constructs
graphs at multiple levels of abstraction.

c-TF-IDF (class-based TF-IDF) score: For the terms in each cluster, the weight is
calculated using the c-TF-IDF algorithm [35]. This algorithm calculates TF-IDF scores by
treating all documents within a cluster as a single, combined document. This approach
helps determine the importance of terms in the context of the entire cluster.

TF-IDF (Term Frequency–Inverse Document Frequency) is a formula widely used in
information retrieval (IR) [36] to assess the significance of terms within a document relative
to the entire dataset. It assigns higher weights to terms that are specific to a document
and lower weights to terms that are common across many documents. TF-IDF consists of
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two main components, Term Frequency (TF) and Inverse Document Frequency (IDF). TF
measures how frequently a term t appears within a specific document d and highlights the
relative importance of a term within a document. IDF measures the rarity of a term across
all documents in the dataset; IDF decreases the weight of terms that occur frequently across
all documents and emphasizes terms that are rare but significant.

Assessing the quality of the pipeline is an essential step in research activities. In this
case, two types of assessments are performed. The first is an objective evaluation that
focuses on measuring the quality of the clusters using quantitative metrics. The second,
still preliminary, is a subjective evaluation that measured user acceptance and satisfaction.
This dual approach ensures a comprehensive understanding of the pipeline’s performance
from both a technical and a user perspective.

3.2. The Pipeline

Dataset preparation encompasses all activities conducted on the data before their use
in the algorithms. Removing stopwords, removing accents, reducing to normal form, and
other changes can be necessary at this stage. In this instance, automatically identifying tags
or keywords may also be part of preprocessing. The outcomes of this activity lead to the
identification of items of interest that will be used to test algorithms and pipelines.

An initial clustering phase is necessary when there are too many components to create
a single semantic graph. In this work, the vectors produced by fine-tuned transformers are
clustered using UMAP, HDBSCAN, or Mean Shift algorithms. Several pre-trained models
are evaluated and fine-tuned on the items to determine which model is best suited for
the task. Additionally, this work involves selecting the UMAP, HDBSCAN, and Mean
Shift hyperparameters to obtain better results tailored to each dataset. The item clustering,
including the centroids and the collection of items within each cluster at any level, is the
result of the task.

For semantic graph creation, after the items are grouped in a multi-layer mode (when
necessary), each individual item is again vectorized using pre-trained BERT-like transform-
ers, fine-tuned, and then averaged (or a comparable method is performed) to produce
a single vector for each item. Semantic similarity is applied to these vectors to create a
similarity matrix. The k most similar items are connected to create a semantic graph based
on this similarity matrix. The values of k in the experiment presented here range from 1
to 4. The cosine similarity of the resulting vectors is used to compute the similarity of the
items. The output of the task is an unsupervised semantic graph. The items are grouped
and n + 1 graphs are generated, i.e., the centroid graph plus the n clusters. If multi-layer
graphs are required, then n + m + 1, where n is the number of clusters of the lowest level
and m the number of intermediate clusters plus the centroid graph.

Using the c-TF-IDF (class-based TF-IDF) score, the next step is to analyze the clusters
found by HDBSCAN/Mean Shift to extract the most important topics and words based on
their frequency or weight [35]. The c-TF-IDF approach captures the importance of terms
within clusters in relation to the entire corpus of text.

Evaluating the quality of clustering results is crucial to ensure that the algorithm
effectively groups similar data points while separating dissimilar ones. For objective
evaluation, several metrics can be used to evaluate clustering performance, each providing
different insights into the clustering structure. Here, we discuss four widely used clustering
evaluation metrics: the Silhouette Score, Calinski–Harabasz Index, Davies–Bouldin Index,
and Dunn Index.

The Silhouette Score measures [37] how similar a data point is to its own cluster
compared to other clusters. It provides a value between −1 and 1, where a higher value
indicates better-defined clusters.

The Calinski–Harabasz Index [38], also known as the Variance Ratio Criterion, evalu-
ates the ratio of the sum of between-cluster dispersion to within-cluster dispersion. Higher
values indicate a model with dense and well-separated clusters.
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The Davies–Bouldin Index [39] measures the average similarity ratio of each cluster
with its most similar cluster. Interpretation: lower values indicate that clusters are compact
and well separated from each other.

The Dunn Index [40] measures the ratio of the minimum inter-cluster distance to the
maximum intra-cluster distance. A higher value indicates better clustering performance.

Moreover, since the goal of the work is to develop tools for easier navigation in
archives or textual datasets, we integrate a preliminary qualitative evaluation based on
informal feedback and judgments from experts and users in a real-world context.

4. The Experimentation
4.1. Datasets Used

The pipeline was tested on several datasets related to cultural heritage. The data
come from QueryLab [41,42], a portal created specifically for the management of intan-
gible cultural heritage, CookIT [43,44], a site that collects traditional Italian recipes, and
Wikipedia, with data extracted from food-related categories. The datasets consist of plain
texts of varying lengths, from brief entries of one or two words, such as tags, to extended
passages containing several sentences. These include Italian recipes, intangible heritage
assets, and Wikipedia entries. The texts are presented in one or more languages across
different datasets. Furthermore, each element may serve as a link to an archive item or as a
query performed on the archive, particularly in the case of tags, as follows:

QueryLab_descr: This dataset includes titles and brief descriptions of inventoried
assets. The text describes intangible cultural items, such as a dance, ritual, or knowledge,
among others, with the intent to protect the asset and preserve information for future
generations. The lengths of the descriptions range from a few lines to many paragraphs.
The languages are Italian, English, French, and German.

QueryLab_tags: Expert-defined tags connected with archive documents provide ad-
ditional contextual information. This study employed two separate datasets. The first
dataset, from the Ethnography and Social History Archive [45], includes tags chosen by
expert ethnographers. These tags were originally defined in Italian and later translated into
English, French, and German. Here, we use the English version of tags. The second dataset,
from UNESCO’s Intangible Heritage and Cultural Asset Management [46], comprises
simple or compound tags, affording significant insights into the nature and characteristics
of cultural heritage assets.

Wikipedia_food: We scraped data from Wikipedia starting from the root of the food
category and iteratively expanding in three different languages: Italian, English, and
Spanish. The texts are extensive and cover a wide range of food-related topics, including
traditional dishes, beverages, utensils, and recipes. For each language, we considered
500 items, resulting in entries that cover the same concepts in different languages as well as
unique and overlapping entries.

CookIT: It is an archive of traditional Italian recipes, sourced from reputable websites.
Each recipe’s origin is clearly indicated, along with a link to the original source. For every
recipe, the archive includes the name of the dish, a list of ingredients, detailed cooking
instructions, and, where available, trivia and additional information. The texts, mainly in
Italian, provided for each recipe are notably comprehensive.

The main challenges with the datasets used arise from working with real data about
intangible cultural heritage, which is created by communities to preserve and pass down
their traditions, sayings, dialect expressions, local object names, masks, and other cultural
elements. Because this heritage is so unique and specialized, the terms and concepts
involved are rarely represented in pre-trained models.

4.2. The Proposed Approach

In this paper, we employ transformers in combination with UMAP and HDBSCAN
(or Mean Shift) for clustering data. Specifically, transformers and BERT-like models are
used (and fine-tuned) to transform text data into high-dimensional vectors that capture
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semantic meaning. We then apply UMAP to these vectors to reduce the dimensionality,
creating a lower-dimensional space that serves as the input for the chosen clustering
algorithm. We conducted numerous tests to determine the optimal hyperparameters for
UMAP, HDBSCAN, Mean Shift, and the pre-trained models for various datasets.

For UMAP, we tested the n_neighbors parameter, which controls the balance between
the local and global data structure. The default value in the Python implementation is 15,
and we evaluated the following values: 15, 10, 5, and 3.

For HDBSCAN, we tested different values for min_cluster_size and min_samples.
The min_cluster_size parameter sets the smallest cluster size to be considered a cluster,
while min_samples provides a measure of clustering conservatism. The values tested for
min_cluster_size were 15, 10, and 5, and, for min_samples, we tested 5 and 1.

In addition, we also explored the use of the Mean Shift clustering algorithm, testing
various bandwidths to determine the optimal clustering performance. It determines the
radius of the region the algorithm uses to search for neighbors and affects the number of
clusters detected. The bandwidth values tested were 1.0, 0.9, 0.7, 0.6, and 0.5.

When the number of clusters exceeded a certain threshold, we implemented a recur-
sive procedure to create multi-level graphs. This approach is designed to facilitate user
navigation of the dataset by organizing the data into a hierarchical structure. The multi-
level graphs help users to easily explore and understand the relationships and patterns
within the dataset, improving both usability and comprehension.

We utilized several Italian, English, and multilingual large language models (LLMs)
to process and analyze the text data.

• tgsc/sentence-transformers_paraphrase-multilingual-mpnet-base-v2 (‘tgmu’): It is
designed to generate high-quality multilingual paraphrases that effectively capture
semantic similarities across languages while maintaining contextual integrity.

• paraphrase-multilingual-MiniLM-L12-v2 (‘mimu’): A multilingual model designed
to handle multiple languages simultaneously. It is based on the MiniLM architecture,
which is a smaller and faster version of BERT.

• xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it (‘romu’): A robust model trained on
a diverse multilingual corpus, including languages such as English, Arabic, French,
German, Spanish, Turkish, and Italian. XLM-RoBERTa is known for its strong perfor-
mance across various languages.

• all_datasets_v3_mpnet-base (‘flax’): This model combines the capabilities of MPNet
and BERT, providing enhanced contextual embeddings. It has been fine-tuned on
various datasets to improve its versatility.

• Bert-base-Wikipedia-sections-mean-tokens (‘bewi’): A BERT model fine-tuned on
Wikipedia sections, providing embeddings based on the mean of token embeddings.
This model is particularly good at capturing the semantic structure of Wikipedia
articles.

• distiluse-base-multilingual-cased (‘dimu’): A smaller, faster, and cheaper version of
BERT, maintaining 97% of BERT’s performance while being 60% faster, with multilin-
gual capabilities for diverse text data.

The abbreviations in parentheses are used to identify the models listed in the tables in
the Results section.

The problem of terms not present in the pre-trained model is overcome by the use of
BERT-like transformers and their tokenizers. This solution has had much better results
than the use of single-word-level tokenizers or models with Word2Vec [47] or GloVe [48].

Tokenization and vector representation enable machines to understand and process
textual data. We used native tokenizers designed specifically for the LLMs used, taking
advantage of the tokenization utilities available in PyTorch and the Hugging Face Trans-
formers library. In this way, we ensured that the textual inputs are processed in a way that
is fully compatible with the LLM’s architecture and training regime.

In the vector representation, each token is typically represented as a numerical vector
through embedding techniques. These vectors encode semantic meaning and relationships
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between words or tokens in a high-dimensional space. Models like Word2Vec, GloVe, and
BERT utilize different strategies to generate these embeddings; Word2Vec and GloVe pro-
duce static embeddings based on co-occurrence statistics, while BERT and the other LLMs’
transformer-based models generate contextual embeddings that consider the surrounding
context of each token within a sentence or document.

When working with word embeddings such as Word2Vec or GloVe, the typical ap-
proach involves averaging the vectors, possibly weighting them based on word frequency
or importance. In contrast, BERT-like models utilize not only the average (AVG) token but
also the [CLS] token, which encapsulates the entire sentence [16,33].

To create a similarity matrix, pairwise comparisons are made between the [CLS] or
[AVG] tokens using metrics like cosine similarity. The resulting scores indicate the similarity
relationships among the [CLS] or [AVG] tokens of the input text, forming the basis of the
similarity matrix.

Keywords are extracted from the entire dataset and each individual cluster uses class-
based TF-IDF scoring. This technique computes the importance of terms by considering
their frequency within documents and across clusters. The extracted keywords are then
visualized as word clouds, offering users a graphical representation that highlights the
most significant terms in the dataset and within each cluster. These word clouds serve as
intuitive tools that allow users to quickly grasp the prominent themes and topics present in
the analyzed data.

4.3. The Results

We tested our pipeline on the datasets previously presented. Rather than evaluating
each innovative element individually, we chose to assess the multi-layer semantic graphs
using standard quantitative measures, such as Silhouette Scores and the others detailed
above. Some of the results and graphs generated from the pipeline can be accessed via
the following URL address: http://arm.mi.imati.cnr.it/papers/Kgraphs/html/index.html
(accessed on 17 September 2024).

4.3.1. Clustering

Since one of the key features of our system is its completely unsupervised nature, we
determined that the clustering configuration where the parameter value of the Calinski–
Harabasz score is maximum is automatically selected. This selection is made at the first
level of clustering, and, if necessary, is iterated to produce a second-level clustering.

The provided tables—two for each dataset corresponding to the two clustering algo-
rithms tested (HDBSCAN and Mean Shift)—contain rows that correspond to the parameter
values optimizing the results. In the Supplementary Materials of the paper, there are two Ex-
cel files that include all results obtained as hyperparameters vary. These tables are designed
to track both the current clustering level (denoted as “I”) and the previous clustering level
(denoted as “minus_1”) for the second level of clustering. The “I” column (and “minus_1”
if applicable) corresponds to the pipeline configuration used to obtain the respective results.
The string in these columns is composed of the clustering algorithm, the clustering level,
the hyperparameters, and the large language model used. For UMAP+HDBSCAN, the
hyperparameters include the number of neighbors (n_n), minimum cluster size (min_clu_s),
and minimum samples (min_samp), while, for UMAP+Mean Shift, they include the num-
ber of neighbors (n_n) and bandwidth (bandw). These hyperparameters are also displayed
in the corresponding columns. The number of elements (docs) to be clustered is always
indicated for clarity, along with the number of clusters obtained (clus) and the level (level).
For both HDBSCAN and Mean Shift algorithms, four evaluation metrics are consistently
provided: Silhouette Score and the Calinski–Harabasz, Davies–Bouldin, and Dunn Indices.
The results are sorted in descending order according to the Calinski–Harabasz Index value.
The highest values, at the top, indicate better clustering. To ensure that the clusters were
well separated and not overlapping, similarity matrices were created. These matrices were
constructed using the terms from each cluster to evaluate their similarities. The similarity

http://arm.mi.imati.cnr.it/papers/Kgraphs/html/index.html
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between clusters is visually represented by their coloration; clusters with higher similarity
have a darker coloration, while those with lower similarity appear lighter. The similarity
is computed using the cosine similarity measure on the resulting vectors, providing a
quantification of how closely related the clusters are based on their feature vectors.

QueryLab_descr
QueryLab_descr is a dataset consisting of data extracted from the QueryLab portal.

It includes inventoried assets of intangible goods in Lombardy, Bolzano, Trentino Alto
Adige, and Switzerland. The data are written in several languages. The pre-trained models
used are multilingual. In addition to MIMU, which was used in all experiments, the model
“xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it” was also used on this dataset.

It was observed that HDBSCAN detects fewer clusters, which is a general trend in
all datasets. One-level graphs were generated. Mean Shift, on the other hand, generates
multi-level graphs for both models. As shown in Tables 2 and 3, the best results (maximum
Calinski–Harabasz Index) for both algorithms are achieved with a low value of n_neighbor.
For HDBSCAN, the optimal performance is obtained with a min_cluster_size of 10 for both
LLMs. Mean Shift achieves the best results at level 1 with the minimum bandwidth value
for both models.

Table 2. Best results of the UMAP+HDBSCAN on QueryLab_descr dataset.

I Docs Level N_N Min_Clu_S Min_Sam Clus Silhouette Calinski Davies Dunn

_hL1_3_10_5_romu 463 1 3 10 5 13 0.48 554.39 1.65 0.01
_hL1_3_10_1_mimu 463 1 3 10 1 15 0.47 471.50 1.26 0.06

Table 3. Best results of the UMAP+Mean Shift on QueryLab_descr dataset.

I Minus_1 Docs Level N_N Bandw Clus Silhouette Calinski Davies Dunn

_mL1_3_0.5_mimu 463 1 3 0.5 60 0.53 1413.30 0.57 0.09
_mL1_3_0.5_romu 463 1 3 0.5 62 0.53 1387.72 0.58 0.02
_mL2_3_0.5_romu _mL1_3_0.5_romu 62 2 3 0.5 20 0.51 167.58 0.48 0.46
_mL2_3_0.7_romu _mL1_3_0.5_romu 62 2 3 0.7 15 0.50 145.04 0.61 0.24
_mL2_3_0.6_romu _mL1_3_0.5_romu 62 2 3 0.6 17 0.49 141.56 0.48 0.24
_mL2_3_0.5_mimu _mL1_3_0.5_mimu 60 2 3 0.5 23 0.46 138.10 0.51 0.50
_mL2_3_0.6_mimu _mL1_3_0.5_mimu 60 2 3 0.6 18 0.45 121.94 0.55 0.30
_mL2_3_0.7_mimu _mL1_3_0.5_mimu 60 2 3 0.7 14 0.48 117.36 0.59 0.28
_mL2_3_0.9_romu _mL1_3_0.5_romu 62 2 3 0.9 11 0.51 113.96 0.57 0.20
_mL2_3_0.9_mimu _mL1_3_0.5_mimu 60 2 3 0.9 11 0.43 100.70 0.67 0.13
_mL2_3_1.0_romu _mL1_3_0.5_romu 62 2 3 1 9 0.42 93.42 0.73 0.14
_mL2_3_1.0_mimu _mL1_3_0.5_mimu 60 2 3 1 7 0.42 87.46 0.77 0.18

Figure 2 shows the level 1 similarity matrices for two different clustering methods.
On the left is the similarity matrix generated by HDBSCAN, while, on the right, is the
similarity matrix generated by the Mean Shift algorithm. Both matrices use the MIMU LLM
and are based on the QueryLab_descr dataset.

QueryLab_intangible_tags
The QueryLab tags dataset consists of 260 items, most of which are single words. As

shown in Tables 4 and 5, the number of clusters identified by HDBSCAN is much smaller
than that identified by Mean Shift. HDBSCAN (with UMAP) uses three parameters, which
are 15, 15, and 5, for both models.
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QueryLab_descr dataset.

Table 4. Best results of the UMAP+HDBSCAN on QueryLab_intangible_tags dataset.

I Docs Level N_N Min_Clu_S Min_Sam Clus Silhouette Calinski Davies Dunn

_hL1_15_15_5_mimu 260 1 15 15 5 5 0.37 147.84 1.26 0.06
_hL1_15_15_5_romu 260 1 15 15 5 5 0.35 135.43 1.23 0.04

Table 5. Best results of the UMAP+Mean Shift on QueryLab_intangible_tags dataset.

I Minus_1 Docs Level N_N Bandw Clus Silhouette Calinski Davies Dunn

_mL1_3_0.5_romu 260 1 3 0.5 50 0.63 1270.73 0.43 0.11
_mL1_3_0.5_mimu 260 1 3 0.5 50 0.60 1208.45 0.47 0.19
_mL2_3_0.5_romu _mL1_3_0.5_romu 50 2 3 0.5 22 0.54 323.48 0.46 0.58
_mL2_3_0.6_romu _mL1_3_0.5_romu 50 2 3 0.6 17 0.51 215.59 0.59 0.40
_mL2_3_1.0_romu _mL1_3_0.5_romu 50 2 3 1 4 0.57 198.54 0.60 0.23
_mL2_3_0.5_mimu _mL1_3_0.5_mimu 50 2 3 0.5 18 0.45 181.18 0.47 0.50
_mL2_3_0.6_mimu _mL1_3_0.5_mimu 50 2 3 0.6 16 0.48 178.63 0.48 0.34
_mL2_3_0.7_romu _mL1_3_0.5_romu 50 2 3 0.7 12 0.45 163.93 0.66 0.26
_mL2_3_0.9_romu _mL1_3_0.5_romu 50 2 3 0.9 6 0.53 163.00 0.66 0.16
_mL2_3_0.7_mimu _mL1_3_0.5_mimu 50 2 3 0.7 13 0.49 161.10 0.53 0.23
_mL2_3_0.9_mimu _mL1_3_0.5_mimu 50 2 3 0.9 9 0.56 120.06 0.53 0.24
_mL2_3_1.0_mimu _mL1_3_0.5_mimu 50 2 3 1 9 0.55 119.03 0.55 0.19

The distribution of items, excluding outliers, is Cluster 0: 22 items, Cluster 1: 106 items,
Cluster 2: 44 items, Cluster 3: 23 items, Cluster 4: 38 items. Unlike the procedure where
clustering iterates when the number of clusters exceeds a given threshold, in this case,
iteration should occur when the number of items in a cluster exceeds the same threshold. In
the Mean Shift case, the best results are achieved with n_neighbor = 3 and bandwidth = 0.5,
producing 50 clusters with both LLMs. At the second level, varying the parameters
yields between 4 and 22 clusters. Here, we report all values related to the first-level
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hyperparameters to evaluate which solutions are the best, also considering feedback from
web users.

Figure 3 shows similarity matrices illustrating the results of the Mean Shift algo-
rithm. The left side shows the level 1 similarity matrix, while the right side shows the
level 2 similarity matrix. Both matrices were generated using the ROMU LLM on the
QueryLab_intangible_tag dataset.
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QueryLab UNESCO Tags
UNESCO’s Intangible Cultural Heritage (ICH) Tags are specific labels or categories

used to identify and classify elements of intangible cultural heritage. They have been
integrated into the QueryLab portal to be used together with intangible tags. There are
828 items in English languages. Here, we tested the pipeline on three LLMs, TGMU, FLAX,
and MIMU, the only one used on all datasets. The results are shown in Tables 6 and 7.

Table 6. Best results of the UMAP+HDBSCAN on QueryLab_UNESCO_tags dataset.

I Minus_1 Docs Level N_N Min_Clu_S Min_Sam Clus Silhouette Calinski Davies Dunn

_hL2_3_5_5_tgmu _hL1_3_15_1_tgmu 24 2 3 5 5 2 0.71 380.87 0.35 0.90
_hL1_10_15_1_mimu 828 1 10 15 1 22 0.33 227.04 1.14 0.07
_hL1_15_10_1_tgmu 828 1 15 10 1 33 0.37 209.90 1.06 0.05
_hL1_3_5_1_flax 828 1 3 5 1 89 0.54 208.26 0.97 0.03
_hL2_3_5_1_flax _hL1_3_5_1_flax 89 2 3 5 1 10 0.57 175.67 0.58 0.24
_hL2_3_5_5_flax _hL1_3_5_1_flax 89 2 3 5 5 6 0.46 82.79 1.15 0.07
_hL2_3_15_1_flax _hL1_3_5_1_flax 89 2 3 15 1 3 0.47 81.24 0.76 0.28
_hL2_3_15_5_flax _hL1_3_5_1_flax 89 2 3 15 5 3 0.42 60.36 1.24 0.05
_hL2_3_10_5_flax _hL1_3_5_1_flax 89 2 3 10 5 3 0.42 60.36 1.24 0.05
_hL2_3_10_1_flax _hL1_3_5_1_flax 89 2 3 10 1 4 0.31 25.78 2.91 0.10
_hL2_15_10_1_tgmu _hL1_15_10_1_tgmu 33 2 15 10 1 2 0.27 14.66 1.22 0.46
_hL2_15_5_1_tgmu _hL1_15_10_1_tgmu 33 2 15 5 1 3 0.27 14.66 1.22 0.46
_hL2_10_5_1_mimu _hL1_10_15_1_mimu 22 2 10 5 1 2 0.25 12.73 1.33 0.38
_hL2_10_5_5_mimu _hL1_10_15_1_mimu 22 2 10 5 5 2 0.21 12.35 1.67 0.25
_hL2_15_5_5_tgmu _hL1_15_10_1_tgmu 33 2 15 5 5 2 0.05 5.71 2.39 0.19
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Table 7. Best results of the UMAP+Mean Shift on QueryLab_UNESCO_tags dataset.

I Minus_1 Docs Level N_N Bandw Clus Silhouette Calinski Davies Dunn

_mL1_3_0.5_mimu 828 1 3 0.5 102 0.65 3385.96 0.43 0.05
_mL1_3_0.5_tgmu 828 1 3 0.5 102 0.64 2639.38 0.43 0.02
_mL1_3_0.5_flax 828 1 3 0.5 106 0.61 1305.95 0.48 0.06
_mL2_3_0.5_mimu _mL1_3_0.5_mimu 102 2 3 0.5 28 0.55 1048.99 0.51 0.27
_mL2_3_0.6_mimu _mL1_3_0.5_mimu 102 2 3 0.6 26 0.54 960.69 0.55 0.26
_mL2_3_0.5_flax _mL1_3_0.5_flax 106 2 3 0.5 26 0.58 762.09 0.48 0.24
_mL2_3_0.7_mimu _mL1_3_0.5_mimu 102 2 3 0.7 19 0.51 715.05 0.57 0.13
_mL2_3_0.9_mimu _mL1_3_0.5_mimu 102 2 3 0.9 15 0.53 694.39 0.58 0.10
_mL2_3_1.0_mimu _mL1_3_0.5_mimu 102 2 3 1 13 0.56 683.80 0.56 0.15
_mL2_3_0.6_flax _mL1_3_0.5_flax 106 2 3 0.6 22 0.57 663.88 0.52 0.32
_mL2_3_0.7_flax _mL1_3_0.5_flax 106 2 3 0.7 20 0.55 608.69 0.54 0.12
_mL2_3_0.5_tgmu _mL1_3_0.5_tgmu 102 2 3 0.5 28 0.57 587.24 0.48 0.27
_mL2_3_0.6_tgmu _mL1_3_0.5_tgmu 102 2 3 0.6 22 0.55 465.31 0.56 0.26
_mL2_3_0.9_flax _mL1_3_0.5_flax 106 2 3 0.9 11 0.59 428.74 0.59 0.12
_mL2_3_1.0_flax _mL1_3_0.5_flax 106 2 3 1 11 0.58 407.88 0.53 0.12
_mL2_3_0.7_tgmu _mL1_3_0.5_tgmu 102 2 3 0.7 20 0.56 406.89 0.51 0.11
_mL2_3_0.9_tgmu _mL1_3_0.5_tgmu 102 2 3 0.9 16 0.51 347.97 0.57 0.15
_mL2_3_1.0_tgmu _mL1_3_0.5_tgmu 102 2 3 1 11 0.55 333.78 0.59 0.14

Both algorithms generate a high number of clusters, especially at low hyperparameter
values. For HDBSCAN, the optimal configurations produce 22, 33, and 89 clusters at level 1
for MIMU, TGMU, and FLAX, respectively. Unlike the other two models, FLAX achieves
the best result with all three parameters set to their minimum values, resulting in a larger
number of clusters. At the highest level, these configurations produce between 2 and
10 clusters. Mean Shift, which consistently produces a larger number of clusters, produces
102 and 106 clusters at level 1, which are further subdivided into 11 to 28 clusters.

Figure 4 illustrates the level 1 similarity matrix for HDBSCAN, showing optimal
results for two different language models. On the left is the similarity matrix for the FLAX
LLM, while, on the right, is the similarity matrix for the TGMU model. Both matrices are
derived from the QueryLab_UNESCO_tag dataset.
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CookIT Most Frequent
CookIT Most Frequent is a dataset consisting of traditional culinary recipes written

in Italian. Alongside MIMU, a multilingual model was also used because recipes and
food vocabulary often include terms from other languages, such as French, requiring a
broader linguistic understanding for accurate processing. HDBSCAN produces a relatively
limited number of clusters. To address this, we considered not only the configuration that
optimized the Calinski score but also the next maximum value due to the small number of
clusters in the initial analysis.

Using Mean Shift, both LLMs generate a comparable number of elements at the first
level. At the second level, the number of clusters varies from 9 to 27 for the DIMU model,
while, for MIMU, it ranges from 7 to 20. The results are reported in Tables 8 and 9.

Table 8. Best results of the UMAP+HDBSCAN on CookIT Most Frequent dataset.

I Docs Level N_N Min_Clu_S Min_Sam Clus Silhouette Calinski Davies Dunn

_hL1_3_10_5_dimu 488 1 3 10 5 2 0.63 146.21 0.29 0.93
_hL1_3_10_1_dimu 488 1 3 10 1 21 0.27 107.95 1.20 0.08
_hL1_15_15_1_mimu 488 1 15 15 1 9 0.12 96.14 1.54 0.11

Table 9. Best results of the UMAP+Mean Shift on CookIT Most Frequent dataset.

I minus_1 Docs Level n_n Bandw Clus Silhouette Calinski Davies Dunn

_mL1_3_0.5_mimu 488 1 3 0.5 60 0.53 612.58 0.59 0.05
_mL1_3_0.5_dimu 488 1 3 0.5 74 0.53 444.09 0.60 0.07
_mL2_3_0.6_mimu _mL1_3_0.5_mimu 60 2 3 0.6 18 0.54 85.05 0.53 0.45
_mL2_3_0.5_mimu _mL1_3_0.5_mimu 60 2 3 0.5 20 0.49 78.56 0.55 0.31
_mL2_3_0.7_mimu _mL1_3_0.5_mimu 60 2 3 0.7 16 0.51 76.91 0.59 0.31
_mL2_3_0.7_dimu _mL1_3_0.5_dimu 74 2 3 0.7 13 0.44 70.72 0.67 0.22
_mL2_3_0.5_dimu _mL1_3_0.5_dimu 74 2 3 0.5 27 0.38 70.66 0.55 0.28
_mL2_3_0.6_dimu _mL1_3_0.5_dimu 74 2 3 0.6 18 0.43 67.82 0.59 0.28
_mL2_3_0.9_dimu _mL1_3_0.5_dimu 74 2 3 0.9 10 0.43 66.91 0.76 0.19
_mL2_3_1.0_dimu _mL1_3_0.5_dimu 74 2 3 1 9 0.42 60.38 0.77 0.15
_mL2_3_0.9_mimu _mL1_3_0.5_mimu 60 2 3 0.9 11 0.48 48.23 0.60 0.16
_mL2_3_1.0_mimu _mL1_3_0.5_mimu 60 2 3 1 7 0.37 45.19 0.90 0.13

Figure 5 represents the similarity matrix of the clustering results using the two algorithms
with the same LLM (DIMU). HDBSCAN, at the first (and only) level, produces 21 clusters,
whereas Mean Shift at the first level generates 74 clusters, necessitating another iteration.

Wikipedia_food
This dataset is the largest collection, with approximately 2000 items. It was included

because its texts are long, written in several languages, and contain many significant terms.
Due to the large number of items, two-level graphs are generated for both clustering
algorithms, as shown in Tables 10 and 11. With all hyperparameter values, HDBSCAN
produces two top-level clusters. In contrast, Mean Shift produces more diverse results,
generating over 150 clusters at the first level, which are then reduced to a range of 20 to
30 clusters at the second level for both LLMs. Interestingly, the highest scores are achieved
with elevated hyperparameter values, resulting in a relatively small number of first-level
clusters, while Mean Shift performs best with lower hyperparameter values, producing
over 150 first-level clusters.
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Figure 5. Similarity matrix for HDBSCAN (a) and Mean Shift (b) with DIMU LLM on CookIT Most
Frequent dataset.

Table 10. Best results of the UMAP+HDBSCAN on Wikipedia_food dataset.

I minus_1 Docs Level n_n Min_clu_s Min_sam Clus Silhouette Calinski Davies Dunn

_hL2_3_15_5_mimu _hL1_3_5_5_mimu 109 2 3 15 5 2 0.75 396.63 0.29 1.17
_hL1_15_15_1_mimu 1998 1 15 15 1 37 0.31 337.53 1.19 0.04
_hL1_10_15_1_romu 1998 1 10 15 1 36 0.25 307.27 1.09 0.03
_hL2_10_15_1_romu _hL1_10_15_1_romu 36 2 10 15 1 2 0.49 50.24 0.78 0.43
_hL2_10_10_1_romu _hL1_10_15_1_romu 36 2 10 10 1 2 0.49 50.24 0.78 0.43
_hL2_10_5_1_romu _hL1_10_15_1_romu 36 2 10 5 1 2 0.49 50.24 0.78 0.43
_hL2_15_15_1_mimu _hL1_15_15_1_mimu 37 2 15 15 1 2 0.17 20.63 0.86 0.41
_hL2_15_10_1_mimu _hL1_15_15_1_mimu 37 2 15 10 1 2 0.17 20.63 0.86 0.41
_hL2_15_5_1_mimu _hL1_15_15_1_mimu 37 2 15 5 1 2 0.17 20.63 0.86 0.41
_hL2_10_10_5_romu _hL1_10_15_1_romu 36 2 10 10 5 2 0.25 19.42 1.82 0.14
_hL2_10_5_5_romu _hL1_10_15_1_romu 36 2 10 5 5 2 0.25 19.42 1.82 0.14
_hL2_15_5_5_mimu _hL1_15_15_1_mimu 37 2 15 5 5 2 0.19 18.51 1.69 0.17

Table 11. Best results of the UMAP+Mean Shift on Wikipedia_food dataset.

I minus_1 Docs Level n_n Bandw Clus Silhouette Calinski Davies Dunn

_mL1_3_0.5_mimu 1998 1 3 0.5 155 0.59 3630.89 0.49 0.02
_mL1_3_0.5_romu 1998 1 3 0.5 162 0.59 3609.27 0.51 0.00
_mL2_3_0.5_mimu _mL1_3_0.5_mimu 155 2 3 0.5 34 0.54 571.38 0.57 0.21
_mL2_3_0.6_mimu _mL1_3_0.5_mimu 155 2 3 0.6 26 0.51 475.13 0.59 0.12
_mL2_3_0.7_mimu _mL1_3_0.5_mimu 155 2 3 0.7 21 0.52 433.22 0.58 0.03
_mL2_3_0.9_mimu _mL1_3_0.5_mimu 155 2 3 0.9 14 0.54 347.64 0.59 0.16
_mL2_3_1.0_mimu _mL1_3_0.5_mimu 155 2 3 1 13 0.50 292.86 0.58 0.08
_mL2_3_0.5_romu _mL1_3_0.5_romu 162 2 3 0.5 36 0.50 192.95 0.60 0.13
_mL2_3_0.6_romu _mL1_3_0.5_romu 162 2 3 0.6 31 0.50 180.01 0.62 0.12
_mL2_3_0.7_romu _mL1_3_0.5_romu 162 2 3 0.7 26 0.51 163.24 0.63 0.24
_mL2_3_0.9_romu _mL1_3_0.5_romu 162 2 3 0.9 16 0.43 118.18 0.78 0.11
_mL2_3_1.0_romu _mL1_3_0.5_romu 162 2 3 1 13 0.42 116.74 0.81 0.07

Figure 6 presents the similarity matrices for two clustering methods applied to the
Wikipedia_food dataset. On the left is the level 1 similarity matrix generated by the
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HDBSCAN algorithm, while, on the right, is the level 2 similarity matrix generated by the
Mean Shift algorithm. It is noteworthy that both methods yield approximately the same
number of clusters. The MIMU LLM was used for both analyses, further emphasizing the
consistency of clustering results across methods.
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Figure 6. Similarity matrix for HDBSCAN level 1 (a) and Mean Shift level 2 (b) with MIMU LLM on
Wikipedia_food dataset. The number of clusters is approximately the same.

4.3.2. Semantic Graph Creation and Visualizations

The visualization and creation of semantic graphs are the last and most practical parts
of the whole pipeline. Leveraging the clustering results, we create multi-level graphs that
allow users to effortlessly navigate the entire dataset and database, ultimately allowing
direct access to individual items. These graphs are constructed using a similarity matrix
derived from individual elements or clusters at the lowest level.

To build the similarity matrix, we use a single vector for each element. Using trans-
formers, we compute the average of the [AVG] tokens or the [CLS] tokens that encapsulate
whole sentences. The model generates a contextualized vector for each element in the input;
it can be a single item at the lowest level or the top elements in the case of level 1 or level 2
clustering. To build the similarity matrix, we compare [CLS] or [AVG] tokens in pairs using
a distance metric, in this case, cosine similarity. The resulting scores indicate the similarity
relationships between these tokens and are used to construct the matrix. The graphs shown
in the figures were created using [CLS] tokens to generate a single vector for each item.

The similarity metric was then used to construct the semantic graphs by selecting the
k most similar items for each element, where k ranges from 1 to 4. When k = 1, disjoint
graphs may be formed, resulting in some nodes being connected to each other but not to
others. In contrast, when k ≥ 2, the graphs are fully connected. However, if k = 4, almost
all nodes are connected, which can make the graphs difficult to read.

Figure 7 shows the semantic graph constructed from the Wikipedia_food dataset,
consisting of 155 interconnected nodes. In clustering, each node is named after the most
similar element within its corresponding cluster. Due to the high density of the graph, it
presents significant challenges for navigation, as the high volume of connections can lead to
information overload. This structure highlights the complexity of the relationships within
the dataset, making it difficult to navigate the graph, hence the need for iterative clustering.
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Figure 7. The semantic graph for whole Wikipedia_food dataset consisting of 155 nodes, accessible
via the following URL address http://arm.mi.imati.cnr.it/papers/Kgraphs/graphs/wiki_mysql_
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Figure 8 shows the semantic graph for level 2 (L2) of the Wikipedia_food dataset,
consisting of 34 nodes. The initial items for this analysis were the 155 items identified in
the first clustering. The hyperparameters used for both clustering processes were set to
n_neighbor = 3 and bandwidth = 0.5. The clustering algorithm used was Mean Shift.
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Figure 9 shows the semantic graph for the entire CookIT dataset, which consists of
21 nodes. Including the two best connections between these nodes (k = 2) increases the
complexity of the graph, ensuring that all parts are connected, with no isolated segments.
This increased connectivity means that every node is part of the graph, providing a complete
view of the relationships within the dataset. The interconnected structure facilitates a
deeper examination of how different nodes relate to each other, providing deeper insights.
However, the added connections also increase complexity, potentially making the graph
more difficult to interpret. In addition, because all nodes are connected, the graph can
become cluttered, leading to potential information overload and making it difficult to focus
on individual nodes or specific connections without additional filtering or visualization
techniques.
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Figure 10 shows the elements of Cluster 08 related to Bread Blessing in the Query-
Lab_intangible_tags dataset. All elements within this cluster are related to either food or
blessings. The analysis was performed using the ROMU language model with hyperpa-
rameters set to n_neighbor = 3 and bandwidth = 0.5. The clustering algorithm used was
Mean Shift. This clustering highlights the specific thematic focus on food and blessings
within the dataset.
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Figure 10. Elements of Cluster 08, related to Bread Blessing, on the QueryLab_intangible_tags.
The LLM is ROMU and the hyperparameters are n_neighbor 3 and bandwidth 0.5.
The algorithm is Mean Shift. The graph is accessible via the following URL ad-
dress http://arm.mi.imati.cnr.it/papers/Kgraphs/graphs/querylab_intangible_tag_it_v1_bert_
_mL1_3_0.5_romu_cluster_08Bread%20bl_best_n2_pyvis2.html, 17 September 2024.

Figure 11 shows the elements of Cluster 02, related to religion, in the QueryLab
_intangible_tags dataset. All 44 elements within this cluster are related to religion, saints,
and church. The analysis was performed using the MIMU language model with hyperpa-
rameters set to n_neighbor = 15, min_cluster_size = 15, and min_samples = 5. The applied
clustering algorithm was HDBSCAN. It is noteworthy that setting k = 1 results in some
nodes remaining unconnected.

After clustering the documents, we extract keywords for each cluster and generate
word cloud visualizations. These visualizations employ the c-TF-IDF algorithm, which
gives higher weight to terms that are more prominent within a specific cluster compared
to the entire document set. This method highlights the most significant terms for each
cluster. Additionally, it is evident that each cluster contains items in various languages.
Visualizing word clouds for the clusters enables us to easily assess cluster diversity, similar
to the matrices shown in Figures 2–6.

Figure 12 illustrates the c-TF-IDF terms of clusters generated by either the HDBSCAN
or Mean Shift algorithms, providing insight into the distinctive terms associated with each
cluster. Figure 12a shows the c-TF-IDF terms for the same cluster as Figure 10, focusing on
elements related to the blessing of bread. Figure 12b illustrates the terms for Cluster 2, all
of which are associated with religion, corresponding to the elements discussed in Figure 11.
Figure 12c shows Cluster 19, providing a comparison to Figure 12a and demonstrating the
differences between clusters under the same configuration. Figure 12d shows the terms for
Cluster 4, which can be inferred to be related to art, theater, and traditional dance.

http://arm.mi.imati.cnr.it/papers/Kgraphs/graphs/querylab_intangible_tag_it_v1_bert__mL1_3_0.5_romu_cluster_08Bread%20bl_best_n2_pyvis2.html
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Figure 12. c-TF-IDF terms of clusters using HDBSCAN or Mean Shift. (a) c-TF-IDF terms of Cluster
8 using Mean Shift (same as Figure 10). (b) c-TF-IDF terms of Cluster 2 using HDBSCAN (same as
Figure 11). (c) c-TF-IDF terms of Cluster 19 using Mean Shift. (d) c-TF-IDF terms of Cluster 4 using
HDBSCAN.

http://arm.mi.imati.cnr.it/papers/Kgraphs/graphs/querylab_intangible_tag_it_v1_bert__hL1_15_15_5_mimu_cluster_02Religiou_best_n1_pyvis2.html
http://arm.mi.imati.cnr.it/papers/Kgraphs/graphs/querylab_intangible_tag_it_v1_bert__hL1_15_15_5_mimu_cluster_02Religiou_best_n1_pyvis2.html
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The difference in the number of words between the figures on the left (Figure 12a,c)
and those on the right (Figure 12b,d) is due to the number of items within each cluster.
Clusters 8 and 19 contain fewer than 10 items, resulting in fewer terms, whereas the
clusters on the right have a significantly larger number of items, resulting in a richer set of
associated terms. This illustrates how the density and size of clusters affect the breadth of
their respective c-TF-IDF terms.

In this prototype phase, we focused on two main aspects for subjective evaluation:
(1) whether users found navigating the archive through the graph useful and engaging,
and (2) whether multi-level graphs were effective, especially considering the presence of
semantically distant elements within the same cluster at the higher level, which could
be difficult for web users to interpret. Initial qualitative evaluations showed a positive
response to both aspects, albeit to varying degrees. Feedback from heritage professionals
and web users highlighted the simplicity and usability of the graph visualization as key
strengths. However, the multi-level visualization was sometimes difficult for users to
understand. In addition, even low-level clusters sometimes contained unrelated items,
while related items were sometimes spread across multiple clusters, particularly when the
number of clusters was not well suited.

5. Discussion

This study describes a prototype for the unsupervised construction of semantic graphs.
The primary factors influencing the results are discussed below.

5.1. Visual Representation of Data

The proposed method provides users with a visual representation of archives or
datasets, facilitating engaging and intuitive exploration. These graphs visually represent
relationships and connections between various elements, making the exploration and
understanding of intangible heritage information easier for researchers and the web users
alike [49,50].

Another advantage is the dynamic representation these graphs offer. Unlike static
lists or databases, navigation network graphs are interactive, allowing users to explore
different nodes and edges. This interaction helps uncover hidden connections and provides
deeper insights into the cultural and historical contexts of intangible heritage items. This
interactivity also increases user engagement, as individuals can actively participate in
the discovery process, fostering a greater interest in preserving and promoting intangible
heritage [51,52].

User feedback confirmed these results, emphasizing that the playful and interac-
tive aspects are highly appreciated after an initial adjustment period, regardless of age
or background.

However, while comprehensive data visualization is beneficial, it can lead to infor-
mation overload. Users might find it challenging to navigate large and dense graphs,
potentially missing critical information or feeling overwhelmed by the volume of data [53].
To address information overload, we structured the clusters hierarchically to simplify
navigation. This layered approach allows users to start with a high-level overview and
zoom in on specific information as needed. Users can view these clusters as single entities
that can be expanded or collapsed. This reduces visual clutter and allows users to focus on
one cluster at a time, simplifying navigation and improving comprehension.

Moreover, accessing and interacting with navigation network graphs may require
specific technical knowledge, limiting accessibility for users without the necessary resources
or expertise, especially in regions with limited technological advancement [54].

The decision to create simple HTML pages or PNG images (such as the current word
clouds) that can be easily integrated into web portals such as QueryLab or CookIT addresses
both technical and cognitive limitations, thus broadening the potential target audience.
These choices are in line with the method’s philosophy, which emphasizes the use of
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state-of-the-art tools and techniques in a way that is easy to implement and use, ultimately
improving the user experience.

5.2. Optimal Size of Elements in Graphs

The optimal size of elements in a knowledge graph for cultural heritage applications
typically ranges from a few elements to less than a few hundred. This range ensures clear
visualization and manageable navigation, which is critical for users exploring complex
relationships within cultural heritage datasets. Knowledge graphs within this node range
maintain the clarity of relationships between nodes, avoiding overwhelming users with too
much complexity [55,56]. However, the specific optimal size can vary based on the analysis
objectives and the granularity of the data.

• Effective visualization tools are crucial in cultural heritage contexts to ensure that
users can easily navigate and understand the data.

• According to Das et al. [57], balancing visual clarity with the volume of data is essential.
Interactive features like zooming, filtering, and subgraph exploration enhance user
engagement and comprehension, which is particularly important for audiences who
may not be experts in data analysis.

• The level of detail, or granularity, represented in the knowledge graph impacts its size.
Coarser granularity might simplify the graph, resulting in fewer nodes, while finer
granularity increases the number of nodes to capture detailed relationships [58].

Taking these considerations into account and testing graphs with different densi-
ties, we empirically found that a number of elements between 20 and 30 allows for easy
interaction for our contexts, users, and purposes. We have also observed that, in the
case of homogeneous graphs (such as those at the lowest level), the number of elements
can be higher, as long as the number of edges is limited. In cases with larger numbers
of elements with multiple links, we opted for iterative clustering solutions, resulting in
multi-level graphs.

5.3. Selection of the LLM

The proposed system leverages a large language model to construct knowledge graphs,
specifically employing models like Bert due to their state-of-the-art performance in natural
language understanding and generation. The selection of the LLM is challenging and has
been guided by the following criteria:

• Accuracy: BERT and similar models have demonstrated exceptional accuracy against
various benchmarks, ensuring precise and reliable knowledge extraction from large
datasets. High accuracy is vital for generating meaningful and correct relationships
within the knowledge graph [17].

• Multilingual Support: The chosen models should support multiple languages, which
is crucial for datasets that span different linguistic contexts. This capability ensures
that the system can handle and integrate data from diverse sources without losing
contextual integrity [18].

• Open-Source Nature: Utilizing open-source models like those provided by the Hug-
ging Face Transformers library allows for greater transparency, flexibility in customiza-
tion, and the ability to modify the underlying code to better fit specific use cases.
This openness also fosters community collaboration and peer review, enhancing the
model’s robustness [59].

• Community and Vendor Support: Strong support from both the community and
vendors ensures that the model remains up to date with the latest advancements and
improvements. It also provides users with access to a wealth of resources, tutorials,
and troubleshooting assistance, which is critical for maintaining and scaling the system
effectively [60].
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These criteria were identified to ensure that the pipeline remains reproducible and
accessible, allowing other researchers and practitioners to effectively apply this solution to
their own data.

With respect to the number of languages supported by the model, while both multilin-
gual and monolingual models perform well in their respective domains, there are important
structural differences between the two that influence their performance. Multilingual mod-
els are designed to handle multiple languages simultaneously, enabling cross-lingual
transfer learning and flexibility in multilingual contexts. These models are trained on a
variety of languages, allowing them to perform well on tasks involving multiple languages.

Monolingual models, on the other hand, are optimized for a single language and can
capture more intricate linguistic structures and patterns specific to that language. This
results in superior performance on tasks that are strictly within a single language. The
structural divergence between multilingual and monolingual models can be attributed to
the increased complexity of multilingual models, which often exhibit less faithful explana-
tory accuracy compared to monolingual models, because larger multilingual models must
generalize across multiple languages, leading to different representations and potential
reductions in model performance fidelity for individual languages [61].

The selection of LLMs used in this experiment was made in line with the considera-
tions mentioned above, starting from the Hugging Face website and opting for solutions
provided by Microsoft or Facebook (e.g., MIMU) or particularly high-performing models
such as ROMU.

6. Conclusions and Future Works

In this paper, we presented a prototype for creating semantic graphs in an unsuper-
vised manner. The ultimate goal is to integrate into websites or portals this new way of
searching and browsing data in cultural heritage archives, using semantic graphs as a
layered map with different granularity.

Users are presented with the contents of the archive in a simple visual representation,
enabling them to explore and navigate the data in an engaging and intuitive way. Nav-
igation network graphs offer enhanced accessibility to data. Users, experts in the field,
and web users gave an initial positive qualitative assessment of the prototype, judging this
overall view of the archive and each node positively. A more quantitative evaluation of the
whole pipeline is being studied. As more relevant datasets and benchmarks will become
available, we plan to conduct an extensive comparative analysis with existing methods,
allowing for a broader evaluation of the effectiveness of our approach.

The complexity of creating and maintaining these graphs is a significant challenge.
This process requires specialized expertise in data visualization and data management,
which may not be readily available in all cultural institutions. The proposed pipeline
seeks to mitigate this complexity by providing user-friendly tools that are adaptable to
different environments.

Future work will focus on developing tools that facilitate user-driven navigation
within the graphs, allowing seamless movement from one point to another. In addition, the
implementation of fish-eye views will address graph density issues and improve visibility
and comprehension.

In the future, we intend to integrate more evaluation measures to provide a more
comprehensive assessment of the clustering quality and to guide the selection of appropriate
algorithms and parameter settings.

Additionally, navigation network graphs play a critical role in data integration by
bringing together heterogeneous datasets, regardless of their origin, language, or granular-
ity. Future experiments will explore the effectiveness of this prototype using multilingual
datasets to assess its robustness.

The integration of feedback mechanisms will allow users to report problems and
suggest improvements, thereby identifying common usability challenges. These strategies
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can significantly improve navigation through large, complex graphs, minimizing the risk
of information overload and enriching the overall user experience.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics13183741/s1, Complete results of HDBSCAN and
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