
Citation: Effendi, Y.A.; Kim, M. Timed

Genetic Process Mining for Robust

Tracking of Processes under

Incomplete Event Log Conditions.

Electronics 2024, 13, 3752. https://

doi.org/10.3390/electronics13183752

Academic Editors: Tania Cerquitelli,

Giovanni Malnati and Genoveva

Vargas-Solar

Received: 7 August 2024

Revised: 9 September 2024

Accepted: 19 September 2024

Published: 21 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Timed Genetic Process Mining for Robust Tracking of Processes
under Incomplete Event Log Conditions
Yutika Amelia Effendi 1,2 and Minsoo Kim 2,*

1 Robotics and Artificial Intelligence Engineering, Faculty of Advanced Technology and Multidiscipline,
Airlangga University, Surabaya 60115, Indonesia; yutika.effendi@ftmm.unair.ac.id

2 Department of Industrial and Data Engineering, College of Engineering, Pukyong National University,
Busan 48513, Republic of Korea

* Correspondence: minsky@pknu.ac.kr; Tel.: +82-51-629-6487

Abstract: In process mining, an event log is a structured collection of recorded events that describes
the execution of processes within an organization. The completeness of event logs is crucial for
ensuring accurate and reliable process models. Incomplete event logs, which can result from system
errors, manual data entry mistakes, or irregular operational patterns, undermine the integrity of
these models. Addressing this issue is essential for constructing accurate models. This research
aims to enhance process model performance and robustness by transforming incomplete event logs
into complete ones using a process discovery algorithm. Genetic process mining, a type of process
discovery algorithm, is chosen for its ability to evaluate multiple candidate solutions concurrently,
effectively recovering missing events and improving log completeness. However, the original form of
the genetic process mining algorithm is not optimized for handling incomplete logs, which can result
in incorrect models being discovered. To address this limitation, this research proposes a modified
approach that incorporates timing information to better manage incomplete logs. By leveraging
timing data, the algorithm can infer missing events, leading to process tracking and reconstruction
which is more accurate. Experimental results validate the effectiveness of the modified algorithm,
showing higher fitness and precision scores, improved process model comparisons, and a good level
of coverage without errors. Additionally, several advanced metrics for conformance checking are
presented to further validate the process models and event logs discovered by both algorithms.

Keywords: genetic process mining; dual timestamp; incomplete event log; process model; parallel
processes; conformance; process mining; process discovery

1. Introduction

In process mining, an event log is a structured collection of recorded events that
describes the execution of processes within an organization or system [1,2]. Each event in
the log represents a specific action, state change, or activity that occurs during the execution
of a process instance [3]. Event logs are crucial in process mining because they capture
the sequential steps of processes, ensuring the accuracy and reliability of the analysis
derived from process mining techniques [4]. The completeness of these event logs is vital;
incomplete event logs can lead to flawed models and misinformed decisions, making
completeness a significant focus in process mining research [5].

Real-world event logs are often more complex than the simplified case studies used
in research. The former involve numerous cases, activities, timestamps, and intricate
dependencies [6]. While this research acknowledges the complexity of real-world logs, it
simplifies the analysis to highlight the core properties of event logs, focusing on essential
elements like Case ID, Activity, and Timestamp [2]. These elements are fundamental for
reconstructing process models and analyzing behaviors [1].

A persistent challenge in process mining is the handling of missing event logs [7].
Missing entries can result from system errors, manual oversight, technical limitations, or

Electronics 2024, 13, 3752. https://doi.org/10.3390/electronics13183752 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13183752
https://doi.org/10.3390/electronics13183752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7625-2560
https://orcid.org/0000-0002-6454-6980
https://doi.org/10.3390/electronics13183752
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13183752?type=check_update&version=1

Electronics 2024, 13, 3752 2 of 28

data corruption [8]. The absence of these logs can undermine the integrity of process models,
leading to incorrect conclusions about the efficiency and effectiveness of the underlying
processes. Systems that run periodically, whether synchronously or asynchronously, are
particularly prone to time gaps [9]. Synchronous systems operate on a fixed schedule, while
asynchronous systems run based on specific triggers; both types can experience intervals
where no events are logged. These gaps may be due to the maintenance periods, system
downtimes, manual data entry errors, and irregular operational patterns which contribute
to incomplete event logs [10,11].

Despite expectations of robust and detailed logging capabilities in modern software,
some organizations still rely on systems that operate periodically and
asynchronously [12,13]. This approach allows them to maintain control over their processes
while avoiding the delays associated with obtaining a complete event log. In scenarios
where manual periodic event logging occurs, such as in port container terminals [14] and
hospitals [15], the research focuses on filling gaps created by the temporary absence of
activities until the actual logs are entered or updated. Once the complete event log is
available, the process discovery algorithm can be reapplied to discover a process model
based on the updated data. This iterative approach is repeated whenever an incomplete
event log occurs during periodic system operation, ensuring continuous model accuracy
and completeness.

Addressing time gaps is essential for maintaining the integrity of event logs and
constructing accurate process models. Time gaps can result in incomplete data, making it
challenging to create comprehensive models. To mitigate these gaps, it is often necessary
to infer missing logs by making educated guesses based on previous complete event logs.
This process involves utilizing historical data and patterns to reconstruct a more accurate
representation of the process.

The primary goal of this research is to enhance the performance and robustness of
process models by transforming incomplete event logs into complete ones, ensuring that
the derived models are both accurate and reliable. To achieve this, sophisticated algorithms
are needed to intelligently fill in the missing data. One such algorithm is the genetic
process mining algorithm, chosen for its ability to generate and evaluate multiple candidate
solutions concurrently [1]. This algorithm evolves process models through crossover and
mutation, optimizing a fitness function to match the observed data. Its global optimization
strategy searches for the models that best fit incomplete and noisy data, increasing the
likelihood of the identification and filling of gaps in the event log data [16]. By considering a
broad range of possible process flows and sequences, the genetic process mining algorithm
can effectively recover missing events and enhance the completeness of event logs.

However, traditional genetic process mining algorithms are not specifically optimized
for handling incomplete logs. Missing events can create incorrect sequences in the discov-
ered model, making it less representative of the actual process. Therefore, this research
proposes an optimized approach to genetic process mining, one that incorporates timing
information, referred to as the timed genetic process mining algorithm. By using timing
data, the modified algorithm can infer where events should be, even if they are missing
from the log. This approach allows for a process reconstruction which is more accurate,
making the algorithm more robust in dealing with incomplete data by filling in gaps based
on expected time intervals.

By integrating timing information, the proposed modifications aim to create more
robust and accurate process models capable of handling incomplete event logs more
effectively. This will lead to better-informed decisions and more efficient processes within
organizations. Through various experiments, we aim to validate the effectiveness of this
modified algorithm, as well as the process model and event log generated from it. Our
analysis demonstrates that this approach accurately generates a complete event log and
process model from an incomplete log, showing commendable structural and behavioral
appropriateness. Furthermore, our research validation compares the modified algorithm’s
results with those of the original genetic process mining algorithm and base processes from

Electronics 2024, 13, 3752 3 of 28

the organization, assessing structural appropriateness—such as process model comparison,
process model coverage, and structural matching traces—and behavioral appropriateness,
including fitness and precision scores.

The document is organized as follows: Section 2 delves into the research background;
Section 3 introduces the experimental design; Sections 4 and 5 showcase comparisons of
algorithms for recovering missing events and provide in-depth comparisons of experiments
and analysis, respectively; and Sections 6 and 7 present advanced metrics for conformance
checking and the conclusion.

2. Research Background
2.1. Process Mining

In Industry 4.0, recording nearly all process activities is now possible. This recorded
data, whether analyzed in real time or offline, allows for detailed scrutiny tailored to
specific needs—a practice known as process mining. Process mining combines data mining
and process modeling, providing a bridge between data science and business process man-
agement [1]. The primary objectives of process mining include discovery, conformance, and
enhancement [17]. Discovery focuses on uncovering and visualizing the actual processes
as they occur, often creating a process model based on observed event data [2,17]. Con-
formance involves comparing the discovered process model with a predefined model to
identify deviations and ensure compliance with specified procedures [18,19]. Enhancement
aims to improve existing process models by incorporating additional information from
event logs to optimize performance, efficiency, and understanding of the processes [1,20].

However, process mining is impossible without proper event logs [1,2]. It is a data
analysis technique used to extract insights from event logs generated by information
systems. It involves discovering, monitoring, and improving real processes by extracting
knowledge from the logs which capture the sequence of activities in an organization’s
processes. Therefore, through event logs and the three aforementioned techniques, process
mining helps organizations understand their processes better, identify inefficiencies, ensure
compliance, and enhance overall performance based on empirical data.

2.2. Event Log Completeness

Event log completeness is a crucial concept in process mining, one which involves
the analysis of event logs to extract process-related information. Completeness in this
context refers to the extent to which the event log accurately and comprehensively reflects
the underlying business process [4,7,21]. This includes several aspects: trace complete-
ness, event completeness, attribute completeness, frequency completeness, and temporal
completeness. Ensuring event log completeness is fundamental to the reliability and va-
lidity of process mining analyses, allowing for accurate process discovery, conformance
checking, and enhancement, leading to more effective business process management and
improvement [22].

Ensuring event log completeness faces several challenges. Inadequate or faulty data
collection mechanisms can result in missing or incomplete data [23]. Processes often span
multiple systems, and lack of integration can lead to incomplete event logs [24]. Manual
data entry errors and non-compliance with logging protocols can affect completeness [25].
Additionally, technical limitations, such as storage capacity and system performance,
can constrain the completeness of logs [26]. Policy and compliance issues also play a
role; inconsistent adherence to data logging policies and procedures can lead to missing
information, making the logs incomplete [27].

To enhance event log completeness, it is essential to improve data collection mecha-
nisms and ensure all relevant systems are integrated. Regular audits of event logs should
be conducted to identify and address gaps in data collection [28]. Staff should be trained
on the importance of complete data logging and compliance with protocols [29]. Utilizing
advanced data collection and integration tools can automate and improve the completeness
of event logs [30].

Electronics 2024, 13, 3752 4 of 28

Consider a hospital’s patient management system, in which the event log captures all
patient-related activities from admission to discharge, including diagnostics, treatments,
and consultations. In a scenario of incomplete event logs, if the hospital uses multiple
systems for different departments (e.g., emergency, radiology, and surgery) that are not
fully integrated, a patient’s transfer from the emergency department to radiology might
not be recorded properly. This leads to gaps in the event log, and when analyzing the
log for process improvement, it might appear that certain diagnostic procedures were not
conducted or there might be discrepancies in the time taken for patient transfers. Conse-
quently, incorrect conclusions about process efficiency and areas needing improvement
might be drawn.

In another scenario, incomplete event logs due to human factors can be observed.
Nurses and doctors manually enter data into the system, and due to heavy workloads, they
occasionally forget to log patient interactions or input incorrect data. Important events, such
as medication administration or patient consultations, might be missing or inaccurately
recorded. When conducting an analysis to ensure compliance with treatment protocols, it
might falsely appear that some patients did not receive the required medications on time,
leading to potential misinterpretations of staff performance and patient-care quality.

The relationship between event log completeness and the occurrence of incomplete
event logs is evident in how missing or incorrect data can skew process analysis and
decision-making. Addressing challenges related to inadequate data collection mechanisms,
lack of system integration, human errors, technical limitations, and compliance issues is
crucial. Ensuring comprehensive event logs enables accurate and effective process mining
and improvement initiatives.

2.3. Dual-Timestamp Event Log

Initially, event logs often record only one timestamp per event [1,2]. Although ana-
lyzing the time between two process steps is feasible with a single timestamp, accurately
determining the duration of each activity is not possible [14]. This limitation makes the
processing time appear instantaneous. To address this, it is essential to have both start-
ing and ending timestamps for each activity, leading to the concept of an event log with
dual timestamps.

There has been previous research related to the concept of dual timestamps. For
instance, studies [31–33] exemplify this concept. Research efforts [31,32] introduced a time-
based discovery algorithm that uses the non-linear dependence principle. This algorithm
employs the concept of a Gantt chart to represent dual timestamps. Furthermore, study [33]
explored the use of threshold intervals to identify parallels in the heuristic miner.

Event logs with dual timestamps provide a richer, more detailed dataset that signifi-
cantly enhances the accuracy and effectiveness of process discovery algorithms. They offer
better insights into the temporal aspects of processes, improve the handling of concurrency,
and support analysis and visualization techniques which are more advanced [34]. Dual
timestamps allow for the precise representation of activities that may overlap in time,
providing a clearer picture of parallelism and concurrency, which helps in identifying and
modeling concurrent processes more accurately [35]. By enabling the analysis of activity du-
rations, dual timestamps are crucial for understanding process flow, identifying bottlenecks,
and measuring performance [36]. They also provide a more detailed sequencing of events,
allowing for the establishment of a more accurate order of activities. Detailed analysis of
resource utilization is made possible by knowing exactly when each activity starts and ends,
helping to determine resource allocation, utilization rates, and potential conflicts. Dual
timestamps enable the identification of idle or waiting times between activities, pinpointing
inefficiencies and aiding in the understanding of delays [37]. Many advanced process
mining techniques, such as conformance checking and performance analysis, benefit from
this richer dataset, allowing for better analysis of deviations and accurate measurement of
performance [38]. Process models generated from dual-timestamp logs can be visualized
with more detail, showing the sequence, duration, and overlap of activities, leading to more

Electronics 2024, 13, 3752 5 of 28

informative and actionable reports. This capability is especially beneficial for capturing and
analyzing complex processes with multiple concurrent and overlapping activities, resulting
in process models which are more accurate and reliable and reflect the true nature of the
business process.

Based on the advantages of dual-timestamp event logs, we use them in our study.
However, the original form of genetic process mining, when discovering a process model,
generally relies on a sequential approach rather than a timed approach. This means that the
focus is on the order and sequence of activities rather than the specific timing or duration
of each activity. It also includes the use of single-timestamp event logs as input. In the
sequential approach, the primary goal is to reconstruct the sequence of activities in the
process model from the event log, ensuring that the discovered model accurately reflects
the observed order of activities. This involves analyzing the patterns and frequencies
of activity sequences to infer the most likely process flow. On the other hand, a timed
approach would consider the exact timestamps, durations, and potentially overlapping
or concurrent activities. Therefore, a modification of genetic process mining is needed to
accept dual-timestamp event logs as input and consider the temporal information of each
event, including potentially parallel processes.

2.4. Behavioral and Structural Appropriateness

Behavioral and structural appropriateness are two key concepts in process min-
ing [31,39], part of conformance [1,14,18,19] and used to evaluate the quality and alignment
of a process model with the actual event log data. Together, these concepts ensure that
a process model is both behaviorally and structurally aligned with the real-world pro-
cesses it aims to represent, leading to more accurate, reliable, and useful process models in
process mining.

2.4.1. Behavioral Appropriateness

Behavioral appropriateness measures the extent of the behavior permitted by the
model that was never actually utilized in the observed process executions within the
log [31]. The goal is to model the process as accurately as possible. If the model is overly
general and permits more behavior than necessary, it becomes less informative because it
no longer accurately describes the actual process and may allow for unwanted execution
sequences [19].

In practice, this conformance issue can be examined from two perspectives [39]. Firstly,
the “extra” behavior allowed by the model might represent, for instance, an alternative
path designed for exceptional situations that did not occur during the period when the
log was recorded, indicating that the event log is incomplete. Secondly, the model might
indeed be overly generic, allowing for situations that never occur in reality. An expert in
the relevant area would be needed to distinguish between these two scenarios. Hence,
appropriate metrics are required.

Based on [14,31,39], the key aspects of behavioral appropriateness include how well
the process model mirrors the actual behavior observed in the event log, concerning both
sequence and parallel relationships. It assesses whether the model can reproduce the
sequences and parallels of activities found in the log and avoid those that are not observed.

2.4.2. Structural Appropriateness

Constructing the model of a business process in a concise and meaningful way through
measurement is challenging. The perceived suitability of a model often depends on sub-
jective preferences and is typically aligned with the model’s specific purpose. Factors like
the granularity of workflow actions can only be determined by an experienced human
designer [19]. Structural appropriateness usually pertains to the control of flow perspective,
with multiple syntactic ways available to represent the same behavior in a process model,
including duplicate tasks, invisible tasks, and implicit places [31].

Electronics 2024, 13, 3752 6 of 28

To address structural appropriateness independently of the model’s actual behavior, it
is advisable to adhere to certain design guidelines that specify the preferred methods for
expressing specific behavioral patterns and penalize deviations from these guidelines [39].
These design guidelines will vary across different process modeling notations and may
depend on individual or corporate preferences.

Based on [14,19,31,39], structural appropriateness focuses on the structural aspects of
the process model. It evaluates whether the model’s structure is reasonable and aligns well
with the logic and constraints of the real-world process.

2.5. Process Discovery

The essence of process discovery involves extracting valuable insights and knowledge
from event logs produced by information systems [1,2,17]. There are several methods
available for process discovery, such as the alpha miner, the heuristic miner, genetic pro-
cess mining, the fuzzy miner, and the inductive miner. The methods represent various
approaches to extracting process models from event logs, each with its own strengths and
suitability, depending on the characteristics of the data and the goals of the analysis. The
alpha miner [1,40–42] focuses on constructing a Petri net by identifying frequent patterns
of behavior in the event log, making it suitable for straightforward processes with clear
sequences. The heuristic miner [1,43,44] employs a more flexible approach by considering
dependencies between activities and is adept at handling noise and inconsistencies in
event data. Genetic process mining [1,16] applies evolutionary algorithms to explore and
optimize process models, which is useful for complex processes with multiple variants.
The fuzzy miner [1,45,46] incorporates fuzzy logic to accommodate uncertain or impre-
cise event data, providing process models which are more nuanced. Lastly, the inductive
miner [1,46,47] uses a tree-based approach to infer process models from event logs, empha-
sizing simplicity and clarity in representation, which can be beneficial for understanding
and communicating process flows. Each method offers distinct advantages in uncovering
and representing process behavior, catering to different scenarios and analytical needs in
process mining.

Genetic process mining excels in discovering process models from event logs due to
its ability to handle complexity, variability, and data quality issues effectively [1,16]. Its
exploratory nature, coupled with its optimization capabilities and scalability, positions
genetic process mining as a robust approach for extracting actionable insights from process
data, compared to other methods like the alpha miner, heuristic miner, fuzzy miner, and
inductive miner.

This study uses, from among the five mentioned process discovery algorithms for
recovering missing events from incomplete event logs, genetic process mining due to its
ability to maintain diversity and explore alternative solutions. It inherently maintains
a diverse population of potential solutions (process models) through mechanisms like
crossover and mutation. This diversity allows it to explore different hypotheses and
scenarios, which is crucial when dealing with incomplete event logs where certain events
or sequences may be missing or ambiguous.

Unlike some other process mining methods, which may rely on specific assumptions
or heuristics about process behavior [1], genetic process mining can generate and evaluate
multiple candidate solutions concurrently [16]. This capability increases the likelihood of
identifying and filling gaps in the event log data by considering a broader range of possible
process flows and sequences. Furthermore, it is adaptive and iterative. It continuously
refines and adjusts process models based on feedback from the event log data, gradually
converging towards more accurate representations of the underlying processes. This
adaptability is particularly advantageous in scenarios in which initial event logs may be
sparse or inconsistent, or contain errors, allowing the algorithm to iteratively improve the
completeness and reliability of the discovered process models over time.

Figure 1 outlines a genetic process mining approach to discover a process model from
an event log. Algorithm A1 in Appendix A is an implementation of Figure 1. Initially, a

Electronics 2024, 13, 3752 7 of 28

population of potential process models is initialized. Each model’s fitness is evaluated
based on how well it matches the observed behavior in the event log. The process then
enters a loop in which, until certain termination criteria are met (such as a maximum
number of iterations or satisfactory fitness level), parents are selected from the population
based on their fitness scores. These selected parents undergo genetic operations—crossover
and mutation—to produce offspring, representing new potential models. The fitness of
these offspring is evaluated against the event log data to determine how accurately the
offspring capture the process behavior. The least-fit models in the population are then
replaced with the offspring, with the aim of improving the overall quality of models
over successive iterations. Once the termination criteria are satisfied, the best-performing
model in the population is selected as the discovered process model, representing the most
accurate depiction of the process observed in the event log.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 29

refines and adjusts process models based on feedback from the event log data, gradually
converging towards more accurate representations of the underlying processes. This
adaptability is particularly advantageous in scenarios in which initial event logs may be
sparse or inconsistent, or contain errors, allowing the algorithm to iteratively improve the
completeness and reliability of the discovered process models over time.

Figure 1 outlines a genetic process mining approach to discover a process model from
an event log. Algorithm A1 in Appendix A is an implementation of Figure 1. Initially, a
population of potential process models is initialized. Each model’s fitness is evaluated
based on how well it matches the observed behavior in the event log. The process then
enters a loop in which, until certain termination criteria are met (such as a maximum num-
ber of iterations or satisfactory fitness level), parents are selected from the population
based on their fitness scores. These selected parents undergo genetic operations—crosso-
ver and mutation—to produce offspring, representing new potential models. The fitness
of these offspring is evaluated against the event log data to determine how accurately the
offspring capture the process behavior. The least-fit models in the population are then
replaced with the offspring, with the aim of improving the overall quality of models over
successive iterations. Once the termination criteria are satisfied, the best-performing
model in the population is selected as the discovered process model, representing the
most accurate depiction of the process observed in the event log.

Figure 1. Flowchart of the original genetic process mining algorithm employed to discover a pro-
cess model.

3. Experimental Setup
We conducted experiments using real data obtained from a private hospital in Sura-

baya, Indonesia. The data utilized in our study were collected between March and April
2023. Figure 2 illustrates the complete event log from the hospital. The event log, as rec-
orded in the hospital, is already in a dual-timestamp format, with case IDs (Case Identifi-
ers) that distinguish one instance of a process from another and activity names. In this
study, activities are the same as events. The event log also reveals the presence of both
sequential and parallel processes, as seen from the timestamps of each activity. There are
50 cases and 13 activities involved in this research.

However, during March and April 2023, several activities were manually recorded
by hospital workers, and the data were entered into the hospital information system after
working hours, at around 6 P.M. In this study, this scenario—in which the hospital infor-
mation system does not fully record executed processes because some events are recorded
asynchronously—results in incomplete event logs. Therefore, during March and April
2023, there are 10 cases identified as incomplete event logs. The goal of the genetic process
mining algorithm is to track the runtime and sequences of process activities that happened
for the data recorded outside the system, referred to as recovering missing events. Figure
2 also illustrates the incomplete event log from the hospital. It shows that there is 1 missing
event in HPE019, which is activity “Patient Assignment”, and 3 missing events in HPE033,
comprising the activities “Therapy Sessions”, “Payment Processing”, and “Discharge
Summary”.

Figure 1. Flowchart of the original genetic process mining algorithm employed to discover a process
model.

3. Experimental Setup

We conducted experiments using real data obtained from a private hospital in Surabaya,
Indonesia. The data utilized in our study were collected between March and April 2023.
Figure 2 illustrates the complete event log from the hospital. The event log, as recorded
in the hospital, is already in a dual-timestamp format, with case IDs (Case Identifiers)
that distinguish one instance of a process from another and activity names. In this study,
activities are the same as events. The event log also reveals the presence of both sequential
and parallel processes, as seen from the timestamps of each activity. There are 50 cases and
13 activities involved in this research.

However, during March and April 2023, several activities were manually recorded
by hospital workers, and the data were entered into the hospital information system
after working hours, at around 6 P.M. In this study, this scenario—in which the hospital
information system does not fully record executed processes because some events are
recorded asynchronously—results in incomplete event logs. Therefore, during March and
April 2023, there are 10 cases identified as incomplete event logs. The goal of the genetic
process mining algorithm is to track the runtime and sequences of process activities that
happened for the data recorded outside the system, referred to as recovering missing
events. Figure 2 also illustrates the incomplete event log from the hospital. It shows that
there is 1 missing event in HPE019, which is activity “Patient Assignment”, and 3 missing
events in HPE033, comprising the activities “Therapy Sessions”, “Payment Processing”,
and “Discharge Summary”.

In this experiment, we applied the original genetic process mining algorithm under its
standard conditions, using the same dataset as in Figure 2 but including only the starting
timestamp, and without the ending timestamp. This approach aligns with the concept
of the original algorithm, as well as most process discovery algorithms, which typically
use a single timestamp—specifically the starting time for each event in the event log [1,2].
Moreover, the computer system configuration used for the experiments includes a Windows
10 Ultimate 64-bit operating system with 8 GB of memory. Table 1 outlines the parameters

Electronics 2024, 13, 3752 8 of 28

used to test the dataset, for both the original genetic process mining algorithm and the
timed genetic process mining algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 29

In this experiment, we applied the original genetic process mining algorithm under
its standard conditions, using the same dataset as in Figure 2 but including only the start-
ing timestamp, and without the ending timestamp. This approach aligns with the concept
of the original algorithm, as well as most process discovery algorithms, which typically
use a single timestamp—specifically the starting time for each event in the event log [1,2].
Moreover, the computer system configuration used for the experiments includes a Win-
dows 10 Ultimate 64-bit operating system with 8 GB of memory. Table 1 outlines the pa-
rameters used to test the dataset, for both the original genetic process mining algorithm
and the timed genetic process mining algorithm.

Figure 2. Dual-timestamp event log of the hospital, showing both complete and incomplete logs.

Table 1. Parameters used in the experiments.

Algorithms Maximum
Generation Limit

Size of Population

The original
genetic process mining

50 50

The timed
genetic process mining 50 50

To validate our proposed methodology, we measure the behavioral and structural
appropriateness of both the event log and process model results from the original genetic
process mining and the timed genetic process mining against the base event log and pro-
cess model from the hospital. In our research, the metrics for measuring behavioral ap-
propriateness are fitness and precision. Meanwhile, the metrics for measuring structural
appropriateness are process model comparison, process model coverage, and similarity
score for trace comparisons using the sequence-matcher method.

In short, fitness measures how well the process model can reproduce the behavior
observed in the event log [1,14,35]. A high fitness score indicates that the model can replay
all or most of the traces from the event log. In other words, it shows the extent to which
the process model can accommodate the recorded events. Meanwhile, the precision deter-
mination measures how much additional behavior is allowed by the process model while
not being observed in the event log [1,14,26]. A high precision score indicates that the
process model does not allow for much behavior beyond what is seen in the event log.
Equation (1) is used to calculate fitness, and Equation (2) is used to calculate precision.

Figure 2. Dual-timestamp event log of the hospital, showing both complete and incomplete logs.

Table 1. Parameters used in the experiments.

Algorithms Maximum
Generation Limit Size of Population

The original
genetic process mining 50 50

The timed
genetic process mining 50 50

To validate our proposed methodology, we measure the behavioral and structural
appropriateness of both the event log and process model results from the original genetic
process mining and the timed genetic process mining against the base event log and
process model from the hospital. In our research, the metrics for measuring behavioral
appropriateness are fitness and precision. Meanwhile, the metrics for measuring structural
appropriateness are process model comparison, process model coverage, and similarity
score for trace comparisons using the sequence-matcher method.

In short, fitness measures how well the process model can reproduce the behavior
observed in the event log [1,14,35]. A high fitness score indicates that the model can
replay all or most of the traces from the event log. In other words, it shows the extent to
which the process model can accommodate the recorded events. Meanwhile, the precision
determination measures how much additional behavior is allowed by the process model
while not being observed in the event log [1,14,26]. A high precision score indicates that
the process model does not allow for much behavior beyond what is seen in the event log.
Equation (1) is used to calculate fitness, and Equation (2) is used to calculate precision.

Fitness =
Correct Relations (TP)

Total Base Relations (TP + FN)
(1)

Precision =
Correct Relations (TP)

Total Discovered Relations (TP + FP)
(2)

where

• True Positives (TP/Correct Relations): relations correctly identified in both the base and
discovered models;

Electronics 2024, 13, 3752 9 of 28

• False Positives (FP): relations identified in the discovered model but not in the base
model;

• False Negatives (FN): relations present in the base model but not identified in the
discovered model.

As for the process model comparison, we evaluate node correspondence, edge corre-
spondence, flow sequence and frequency, and visual structure. For process model coverage,
we calculate the coverage and error percentage of the discovered relations. To calculate
the coverage and error percentage scores for each discovered model, we need to use
Equations (3) and (4), respectively.

Coverage Score =
(

Number o f correctly discovered base relations
Total number o f base relations

)
× 100 (3)

Error Score =
(

Number o f incorrectly discovered relations
Total number o f discovered relations

)
× 100 (4)

4. Comparison of Algorithms for the Recovery of Missing Events

Before presenting our comparison focused on genetic process mining algorithms, we
first discuss the results of a process model generated by another process mining algorithm:
the inductive miner. The inductive miner is currently regarded as one of the most powerful
process discovery algorithms [1,46]. It is typically used to discover process models from
complete event logs with a single timestamp, but it does not effectively handle missing
events or incomplete traces in its standard form [47].

We used the incomplete event log shown in Figure 2 as input for the inductive miner,
and the resulting process model is displayed in Figure 3. The discovered process model is
based solely on the incomplete event log, as the algorithm lacks the capability to infer the
missing events. Based on Figure 3, several relations are missing from the model. While the
inductive miner performs well with event logs that have a clear and repetitive structure,
it faces challenges when dealing with highly incomplete event logs. The algorithm relies
heavily on identifying common patterns, so when there is significant incompleteness and
many missing events, the models it generates may not accurately represent the underlying
process. In such cases, the algorithm might oversimplify the process or overlook less-
frequent but critical behaviors. Therefore, for recovering highly incomplete event logs and
obtaining accurate process models, the genetic process mining algorithm is more suitable.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 29

Figure 3. Process model discovered by the inductive miner algorithm using an incomplete event
log.

4.1. Original Genetic Process Mining Algorithm
Figure 4 outlines a genetic algorithm designed to recover missing activities in an

event log. Algorithm A2 in Appendix A begins by initializing a population of event logs,
in which each individual is a copy of the original event log with missing activities inserted
at random positions. This ensures diversity in the initial population. This approach also
includes step to sort each case in the event log by timestamp to ensure activities are in
chronological order. The fitness of each individual is then evaluated based on the number
of correctly recovered activities, compared to the original log. The top individuals, deter-
mined by their fitness scores, are selected to form the basis of the next generation. Cross-
over is performed between pairs of selected parents to create offspring by the exchange of
case activities, introducing variability. Mutation is applied to these offspring by randomly
changing activities within cases, ensuring further diversity. This process iterates for a
specified number of generations, continuously evolving the population towards better so-
lutions. The individual with the highest fitness in the final generation is considered the
best solution, representing the event log with the most accurately recovered missing ac-
tivities. Finally, the complete event log is sorted and displayed after adjusting the
timestamp to avoid the duplicate, and the process model is visualized to show the discov-
ered sequence of activities.

Figure 4. Flowchart of the original genetic process mining algorithm used to recover missing
events.

Figure 3. Process model discovered by the inductive miner algorithm using an incomplete event log.

4.1. Original Genetic Process Mining Algorithm

Figure 4 outlines a genetic algorithm designed to recover missing activities in an event
log. Algorithm A2 in Appendix A begins by initializing a population of event logs, in which

Electronics 2024, 13, 3752 10 of 28

each individual is a copy of the original event log with missing activities inserted at random
positions. This ensures diversity in the initial population. This approach also includes step
to sort each case in the event log by timestamp to ensure activities are in chronological order.
The fitness of each individual is then evaluated based on the number of correctly recovered
activities, compared to the original log. The top individuals, determined by their fitness
scores, are selected to form the basis of the next generation. Crossover is performed between
pairs of selected parents to create offspring by the exchange of case activities, introducing
variability. Mutation is applied to these offspring by randomly changing activities within
cases, ensuring further diversity. This process iterates for a specified number of generations,
continuously evolving the population towards better solutions. The individual with the
highest fitness in the final generation is considered the best solution, representing the event
log with the most accurately recovered missing activities. Finally, the complete event log is
sorted and displayed after adjusting the timestamp to avoid the duplicate, and the process
model is visualized to show the discovered sequence of activities.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 29

Figure 3. Process model discovered by the inductive miner algorithm using an incomplete event
log.

4.1. Original Genetic Process Mining Algorithm
Figure 4 outlines a genetic algorithm designed to recover missing activities in an

event log. Algorithm A2 in Appendix A begins by initializing a population of event logs,
in which each individual is a copy of the original event log with missing activities inserted
at random positions. This ensures diversity in the initial population. This approach also
includes step to sort each case in the event log by timestamp to ensure activities are in
chronological order. The fitness of each individual is then evaluated based on the number
of correctly recovered activities, compared to the original log. The top individuals, deter-
mined by their fitness scores, are selected to form the basis of the next generation. Cross-
over is performed between pairs of selected parents to create offspring by the exchange of
case activities, introducing variability. Mutation is applied to these offspring by randomly
changing activities within cases, ensuring further diversity. This process iterates for a
specified number of generations, continuously evolving the population towards better so-
lutions. The individual with the highest fitness in the final generation is considered the
best solution, representing the event log with the most accurately recovered missing ac-
tivities. Finally, the complete event log is sorted and displayed after adjusting the
timestamp to avoid the duplicate, and the process model is visualized to show the discov-
ered sequence of activities.

Figure 4. Flowchart of the original genetic process mining algorithm used to recover missing
events.
Figure 4. Flowchart of the original genetic process mining algorithm used to recover missing events.

We ran Algorithm A2 using the data presented in Figure 2, utilizing only the starting
timestamp, which resulted in a complete event log. The original algorithm was successful
in recovering missing events from the incomplete event logs. However, because the original
algorithm relies solely on a sequential approach, the timestamps for each recovered activity
are often inaccurate and require adjustments to correct the initially generated timestamps.
This corrected event log is then used as input to discover a process model. Figures 5
and 6a display the complete event log and the corresponding process model, respectively.
According to Figure 5, the missing event “Patient Assignment” in HPE019 and the three
missing events “Therapy Sessions”, “Payment Processing”, and “Discharge Summary” in
HPE033 from Figure 2 have been fully recovered.

This algorithm has a time complexity that is primarily driven by its population initial-
ization, fitness evaluation, and iterative evolution processes. The complexity of initializing
the population is O(P·N·(C log C + M·C)), where P is the population size, N is the num-
ber of cases, C is the average number of events per case, and M is the number of unique
activities. During each generation, the fitness of each individual is evaluated with a com-
plexity of O(N·M); this is followed by a sorting and selection of the top individuals, which
contributes an additional O(P log P). The crossover and mutation operations performed on
the selected individuals have complexities of O(N) and O(N·C log C), respectively. Given
these steps, the overall time complexity of the genetic process in this algorithm over G
generations is O(G·P·N·(M + C log C)). This indicates that this algorithm’s performance
is significantly influenced by the number of generations, population size, and size of the
event log. Therefore, the algorithm’s complexity is primarily characterized by polynomial

Electronics 2024, 13, 3752 11 of 28

time algorithm in Big-O notation. This means that while the algorithm may become com-
putationally expensive as the input size grows, its growth rate is still polynomial, and
therefore manageable for a wide range of practical applications.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 29

We ran Algorithm A2 using the data presented in Figure 2, utilizing only the starting
timestamp, which resulted in a complete event log. The original algorithm was successful
in recovering missing events from the incomplete event logs. However, because the orig-
inal algorithm relies solely on a sequential approach, the timestamps for each recovered
activity are often inaccurate and require adjustments to correct the initially generated
timestamps. This corrected event log is then used as input to discover a process model.
Figures 5 and 6a display the complete event log and the corresponding process model,
respectively. According to Figure 5, the missing event “Patient Assignment” in HPE019
and the three missing events “Therapy Sessions”, “Payment Processing”, and “Discharge
Summary” in HPE033 from Figure 2 have been fully recovered.

This algorithm has a time complexity that is primarily driven by its population ini-
tialization, fitness evaluation, and iterative evolution processes. The complexity of initial-
izing the population is 𝑂(𝑃 ∙ 𝑁 ∙ (𝐶 𝑙𝑜𝑔 𝐶 + 𝑀 ∙ 𝐶)), where 𝑃 is the population size, 𝑁 is
the number of cases, 𝐶 is the average number of events per case, and 𝑀 is the number of
unique activities. During each generation, the fitness of each individual is evaluated with
a complexity of 𝑂(𝑁 ∙ 𝑀); this is followed by a sorting and selection of the top individuals,
which contributes an additional 𝑂(𝑃 𝑙𝑜𝑔 𝑃). The crossover and mutation operations per-
formed on the selected individuals have complexities of 𝑂(𝑁) and 𝑂(𝑁 ∙ 𝐶 𝑙𝑜𝑔 𝐶) , re-
spectively. Given these steps, the overall time complexity of the genetic process in this
algorithm over 𝐺 generations is 𝑂(𝐺 ∙ 𝑃 ∙ 𝑁 ∙ (𝑀 + 𝐶 𝑙𝑜𝑔 𝐶)). This indicates that this al-
gorithm’s performance is significantly influenced by the number of generations, popula-
tion size, and size of the event log. Therefore, the algorithm’s complexity is primarily char-
acterized by polynomial time algorithm in Big-O notation. This means that while the al-
gorithm may become computationally expensive as the input size grows, its growth rate
is still polynomial, and therefore manageable for a wide range of practical applications.

Figure 5. Complete event log of the hospital recovered using the original algorithm. Figure 5. Complete event log of the hospital recovered using the original algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 29

(a) (b)

Figure 6. Process model generated using complete event log from: (a) the original genetic process
mining; and (b) The base model from the hospital.

Moreover, to evaluate our study, we need a base process model. We use the original
and complete data from the hospital, as shown in Figure 2, as input in order to find an
accurate base process model. Figure 6b shows the original process model from the hospi-
tal, which we use as our base process model for research analysis and validation.

Based on Figure 6b, the base process model has 26 relations, while the original algo-
rithm discovers 24 relations. We then match the discovered relations from the original
algorithm to the base model relations, identifying correct flows, incorrect flows, and miss-
ing flows. The original algorithm discovers 11 correct relations, 13 incorrect relations, and
15 missing relations. In our study, correct relations are those that appear in both the base
model and the discovered model, aligned in terms of both nodes and direction. Incorrect
relations are those that appear in the discovered model but do not have a corresponding
relation in the base model. Missing relations are those specified in the base model but
absent in the discovered model.

We calculate the fitness and precision scores as part of behavioral appropriateness
and present them in Table 2. Based on the analysis of Table 2, we can take note of the
performance of the original genetic process mining in terms of behavioral appropriateness
for discovered process models and event logs. The original method identifies only 11 cor-
rect relations. Additionally, the original method has 13 false positives, indicating that it
incorrectly identified several relations that were not present in the base model. Regarding
false negatives, the original method missed 15 relations, showing that it was not able to
capture all relevant relations from the base model, resulting in an inaccurate process
model.

Moreover, the fitness score calculated using Equation (1) of the original method is
0.423. This fitness score reflects the fact that the original algorithm does not provide a
better representation of the base model’s behavior, indicating that its discovered model
does not align well with the actual process. Finally, the precision score of the original
method, calculated using Equation (2), is 0.458, indicating that less than half of the discov-
ered relations are accurate.

Table 2. Results for behavioral appropriateness for the original algorithm.

Metric Relations Discovered by
Original Genetic Process Mining

Figure 6. Process model generated using complete event log from: (a) the original genetic process
mining; and (b) The base model from the hospital.

Moreover, to evaluate our study, we need a base process model. We use the original
and complete data from the hospital, as shown in Figure 2, as input in order to find an
accurate base process model. Figure 6b shows the original process model from the hospital,
which we use as our base process model for research analysis and validation.

Electronics 2024, 13, 3752 12 of 28

Based on Figure 6b, the base process model has 26 relations, while the original algo-
rithm discovers 24 relations. We then match the discovered relations from the original
algorithm to the base model relations, identifying correct flows, incorrect flows, and miss-
ing flows. The original algorithm discovers 11 correct relations, 13 incorrect relations, and
15 missing relations. In our study, correct relations are those that appear in both the base
model and the discovered model, aligned in terms of both nodes and direction. Incorrect
relations are those that appear in the discovered model but do not have a corresponding
relation in the base model. Missing relations are those specified in the base model but
absent in the discovered model.

We calculate the fitness and precision scores as part of behavioral appropriateness
and present them in Table 2. Based on the analysis of Table 2, we can take note of the
performance of the original genetic process mining in terms of behavioral appropriateness
for discovered process models and event logs. The original method identifies only 11
correct relations. Additionally, the original method has 13 false positives, indicating that it
incorrectly identified several relations that were not present in the base model. Regarding
false negatives, the original method missed 15 relations, showing that it was not able to
capture all relevant relations from the base model, resulting in an inaccurate process model.

Table 2. Results for behavioral appropriateness for the original algorithm.

Metric Relations Discovered by
Original Genetic Process Mining

Correct/True Positives (TP) 11
False Positives (FP) 13

False Negatives (FN) 15
Fitness 0.423

Precision 0.458

Moreover, the fitness score calculated using Equation (1) of the original method is
0.423. This fitness score reflects the fact that the original algorithm does not provide a better
representation of the base model’s behavior, indicating that its discovered model does
not align well with the actual process. Finally, the precision score of the original method,
calculated using Equation (2), is 0.458, indicating that less than half of the discovered
relations are accurate.

4.2. Timed Genetic Process Mining Algorithm

This modified algorithm is essentially an extension of the original genetic process
mining method. In this modification, we make changes in two key areas: (1) utilizing
dual-timestamp event log as input, and (2) modifying the steps of the original algorithm
to be aware of timestamps, using them to recover missing events and discover a more
accurate process model. The modified steps of the original algorithm are as follows:

1. Initialize population: generate an initial population of random process models based
on the event log structure, with events containing starting and ending timestamps.

2. Fitness evaluation: include time-aware fitness measures that consider both start-
ing and ending timestamps. This involves calculating the sequence, temporal, and
concurrency fitness for each model in the population.

3. Selection, crossover, and mutation: apply genetic operations, with an emphasis on
maintaining temporal consistency.

4. Iterate, evolve, terminate, and select best model: continue evolving the population
until convergence or a stopping criterion is met. Select the best model from the
population based on the highest fitness score.

By incorporating dual timestamps (starting and ending times), the modified genetic
process mining algorithm can infer the likely presence of missing activities based on
observed gaps between timestamps. This additional temporal information provides insights

Electronics 2024, 13, 3752 13 of 28

into where and when activities are likely to have occurred, thereby improving the accuracy
of the discovered process model.

Figure 7 shows the algorithm steps employed to recover missing events, which begin
with reading the dual-timestamp event log data from an input file and ensuring the
timestamps are in the correct date/time format. The average duration for each activity is
then calculated to provide a basis for evaluating temporal gaps. The algorithm employs a
fitness function that assesses a sequence of activities by comparing the gaps between the
ending and starting times of consecutive activities against the expected average duration.
The algorithm operates by first generating an initial population of potential sequences for
the missing activities. Each sequence is evaluated for its fitness, and the best-performing
sequences are selected for crossover and mutation to create a new generation. Crossover
involves exchanging segments between pairs of parent sequences to produce children,
while mutation introduces random changes to ensure diversity in the population. This
process of selection, crossover, and mutation continues iteratively for a specified number of
generations. In each iteration, the algorithm selects the best individual sequence from the
population based on its fitness score. This individual represents the most likely sequence
of missing activities. The algorithm ensures that the identified activities fit within the
temporal constraints of the event log. The final best sequence from the last generation is
then inserted into the event log, resulting in a complete and accurate representation of the
process. The implementation of Figure 7 in code is shown in Algorithm A3 in Appendix A.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 29

Figure 7. Flowchart of the timed genetic process mining algorithm used to recover missing events.

Algorithm A3 is run with the data in Figure 2 as input, and the result presents the
complete event log. Our modified algorithm successfully recovers missing events from
the incomplete event logs, along with their timestamps. The generated event log is used
as an input to discover a process model. Figures 8 and 9 show the complete event log and
the process model, respectively. Figure 8 shows that the one missing event in HPE019,
which is activity “Patient Assignment”, and the three missing events in HPE033, compris-
ing activities “Therapy Sessions”, “Payment Processing”, and “Discharge Summary”
identified in Figure 2 are now fully recovered.

The algorithm’s Big-𝑂 complexity is also characterized as polynomial time complexi-
ties. This algorithm also exhibits a time complexity that is affected by the population size,
sequence lengths, and the number of generations, but with some differences in the specifics
of its operations. The initial preprocessing steps, including the reading of data and calcula-
tion of average activity durations, have a complexity of 𝑂(𝑁). The core genetic algorithm
iterates over each unique case in the event log (𝐾 cases), sorting events and handling miss-
ing activities with a complexity of 𝑂(𝑁 𝑙𝑜𝑔 𝑁) for sorting and 𝑂(𝑀) for identifying miss-
ing activities. The population initialization for each case is 𝑂(𝑃 ∙ 𝐴), where 𝐴 represents the
number of missing activities. During each generation, fitness evaluation across the popula-
tion has a complexity of 𝑂(𝑃 ∙ 𝑆), with 𝑆 being the average sequence length, and the cross-
over and mutation processes contribute 𝑂(𝑃 ∙ (𝑆 + 1)). Thus, the overall time complexity
for this algorithm is 𝑂(𝐾 ∙ (𝑁 𝑙𝑜𝑔 𝑁 + 𝐺 ∙ 𝑃 ∙ 𝑆)) . This indicates that the modified algo-
rithm’s complexity is primarily influenced by the number of cases, sequence lengths, and
the iterative genetic process across generations, which is similar to the original algorithm,
but with variations in specific operations and their impacts.

Figure 7. Flowchart of the timed genetic process mining algorithm used to recover missing events.

Algorithm A3 is run with the data in Figure 2 as input, and the result presents the
complete event log. Our modified algorithm successfully recovers missing events from the
incomplete event logs, along with their timestamps. The generated event log is used as an
input to discover a process model. Figures 8 and 9 show the complete event log and the
process model, respectively. Figure 8 shows that the one missing event in HPE019, which
is activity “Patient Assignment”, and the three missing events in HPE033, comprising
activities “Therapy Sessions”, “Payment Processing”, and “Discharge Summary” identified
in Figure 2 are now fully recovered.

The algorithm’s Big-O complexity is also characterized as polynomial time complex-
ities. This algorithm also exhibits a time complexity that is affected by the population
size, sequence lengths, and the number of generations, but with some differences in the
specifics of its operations. The initial preprocessing steps, including the reading of data
and calculation of average activity durations, have a complexity of O(N). The core genetic
algorithm iterates over each unique case in the event log (K cases), sorting events and
handling missing activities with a complexity of O(N log N) for sorting and O(M) for

Electronics 2024, 13, 3752 14 of 28

identifying missing activities. The population initialization for each case is O(P·A), where
A represents the number of missing activities. During each generation, fitness evaluation
across the population has a complexity of O(P·S), with S being the average sequence
length, and the crossover and mutation processes contribute O(P·(S + 1)). Thus, the over-
all time complexity for this algorithm is O(K·(N log N + G·P·S)). This indicates that the
modified algorithm’s complexity is primarily influenced by the number of cases, sequence
lengths, and the iterative genetic process across generations, which is similar to the original
algorithm, but with variations in specific operations and their impacts.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 29

Figure 8. Complete event log of the hospital recovered using the modified algorithm.

Figure 9. Process model generated using complete event log from the modified algorithm.

Based on the Big-𝑂 complexity analysis for both algorithms, the modified algorithm
generally has a better (lower) complexity than the original algorithm. Therefore, the modi-
fied algorithm is more efficient, particularly when the number of unique activities or the
average number of events per case in the original algorithm is high, resulting in higher com-
plexity. The modified algorithm’s reliance on sequence lengths and simpler operations
makes it preferable in scenarios where the event log data is large or the number of activities
is substantial, allowing it to perform better in terms of computational complexity.

We also calculated the fitness and precision scores using Equations (1) and (2) as part
of behavioral appropriateness, and these are presented in Table 3. Analyzing Table 3, and
referring to Table 2 for comparison, allows us to draw several conclusions about the perfor-
mance of the timed genetic process mining method in terms of behavioral appropriateness
for discovered process models and event logs.

Table 3. Results for behavioral appropriateness for the modified algorithm.

Metric
Relations Discovered by

Timed Genetic Process Mining
Correct/True Positives (TP) 22

Figure 8. Complete event log of the hospital recovered using the modified algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 29

Figure 8. Complete event log of the hospital recovered using the modified algorithm.

Figure 9. Process model generated using complete event log from the modified algorithm.

Based on the Big-𝑂 complexity analysis for both algorithms, the modified algorithm
generally has a better (lower) complexity than the original algorithm. Therefore, the modi-
fied algorithm is more efficient, particularly when the number of unique activities or the
average number of events per case in the original algorithm is high, resulting in higher com-
plexity. The modified algorithm’s reliance on sequence lengths and simpler operations
makes it preferable in scenarios where the event log data is large or the number of activities
is substantial, allowing it to perform better in terms of computational complexity.

We also calculated the fitness and precision scores using Equations (1) and (2) as part
of behavioral appropriateness, and these are presented in Table 3. Analyzing Table 3, and
referring to Table 2 for comparison, allows us to draw several conclusions about the perfor-
mance of the timed genetic process mining method in terms of behavioral appropriateness
for discovered process models and event logs.

Table 3. Results for behavioral appropriateness for the modified algorithm.

Metric
Relations Discovered by

Timed Genetic Process Mining
Correct/True Positives (TP) 22

Figure 9. Process model generated using complete event log from the modified algorithm.

Based on the Big-O complexity analysis for both algorithms, the modified algorithm
generally has a better (lower) complexity than the original algorithm. Therefore, the
modified algorithm is more efficient, particularly when the number of unique activities or
the average number of events per case in the original algorithm is high, resulting in higher
complexity. The modified algorithm’s reliance on sequence lengths and simpler operations
makes it preferable in scenarios where the event log data is large or the number of activities
is substantial, allowing it to perform better in terms of computational complexity.

Electronics 2024, 13, 3752 15 of 28

We also calculated the fitness and precision scores using Equations (1) and (2) as part
of behavioral appropriateness, and these are presented in Table 3. Analyzing Table 3, and
referring to Table 2 for comparison, allows us to draw several conclusions about the perfor-
mance of the timed genetic process mining method in terms of behavioral appropriateness
for discovered process models and event logs.

Table 3. Results for behavioral appropriateness for the modified algorithm.

Metric Relations Discovered by
Timed Genetic Process Mining

Correct/True Positives (TP) 22
False Positives (FP) 0

False Negatives (FN) 4
Fitness 0.846

Precision 1.000

Firstly, the timed genetic process mining method significantly outperforms the original
method in identifying correct relations, discovering 22 correct relations, compared to the
original method’s 11. This indicates a clear advantage of the timed method in accurately
capturing the true behavior of the process. Additionally, the timed method shows notable
improvement in avoiding false positives, reporting zero false positives, meaning it did
not identify any incorrect relations that did not exist in the base model. In contrast, the
original method had 13 false positives, indicating it incorrectly identified several relations
not present in the base model. The timed method also excels in minimizing false negatives,
missing only four correct relations, whereas the original method missed fifteen. This
suggests that the timed method is better at capturing all relevant relations from the base
model, resulting in a more complete and accurate process model.

Moreover, the fitness score of the timed method is significantly higher, at 0.846, com-
pared to the original method’s score of 0.423. This higher fitness score reflects the fact that
the timed method provides a better representation of the base model’s behavior, showing
that its discovered model aligns more closely with the actual process. Finally, the precision
score of the timed method is perfect, at 1.000, meaning all discovered relations are correct.
In contrast, the original method’s precision score is 0.458, indicating that less than half of
the discovered relations are accurate. This highlights the superior accuracy of the timed
method in process model discovery.

In conclusion, the timed genetic process mining method demonstrates much higher
effectiveness and reliability compared to the original method. It excels in identifying correct
relations, avoiding incorrect ones, and capturing the true behavior of the process, making it
a more robust tool for process model discovery and event log reconstruction.

To evaluate our research, as explained in Section 3, we measured the behavioral
and structural appropriateness of the discovered process models and event logs. Based
on Figures 6 and 9, we can list the discovered relations from each process model. The
base process model has 26 relations, the modified algorithm finds 22 relations, and the
original algorithm discovers 24 relations. We matched the discovered relations from both
algorithms to the base model relations, showing that our modified algorithm presents more
correct flows and fewer incorrect and missing flows compared to the original algorithm.
The results show that the modified algorithm presents twenty-two correct relations, zero
incorrect relations, and four missing relations. Meanwhile, the original algorithm discovers
11 correct relations, 13 incorrect relations, and 15 missing relations. All of the relations are
presented in Figure 10.

Electronics 2024, 13, 3752 16 of 28Electronics 2024, 13, x FOR PEER REVIEW 17 of 29

(a)

(b)

Figure 10. Discovered, incorrect, and missing relations, compared to the base process models’ rela-
tions, from (a) timed genetic process mining and (b) original genetic process mining.

Figure 10. Discovered, incorrect, and missing relations, compared to the base process models’
relations, from (a) timed genetic process mining and (b) original genetic process mining.

Electronics 2024, 13, 3752 17 of 28

5. In-Depth Comparison of Experiments and Analysis

Furthermore, we calculate the process model coverage using Equations (3) and (4)
as part of structural appropriateness and present the results in Table 4. Based on the
data presented in Table 4, we can analyze and draw conclusions about the process model
coverage of the timed genetic process mining compared to the original genetic process
mining. In terms of discovered relations, the timed genetic process mining identified
22 relations, while the original genetic process mining discovered 24 relations. However,
the quality of these discovered relations varies significantly between the two methods. The
timed algorithm correctly identified all 22 of its discovered relations, whereas the original
algorithm correctly identified only 11 out of its 24 discovered relations. Additionally,
the timed algorithm did not have any incorrect relations, achieving perfect accuracy in
identifying relevant relations from the base model. In contrast, the original algorithm had
13 incorrect relations, indicating a significant number of false positives in which relations
were identified that did not exist in the base model.

Table 4. Results for process model coverage.

Relations Discovered by Timed
Genetic Process Mining

Relations Discovered by Original
Genetic Process Mining

Coverage Score: 84.60% Coverage Score: 42.30%
Error Score: 0.00% Error Score: 54.20%

In examining the coverage score, which measures how well the discovered model
captures the base model’s behavior, it can be seen that the timed algorithm achieved a
coverage score of 84.60%, compared to the original algorithm’s coverage score of 42.30%.
This shows that the timed algorithm is much more effective at covering the behavior of
the base model. Furthermore, the error score, which indicates the proportion of incorrect
relations, was 0.00% for the timed algorithm, reflecting its high accuracy. In contrast,
the original algorithm had an error score of 54.20%, highlighting the presence of several
incorrect relations in its discovered model. In conclusion, the data in Table 4 demonstrates
that the timed genetic process mining algorithm significantly outperforms the original
genetic process mining algorithm in terms of process model coverage. The timed algorithm
not only identifies correct relations with higher accuracy but also avoids incorrect relations,
resulting in a more precise and reliable representation of the base model. The higher
coverage score and error score of zero further validate the superior performance of the
timed method in process model discovery.

In addition, Table 5 presents the analysis for process model comparisons in terms
of node correspondence, edge correspondence, flow sequence and frequency, and visual
structure of the process models. This analysis also shows that our modified algorithm can
result in a process model with a visual structure similar to that of the base process model of
the hospital.

According to all comparison results, the timed genetic process mining approach, which
utilizes timestamp information, provides better results in both structural and behavioral
appropriateness, compared to the original genetic process mining approach, which relies
on a sequential approach. This improvement is largely due to the ability of the dual-
timestamp approach to capture temporal relationships between events in a more detailed
and accurate manner.

In terms of behavioral appropriateness, the dual-timestamp approach allows for cap-
turing more nuanced temporal relationships between events. By considering both starting
and ending timestamps, the modified algorithm can better discern the true sequence of
activities and their dependencies in the process, as well as the possibility of parallel oc-
currences. This typically leads to process models that are more accurate and that reflect
the actual behavior observed in the event log. In contrast, the sequential approach used
by the original algorithm might overlook complex dependencies or concurrent activities

Electronics 2024, 13, 3752 18 of 28

that occur within the process. It may struggle to accurately reconstruct the exact behavior,
especially when there are overlaps or variations in activity durations.

Table 5. Discovered traces from each generated complete event log.

Process Model Discovered by
Timed Genetic Process Mining

Process Model Discovered by
Original Genetic Process Mining

Node
correspondence

Both discovery models include all nodes from the base model.
(13 events)

Edge
correspondence

- Correct flows: 22
- Incorrect flows: 0
- Missing flows: 4

- Correct flows: 11
- Incorrect flows: 13
- Missing flows: 15

Flow sequence and
frequency

- Matches many correct flows
but is not able to discover all
flows.

- Frequencies of some flows
differ from the base model.

- Matches many correct flows,
but there are also many
additional/incorrect flows.

- Frequencies of some flows
differ from the base model.

Visual structure

Has a structure closer to the base
model with fewer missing flows,
making it visually more similar to
the base model, including both
sequence and parallel processes.

Has a structure with additional
incorrect flows, making it visually
less similar to the base model.

Regarding structural appropriateness, the dual-timestamp approach in the modified
algorithm often results in process models that are more structured and coherent. This
is because it can differentiate between parallel activities, distinguish between activities
based on their lifecycle stages, and generally provide a clearer representation of the process
flow. While sequential mining, as in the original algorithm, can be effective for simple
processes with straightforward sequences, it may produce models which are less structured
for processes that involve concurrency or complex dependencies. This can lead to models
that are harder to interpret or less accurate in capturing the actual structure of the process.

Overall, by leveraging dual timestamps, the timed genetic process mining algorithm
can potentially recover missing events more accurately. It enhances the algorithm’s ability to
reconstruct the chronological order of activities and their relationships, thereby improving
both behavioral fidelity and structural clarity. While the original algorithm is straightfor-
ward and easier to implement, it may not perform as well when faced with event logs
containing concurrency or overlapping activities, or events with varying lifecycle stages.

In summary, timed genetic process mining with a dual-timestamp approach presents
better results in terms of both structural and behavioral appropriateness, compared to
original genetic process mining with a sequential approach. The dual-timestamp approach
enhances the algorithm’s capability to handle complex process behavior and structural
intricacies, leading to more accurate and robust process models.

While this research acknowledges the complexities of real-world event logs compared
to the simplified case studies, we simplify the analysis to focus on the essential properties
of event logs, namely, Case ID, Activity, and Timestamp, as these three elements are crucial
for reconstructing process models and analyzing behaviors, providing a foundational
understanding necessary for effective process mining techniques [1,2]. This study also
examines the structural or sequential ordering of activity execution, which is vital for
enhancing the ability to recover missing events from periodic and asynchronous systems.
By analyzing the sequence and structure of activities, the research shows how incomplete
logs can still yield accurate process models. This capability is particularly important in
environments where events are logged periodically or asynchronously, resulting in gaps
in the recorded data. The study’s findings suggest methods for bridging these gaps by

Electronics 2024, 13, 3752 19 of 28

generating temporary event logs using the proposed algorithm until the actual logs are
entered into the system.

6. Advanced Metrics for Conformance Checking

In this section, we discuss several advanced metrics for conformance checking to
validate the process models and event logs discovered by both algorithms. Although the
main goal of this research is to recover missing events in the event log by filling gaps
created by the temporary absence of activities until the actual logs are later entered into
the system, comparing a process model with an event log is also an important aspect of
research validation. This comparison helps determine how well the observed reality (as
captured in the event log) aligns with the expected or designed behavior (as specified in
the process model).

Firstly, we analyze the traces discovered by both algorithms, in comparison to the
base traces of the hospital, using Python’s “difflib” module, specifically the sequence
matcher [48,49]. Figure 11 illustrates the sequence matcher used in this study. The process
of calculating custom similarity scores between traces begins with the loading of the data,
which consist of lists of traces from the base model, the modified algorithm, and the original
algorithm. Each trace is then split into sequences of activities, allowing for a detailed
breakdown into manageable and comparable segments. The core of the algorithm involves
the computation of similarity scores between the base traces and the traces generated
by both algorithms using a similarity function. These computed similarity scores are
subsequently stored and analyzed. The process concludes with the final similarity scores,
which are made available for further analysis. The results indicate that the modified
algorithm produces higher similarity scores than the original algorithm, as shown in
Table 6.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 29

important in environments where events are logged periodically or asynchronously, re-
sulting in gaps in the recorded data. The study’s findings suggest methods for bridging
these gaps by generating temporary event logs using the proposed algorithm until the
actual logs are entered into the system.

6. Advanced Metrics for Conformance Checking
In this section, we discuss several advanced metrics for conformance checking to val-

idate the process models and event logs discovered by both algorithms. Although the
main goal of this research is to recover missing events in the event log by filling gaps
created by the temporary absence of activities until the actual logs are later entered into
the system, comparing a process model with an event log is also an important aspect of
research validation. This comparison helps determine how well the observed reality (as
captured in the event log) aligns with the expected or designed behavior (as specified in
the process model).

Firstly, we analyze the traces discovered by both algorithms, in comparison to the
base traces of the hospital, using Python’s “difflib” module, specifically the sequence
matcher [48,49]. Figure 11 illustrates the sequence matcher used in this study. The process
of calculating custom similarity scores between traces begins with the loading of the data,
which consist of lists of traces from the base model, the modified algorithm, and the orig-
inal algorithm. Each trace is then split into sequences of activities, allowing for a detailed
breakdown into manageable and comparable segments. The core of the algorithm in-
volves the computation of similarity scores between the base traces and the traces gener-
ated by both algorithms using a similarity function. These computed similarity scores are
subsequently stored and analyzed. The process concludes with the final similarity scores,
which are made available for further analysis. The results indicate that the modified algo-
rithm produces higher similarity scores than the original algorithm, as shown in Table 6.

Figure 11. Flowchart of the measure of trace similarity scores using the sequence-matcher method.

Table 6. Results of advanced metrics for conformance checking.

Conformance
Metrics

Timed Genetic
Process Mining

Original Genetic
Process Mining

Trace similarity scores
using sequence matcher

0.9320 0.9070

Trace similarity scores
using Levenshtein distance

0.6804 0.6728

Cost-based
fitness analysis 0.7572 0.7464

Probabilistic
trace alignment 100% 80%

Secondly, trace similarity is measured using the Levenshtein distance, which calcu-
lates the minimum number of insertions, deletions, and substitutions required to trans-
form one sequence into another using dynamic programming [50]. Figure 12 illustrates
the method used to generate trace similarity scores with this approach. The algorithm be-
gins by calculating the Levenshtein distance between individual traces to determine their
similarity. It then computes a similarity score based on this distance, normalizes it to a
range between 0 and 1, and uses these scores to build a similarity matrix for all models.
This matrix provides insight into how closely the traces from different models resemble

Figure 11. Flowchart of the measure of trace similarity scores using the sequence-matcher method.

Table 6. Results of advanced metrics for conformance checking.

Conformance
Metrics

Timed Genetic
Process Mining

Original Genetic
Process Mining

Trace similarity scores
using sequence matcher 0.9320 0.9070

Trace similarity scores
using Levenshtein distance 0.6804 0.6728

Cost-based
fitness analysis 0.7572 0.7464

Probabilistic
trace alignment 100% 80%

Secondly, trace similarity is measured using the Levenshtein distance, which calculates
the minimum number of insertions, deletions, and substitutions required to transform one
sequence into another using dynamic programming [50]. Figure 12 illustrates the method
used to generate trace similarity scores with this approach. The algorithm begins by
calculating the Levenshtein distance between individual traces to determine their similarity.
It then computes a similarity score based on this distance, normalizes it to a range between
0 and 1, and uses these scores to build a similarity matrix for all models. This matrix
provides insight into how closely the traces from different models resemble each other. The
results show that the modified algorithm achieves higher similarity scores, compared to
the original algorithm, as demonstrated in Table 6.

Electronics 2024, 13, 3752 20 of 28

Electronics 2024, 13, x FOR PEER REVIEW 21 of 29

each other. The results show that the modified algorithm achieves higher similarity scores,
compared to the original algorithm, as demonstrated in Table 6.

Figure 12. Flowchart of the measure of trace similarity scores using the Levenshtein distance.

Thirdly, we calculate conformance checking using cost-based fitness analysis, as out-
lined in [51]. This structured approach assesses how well an event log aligns with a pro-
cess model. Figure 13 illustrates the cost-based fitness analysis used in this study. The
fitness metric measures the degree to which observed behavior conforms to modeled ex-
pectations, incorporating a cost-based dimension to account for deviations such as
skipped or inserted activities. The preparation involves defining the event logs and pro-
cess models for both algorithms. Following the preparation, the analysis involves defining
cost functions for insertions and skips, replaying the event log against the process model
to identify deviations, and applying the A* algorithm to find the optimal alignment with
minimal cost. The fitness metric is then calculated as one minus the ratio of the total devi-
ation cost to the maximum possible cost, with a higher value indicating better conform-
ance. By analyzing the results and repeating the process for all traces in the event log, a
comprehensive fitness score can be derived.

Figure 13. Flowchart of the measure of conformance checking scores using the cost-based fitness
analysis.

In this research, we calculate the cost functions for skipping and inserting activities
based on historical data analysis to determine the importance and impact of these activi-
ties within the process. The costs for inserting each activity are specified as follows: “Pa-
tient Check-In” and “Patient Assignment” each have a cost of 1, “Insurance Verification”
and “Initial Assessment” each have a cost of 2, and “Therapy Sessions” and “Treatment
Planning” are each assigned a cost of 3. If an activity is not listed, a default insertion cost
of 1 is applied. Similarly, the skipping costs for various activities are defined: “Patient
Check-In” has a cost of 1; “Patient Assignment” and “Insurance Verification” each have a
cost of 2; “Initial Assessment,” “Diagnostic Tests,” and “Doctor Consultation” also each
have a cost of 2; “Therapy Sessions,” “Treatment Planning,” “Medication Administra-
tion,” and “Discharge Summary” each have a cost of 3; and “Generate Bill,” “Payment
Processing,” and “Patient Discharged” are each assigned a cost of 1. If an activity is not
specified in this cost mapping, a default cost of 1 is used. Table 6 presents the conformance
results for both algorithms.

Lastly, ref. [52] introduces a conformance checking approach based on trace align-
ments using Stochastic Workflow Nets (SWNs). Figure 14 shows the flowchart of the
method used in this study. Unlike traditional conformance checking methods that provide
a numerical score, this approach ranks trace alignments based on two factors: the cost of
alignment and the probability of the model trace generated by the stochastic model. The
alignment cost is calculated using the Levenshtein distance. This cost is then weighted by
the probability of each model trace.

Figure 12. Flowchart of the measure of trace similarity scores using the Levenshtein distance.

Thirdly, we calculate conformance checking using cost-based fitness analysis, as out-
lined in [51]. This structured approach assesses how well an event log aligns with a process
model. Figure 13 illustrates the cost-based fitness analysis used in this study. The fitness
metric measures the degree to which observed behavior conforms to modeled expectations,
incorporating a cost-based dimension to account for deviations such as skipped or inserted
activities. The preparation involves defining the event logs and process models for both
algorithms. Following the preparation, the analysis involves defining cost functions for
insertions and skips, replaying the event log against the process model to identify devi-
ations, and applying the A* algorithm to find the optimal alignment with minimal cost.
The fitness metric is then calculated as one minus the ratio of the total deviation cost to the
maximum possible cost, with a higher value indicating better conformance. By analyzing
the results and repeating the process for all traces in the event log, a comprehensive fitness
score can be derived.

Electronics 2024, 13, x FOR PEER REVIEW 21 of 29

each other. The results show that the modified algorithm achieves higher similarity scores,
compared to the original algorithm, as demonstrated in Table 6.

Figure 12. Flowchart of the measure of trace similarity scores using the Levenshtein distance.

Thirdly, we calculate conformance checking using cost-based fitness analysis, as out-
lined in [51]. This structured approach assesses how well an event log aligns with a pro-
cess model. Figure 13 illustrates the cost-based fitness analysis used in this study. The
fitness metric measures the degree to which observed behavior conforms to modeled ex-
pectations, incorporating a cost-based dimension to account for deviations such as
skipped or inserted activities. The preparation involves defining the event logs and pro-
cess models for both algorithms. Following the preparation, the analysis involves defining
cost functions for insertions and skips, replaying the event log against the process model
to identify deviations, and applying the A* algorithm to find the optimal alignment with
minimal cost. The fitness metric is then calculated as one minus the ratio of the total devi-
ation cost to the maximum possible cost, with a higher value indicating better conform-
ance. By analyzing the results and repeating the process for all traces in the event log, a
comprehensive fitness score can be derived.

Figure 13. Flowchart of the measure of conformance checking scores using the cost-based fitness
analysis.

In this research, we calculate the cost functions for skipping and inserting activities
based on historical data analysis to determine the importance and impact of these activi-
ties within the process. The costs for inserting each activity are specified as follows: “Pa-
tient Check-In” and “Patient Assignment” each have a cost of 1, “Insurance Verification”
and “Initial Assessment” each have a cost of 2, and “Therapy Sessions” and “Treatment
Planning” are each assigned a cost of 3. If an activity is not listed, a default insertion cost
of 1 is applied. Similarly, the skipping costs for various activities are defined: “Patient
Check-In” has a cost of 1; “Patient Assignment” and “Insurance Verification” each have a
cost of 2; “Initial Assessment,” “Diagnostic Tests,” and “Doctor Consultation” also each
have a cost of 2; “Therapy Sessions,” “Treatment Planning,” “Medication Administra-
tion,” and “Discharge Summary” each have a cost of 3; and “Generate Bill,” “Payment
Processing,” and “Patient Discharged” are each assigned a cost of 1. If an activity is not
specified in this cost mapping, a default cost of 1 is used. Table 6 presents the conformance
results for both algorithms.

Lastly, ref. [52] introduces a conformance checking approach based on trace align-
ments using Stochastic Workflow Nets (SWNs). Figure 14 shows the flowchart of the
method used in this study. Unlike traditional conformance checking methods that provide
a numerical score, this approach ranks trace alignments based on two factors: the cost of
alignment and the probability of the model trace generated by the stochastic model. The
alignment cost is calculated using the Levenshtein distance. This cost is then weighted by
the probability of each model trace.

Figure 13. Flowchart of the measure of conformance checking scores using the cost-based fitness analysis.

In this research, we calculate the cost functions for skipping and inserting activities
based on historical data analysis to determine the importance and impact of these activities
within the process. The costs for inserting each activity are specified as follows: “Patient
Check-In” and “Patient Assignment” each have a cost of 1, “Insurance Verification” and
“Initial Assessment” each have a cost of 2, and “Therapy Sessions” and “Treatment Plan-
ning” are each assigned a cost of 3. If an activity is not listed, a default insertion cost of 1 is
applied. Similarly, the skipping costs for various activities are defined: “Patient Check-In”
has a cost of 1; “Patient Assignment” and “Insurance Verification” each have a cost of
2; “Initial Assessment”, “Diagnostic Tests”, and “Doctor Consultation” also each have a
cost of 2; “Therapy Sessions”, “Treatment Planning”, “Medication Administration”, and
“Discharge Summary” each have a cost of 3; and “Generate Bill”, “Payment Processing”,
and “Patient Discharged” are each assigned a cost of 1. If an activity is not specified in
this cost mapping, a default cost of 1 is used. Table 6 presents the conformance results for
both algorithms.

Lastly, ref. [52] introduces a conformance checking approach based on trace alignments
using Stochastic Workflow Nets (SWNs). Figure 14 shows the flowchart of the method used
in this study. Unlike traditional conformance checking methods that provide a numerical
score, this approach ranks trace alignments based on two factors: the cost of alignment and
the probability of the model trace generated by the stochastic model. The alignment cost is
calculated using the Levenshtein distance. This cost is then weighted by the probability of
each model trace.

Electronics 2024, 13, 3752 21 of 28
Electronics 2024, 13, x FOR PEER REVIEW 22 of 29

Figure 14. Flowchart of the measure of conformance checking scores using the probabilistic trace
alignment.

The algorithm in this study begins by defining the SWN using a set of transitions and
their associated probabilities, which are derived from historical data. It then constructs a
reachability graph to represent all possible states and transitions within the process. This
reachability graph is converted into a transition graph, where a τ-closure is applied to
remove any invisible transitions (τ-transitions), simplifying the model’s behavior for
clearer analysis. The algorithm unfolds all possible model traces from the transition graph
that meet a certain probability threshold—set at 0.1 for this study—to ensure that only the
most probable traces are considered for alignment with the event log traces.

To assess conformance, the algorithm formulates the problem as a k-Nearest Neigh-
bors (kNN) search to find the top-k alignments between the log traces and the model
traces. These alignments are then ranked using two strategies: a brute-force method for
exact ranking and an approximate method that employs a KD-Tree (K-Dimensional Tree)
to reduce computation time while still providing useful results. In this research, the num-
ber of top alignments to return is set to 𝑘 = 5. The result is a set of top-ranked alignments
that provide insight into how closely the observed event log traces conform to the ex-
pected behavior defined by the process model. Table 6 shows the results for both algo-
rithms.

The data in Table 6 compares the performance of two genetic process mining ap-
proaches: timed genetic process mining and original genetic process mining, evaluated
using several advanced conformance metrics. These metrics include trace similarity scores
using a sequence matcher, trace similarity scores using Levenshtein distance, cost-based
fitness analysis, and probabilistic trace alignment.

The first metric, trace similarity scores using a sequence matcher, assesses the simi-
larity function by computing scores between the base traces and the traces from both al-
gorithms. The timed genetic process mining approach achieved a higher similarity score
of 0.9320, compared to 0.9070 for the original genetic process mining. This result indicates
that the timed genetic process mining provides better alignment to the observed traces
than does the original genetic process mining. The second metric, trace similarity scores
using Levenshtein distance, further evaluates trace alignment by quantifying the “dis-
tance” between two traces by measuring the number of insertions, deletions, and substi-
tutions needed to transform one trace into another. Here, timed genetic process mining
also outperforms original genetic process mining, with a score of 0.6804 versus 0.6728.
Although the difference is slight, it suggests a marginally better performance by the timed
approach in capturing trace similarities.

Furthermore, the third metric, cost-based fitness analysis, measures how well the
model conforms to the observed traces by penalizing deviations based on a cost function.
Timed genetic process mining achieved a score of 0.7572, which was slightly higher than
the original genetic process mining score of 0.7464. This indicates that the timed genetic
process mining is somewhat better at fitting the model to the event logs while minimizing
deviations. The final metric, probabilistic trace alignment, evaluates the model’s ability to
account for various trace variations and their likelihood within the event logs. Timed ge-
netic process mining achieved a perfect score of 100%, outperforming the original genetic

Figure 14. Flowchart of the measure of conformance checking scores using the probabilistic
trace alignment.

The algorithm in this study begins by defining the SWN using a set of transitions and
their associated probabilities, which are derived from historical data. It then constructs a
reachability graph to represent all possible states and transitions within the process. This
reachability graph is converted into a transition graph, where a τ-closure is applied to
remove any invisible transitions (τ-transitions), simplifying the model’s behavior for clearer
analysis. The algorithm unfolds all possible model traces from the transition graph that
meet a certain probability threshold—set at 0.1 for this study—to ensure that only the most
probable traces are considered for alignment with the event log traces.

To assess conformance, the algorithm formulates the problem as a k-Nearest Neighbors
(kNN) search to find the top-k alignments between the log traces and the model traces.
These alignments are then ranked using two strategies: a brute-force method for exact
ranking and an approximate method that employs a KD-Tree (K-Dimensional Tree) to
reduce computation time while still providing useful results. In this research, the number
of top alignments to return is set to k = 5. The result is a set of top-ranked alignments that
provide insight into how closely the observed event log traces conform to the expected
behavior defined by the process model. Table 6 shows the results for both algorithms.

The data in Table 6 compares the performance of two genetic process mining ap-
proaches: timed genetic process mining and original genetic process mining, evaluated
using several advanced conformance metrics. These metrics include trace similarity scores
using a sequence matcher, trace similarity scores using Levenshtein distance, cost-based
fitness analysis, and probabilistic trace alignment.

The first metric, trace similarity scores using a sequence matcher, assesses the similarity
function by computing scores between the base traces and the traces from both algorithms.
The timed genetic process mining approach achieved a higher similarity score of 0.9320,
compared to 0.9070 for the original genetic process mining. This result indicates that
the timed genetic process mining provides better alignment to the observed traces than
does the original genetic process mining. The second metric, trace similarity scores using
Levenshtein distance, further evaluates trace alignment by quantifying the “distance”
between two traces by measuring the number of insertions, deletions, and substitutions
needed to transform one trace into another. Here, timed genetic process mining also
outperforms original genetic process mining, with a score of 0.6804 versus 0.6728. Although
the difference is slight, it suggests a marginally better performance by the timed approach
in capturing trace similarities.

Furthermore, the third metric, cost-based fitness analysis, measures how well the
model conforms to the observed traces by penalizing deviations based on a cost function.
Timed genetic process mining achieved a score of 0.7572, which was slightly higher than
the original genetic process mining score of 0.7464. This indicates that the timed genetic
process mining is somewhat better at fitting the model to the event logs while minimizing
deviations. The final metric, probabilistic trace alignment, evaluates the model’s ability
to account for various trace variations and their likelihood within the event logs. Timed
genetic process mining achieved a perfect score of 100%, outperforming the original genetic
process mining, which scored 80%. This significant difference highlights the superiority of
the timed genetic process mining in modeling the probabilistic nature of trace variations.

Electronics 2024, 13, 3752 22 of 28

In summary, across all conformance metrics, timed genetic process mining demon-
strates better performance than original genetic process mining. The improvements suggest
that incorporating time aspects into the genetic process mining technique enhances its
ability to create a more accurate and better-fitting model for the event logs in this context.

7. Conclusions

This research proposes a modified approach to the genetic process mining algorithm,
aiming to recover missing events from incomplete event logs. The modified algorithm,
referred to as timed genetic process mining, extends the original method with two key
enhancements, using dual-timestamp event logs as input and incorporating timestamp
awareness into the algorithm’s steps to recover missing events and generate a complete
event log, as well as to discover a more accurate process model.

Our experimental results demonstrate the commendable behavioral and structural
appropriateness of both the event log and process model results compared to the original
genetic process mining method. The modified approach yields higher fitness and precision
scores, visually similar process model comparisons, and good coverage with no errors
in process models. Additionally, we discuss several advanced metrics for conformance
checking, including trace similarity scores using a sequence matcher, trace similarity scores
using Levenshtein distance, cost-based fitness analysis, and probabilistic trace alignment, to
validate the process models and event logs discovered by both algorithms. In brief, timed
genetic process mining outperforms original genetic process mining across all conformance
metrics. Possible future work could involve the integration of machine learning techniques
to enhance the prediction and recovery of missing events, as well as the refining of the
fitness evaluation criteria to incorporate more complex temporal and causal relationships.

Author Contributions: This research represents the collective intellectual effort of the entire team.
Y.A.E. and M.K. conceptualized the study design; Y.A.E. developed the methodology, and worked
on the software, visualization, and writing—original draft preparation; Y.A.E. and M.K. conducted
research validation and formal analysis; M.K. worked on writing—review and editing, supervision,
and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant,
funded by the government of the Republic of Korea (MSIT) (RS-2023-00242528).

Data Availability Statement: Experimental data and code related to this paper can be obtained by
contacting the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Algorithm A1. Pseudocode of genetic process mining used to discover a process model.

Initialize population P of process models
Evaluate fitness of each model in P based on event log data
while termination criteria not met do:

Select parents from P based on fitness
Apply crossover and mutation operators to create offspring
Evaluate fitness of offspring based on event log data
Replace least-fit models in P with offspring

end while
Select best model from P as the discovered process model

Electronics 2024, 13, 3752 23 of 28

Algorithm A2. Genetic process mining algorithm used to recover missing events.

Function to initialize population of event logs
def initialize_population(event_log, population_size = 50):

population = []
unique_activities = event_log[‘Activity’].unique()
for _ in range(population_size):

individual_log = event_log.copy()
for case_group in individual_log grouped by ‘CaseID’:

sort case_group by ‘Timestamp’
case_activities = list of ‘Activity’ from case_group
case_timestamps = list of ‘Timestamp’ from case_group
existing_activities = set of case_activities
missing_activities = unique_activities − existing_activities

Function to insert missing activities
for missing_activity in missing_activities:

insertion_position = random position in case_activities
insert missing_activity at insertion_position
insert corresponding timestamp at insertion_position

updated_rows = DataFrame with updated case_activities and case_timestamps
append updated_rows to individual_log

append sorted individual_log to population
return population

Function to evaluate fitness score of an individual event log
def evaluate_fitness_score(individual_log, reference_event_log):

unique_activities_set = set of unique activities in reference_event_log
fitness_score = 0
for case_group in individual_log grouped by ‘CaseID’:

reference_activities = set of activities in reference case_group
recovered_activities = set of activities in current case_group
fitness_score += number of recovered_activities in unique_activities_set −

reference_activities
return fitness_score

Function to select the fittest individuals from the population
def select_fittest(population, fitness_scores, selection_count):

sorted_indices = indices of fitness_scores sorted in descending order
fittest_individuals = top selection_count individuals from population using sorted_indices
return fittest_individuals

Function to perform crossover between two parents to produce offspring
def perform_crossover(parent1, parent2):

offspring1, offspring2 = copies of parent1 and parent2
for case_id in parent1:

if random value > 0.5:
temp_case1 = parent2’s case with case_id
temp_case2 = parent1’s case with case_id
replace offspring1’s case with temp_case1
replace offspring2’s case with temp_case2

return offspring1, offspring2
Function to perform mutation on an individual event log

Electronics 2024, 13, 3752 24 of 28

Algorithm A2. Cont.

def perform_mutation(individual_log, mutation_rate = 0.1):
unique_activities = unique activities in individual_log
for case_group in individual_log grouped by ‘CaseID’:

if random value < mutation_rate:
sort case_group by ‘Timestamp’
case_activities = list of activities in case_group
case_timestamps = list of timestamps in case_group
mutation_position = random position in case_activities
new_activity = random choice from unique_activities
replace activity at mutation_position with new_activity
updated_rows = DataFrame with updated case_activities and case_timestamps
update individual_log with updated_rows

return sorted individual_log
Genetic algorithm to recover missing activities
def genetic_process_recovery(event_log, generations = 50, population_size = 50, mutation_rate =
0.1):

population = initialize_population(event_log, population_size)
for _ in range(generations):

fitness_scores = list of fitness scores for each individual_log in population
selected_population = select_fittest(population, fitness_scores, selection_count =

population_size // 2)
next_generation = []
while len(next_generation) < population_size:

parent1, parent2 = random sample of 2 from selected_population
offspring1, offspring2 = perform_crossover(parent1, parent2)
perform_mutation(offspring1, mutation_rate)
perform_mutation(offspring2, mutation_rate)
next_generation.append(offspring1)
next_generation.append(offspring2)

population = next_generation
best_individual_log = individual_log with highest fitness score in population
return best_individual_log

Algorithm A3. Timed genetic process mining algorithm used to recover missing events.

Function to read data from input file
def read_data(file_path):

event_log[‘Start Timestamp’] = pd.to_datetime(event_log[‘Start Timestamp’])
event_log[‘End Timestamp’] = pd.to_datetime(event_log[‘End Timestamp’])
event_log.columns = [‘CaseID’, ‘Activity’, ‘Start Timestamp’, ‘End Timestamp’]

Calculate average duration of each activity
average_durations = {}
grouped_event_log = event_log.groupby(‘Activity’)
for activity, group in grouped_event_log:

durations = group[‘End Timestamp’] − group[‘Start Timestamp’]
average_duration = durations.mean()
average_durations[activity] = average_duration

Fitness function to evaluate a sequence based on temporal gaps
def evaluate_fitness(sequence, start_times, end_times):

fitness_score = 0
for i in range(len(sequence) − 1):

if i < len(start_times) − 1:
expected_gap = average_durations[sequence[i + 1]]
if start_times[i + 1] − end_times[i] >= expected_gap:

fitness_score += 1
return fitness_score

Electronics 2024, 13, 3752 25 of 28

Algorithm A3. Conts.

Function to perform crossover between two parents
def perform_crossover(parent1, parent2):

if len(parent1) > 2 and len(parent2) > 2:
crossover_point = random.randint(1, len(parent1) − 2)
offspring1 = parent1[:crossover_point] + parent2[crossover_point:]
offspring2 = parent2[:crossover_point] + parent1[crossover_point:]
return offspring1, offspring2

else: return parent1, parent2
Function to perform mutation on a sequence
def perform_mutation(sequence, activity_pool):

if len(sequence) > 1:
mutation_index = random.randint(0, len(sequence) − 1)
sequence[mutation_index] = random.choice(activity_pool)

return sequence
Function to create an initial population of sequences
def initialize_population(size, missing_activities):

population = []
for _ in range(size):

sequence = random.sample(missing_activities, len(missing_activities))
population.append(sequence)

return population
Genetic algorithm to recover missing activities in an event log
def genetic_process_recovery(event_log, generations = 50, population_size = 50):

all_activities = event_log[‘Activity’].unique().tolist()
recovered_log = []
for case_id, case_group in event_log.groupby(‘CaseID’):

case_group = case_group.sort_values(by = ‘Start Timestamp’)
case_activities = case_group[‘Activity’].tolist()
start_times = case_group[‘Start Timestamp’].tolist()
end_times = case_group[‘End Timestamp’].tolist()
if case_activities[0] != all_activities[0]:

initial_activity = all_activities[0]
case_activities.insert(0, initial_activity)
avg_duration = average_durations[initial_activity]
start_times.insert(0, start_times[0] − avg_duration)
end_times.insert(0, start_times[0] + avg_duration)

if case_activities[−1] != all_activities[−1]:
final_activity = all_activities[−1]
case_activities.append(final_activity)
avg_duration = average_durations[final_activity]
start_times.append(end_times[−1])
end_times.append(start_times[−1] + avg_duration)

existing_activities = set(case_activities)
missing_activities = [activity for activity in all_activities if activity not in

existing_activities]
Initialize population
population = initialize_population(population_size, missing_activities)
for _ in range(generations):

Evaluate fitness of each individual in the population
fitness_scores = [evaluate_fitness(individual, start_times, end_times) for individual

in population]

Electronics 2024, 13, 3752 26 of 28

Algorithm A3. Conts.

Select the best individuals
max_fitness = max(fitness_scores)
selected_population = [population[i] for i in range(len(population)) if

fitness_scores[i] == max_fitness]
Generate new population through crossover and mutation
new_population = []
while len(new_population) < population_size:

parent1, parent2 = random.sample(selected_population, 2)
offspring1, offspring2 = perform_crossover(parent1, parent2)
new_population.extend([

perform_mutation(offspring1, missing_activities),
perform_mutation(offspring2, missing_activities)])

population = new_population
Initialize variable to keep track of the best individual and its fitness score
best_individual = None
max_fitness_score = -float(‘inf’)
Iterate through each individual in the population
for individual in population:
Calculate the fitness score for the current individual
fitness_score = evaluate_fitness(individual, start_times, end_times)
Update the best individual if the current fitness score is higher than the max fitness

score
if fitness_score > max_fitness_score:

max_fitness_score = fitness_score
best_individual = individual

References
1. Van der Aalst, W.M.P. Process mining: Data science in action. In Process Mining: Data Science in Action, 2nd ed.; Springer:

Berlin/Heidelberg, Germany, 2016; pp. 140–178. [CrossRef]
2. Process Mining Book. Available online: https://fluxicon.com/book/read/dataext/ (accessed on 1 September 2024).
3. Van Midden, Y. Using process mining and event log analysis for better business strategy decision-making. In Proceedings of the

35th Twente Student Conference on IT, Enschede, The Netherlands, 2 July 2021.
4. Yang, H.; van Dongen, B.F.; ter Hofstede, A.H.M.; Wynn, M.T.; Wang, J. Estimating completeness of event logs. BPM Rep. 2012,

1204, 12.
5. Wang, L.; Fang, X.; Shao, C. Discovery of Business Process Models from Incomplete Logs. Electronics 2022, 11, 3179. [CrossRef]
6. Butt, N.A.; Mahmood, Z.; Sana, M.U.; Díez, I.d.l.T.; Galán, J.C.; Brie, S.; Ashraf, I. Behavioral and Performance Analysis of a

Real-Time Case Study Event Log: A Process Mining Approach. Appl. Sci. 2023, 13, 4145. [CrossRef]
7. Li, C.; Ge, J.; Wen, L.; Kong, L.; Chang, V.; Huang, L.; Luo, B. A novel completeness definition of event logs and corresponding

generation algorithm. Expert Syst. 2020, 37, e12529. [CrossRef]
8. Bowman, S. Impact of electronic health record systems on information integrity: Quality and safety implications. Perspect. Health

Inf. Manag. 2013, 10, 1c.
9. Laplante, P.A.; Ovaska, S.J. Real-Time Systems Design and Analysis; IEEE: Piscataway, NJ, USA, 2012; Volume 3, pp. 154–196.
10. Potter, S.; Nieh, J. Reducing downtime due to system maintenance and upgrades. In Proceedings of the 19th Large Installation

System Administration Conference, San Diego, CA, USA, 4–9 December 2005; Volume 19, pp. 1–15.
11. Berman, B.A.; Dismukes, R.K.; Jobe, K.K. Performance Data Errors in Air Carrier Operations: Causes and Countermeasures; National

Aeronautics and Space Administration, Ames Research Center: Moffett Field, CA, USA, 2012; pp. 7–11.
12. Cascio, W.F.; Montealegre, R. How Technology Is Changing Work and Organizations. Annu. Rev. Organ. Psychol. Organ. Behav.

2016, 3, 349–375. [CrossRef]
13. Kock, N. Asynchronous and distributed process improvement: The role of collaborative technologies. Inf. Syst. J. 2001, 11, 87–110.

[CrossRef]
14. Effendi, Y.A.; Minsoo, K. Refining Process Mining in Port Container Terminals Through Clarification of Activity Boundaries With

Double-Point Timestamps. ICIC Express Lett. Part B Appl. 2024, 15, 61–70. [CrossRef]
15. Nguyen, O.T.; Alishahi Tabriz, A.; Huo, J.; Hanna, K.; Shea, C.M.; Turner, K. Impact of Asynchronous Electronic Communication-

Based Visits on Clinical Outcomes and Health Care Delivery: Systematic Review. J. Med. Internet Res. 2021, 23, e27531. [CrossRef]
16. De Medeiros, A.; Weijters, A.; Van der Aalst, W.M.P. Using Genetic Algorithms to Mine Process Models: Representation, Operators and

Results; Beta Working Paper Series, WP 124; Eindhoven University of Technology: Eindhoven, The Netherlands, 2004.

https://doi.org/10.1007/978-3-662-49851-4
https://fluxicon.com/book/read/dataext/
https://doi.org/10.3390/electronics11193179
https://doi.org/10.3390/app13074145
https://doi.org/10.1111/exsy.12529
https://doi.org/10.1146/annurev-orgpsych-041015-062352
https://doi.org/10.1046/j.1365-2575.2001.00097.x
https://doi.org/10.24507/icicelb.15.01.61
https://doi.org/10.2196/27531

Electronics 2024, 13, 3752 27 of 28

17. Huser, V. Process Mining: Discovery, Conformance and Enhancement of Business Processes. J. Biomed. Inform. 2012, 45, 1018–1019.
[CrossRef]

18. Jans, M.; De Weerdt, J.; Depaire, B.; Dumas, M.; Janssenswillen, G. Conformance Checking in Process Mining. Inf. Syst. 2021,
102, 101851. [CrossRef]

19. Buijs, J.C.A.M.; van Dongen, B.F.; van der Aalst, W.M.P. On the role of fitness, precision, generalization and simplicity in process
discovery. In On the Move to Meaningful Internet Systems: OTM 2012, 2nd ed.; Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma,
S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 7565, pp. 305–322.

20. De Leoni, M. Foundations of Process Enhancement. In Process Mining Handbook. Lecture Notes in Business Information Processing;
Van der Aalst, W.M.P., Carmona, J., Eds.; Springer: Cham, Switzerland, 2022; Volume 448. [CrossRef]

21. Ayo, F.E.; Folorunso, O.; Ibharalu, F.T. A probabilistic approach to event log completeness. Expert Syst. Appl. 2017, 80, 263–272.
[CrossRef]

22. Yang, H.; Wen, L.; Wang, J. An approach to evaluate the local completeness of an event log. IEEE Int. Conf. Data Min. 2012, 12,
1164–1169. [CrossRef]

23. Kang, H. The prevention and handling of missing data. Korean J. Anesthesiol. 2013, 64, 402–406. [CrossRef]
24. Marin-Castro, H.M.; Tello-Leal, E. Event Log Preprocessing for Process Mining: A Review. Appl. Sci. 2021, 11, 10556. [CrossRef]
25. Palaniswamy, S.R.; Jain, V.; Chakrabarti, D.; Bharadwaj, S.; Sriganesh, K. Completeness of manual data recording in the anaesthesia

information management system: A retrospective audit of 1000 neurosurgical cases. Indian J. Anaesth. 2019, 63, 797–804. [CrossRef]
26. Kent, K.; Souppaya, M. Guide to computer security log management. NIST Spec. Publ. 2006, 800–892, 1–72.
27. Basin, D.; Klaedtke, F.; Marinovic, S.; Zalinescu, E. Monitoring compliance policies over incomplete and disagreeing logs. In

Runtime Verification; Qadeer, S., Tasiran, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
28. Event Logging and Auditing. Available online: https://www.nzism.gcsb.govt.nz/ism-document/pdf/Section/15629 (accessed

on 21 July 2024).
29. Arain, M.A.; Tarraf, R.; Ahmad, A. Assessing staff awareness and effectiveness of educational training on IT security and privacy

in a large healthcare organization. J. Multidiscip. Healthc. 2019, 12, 73–81. [CrossRef]
30. Pan, Y.; Zhang, L. Automated process discovery from event logs in BIM construction projects. Autom. Constr. 2021, 127, 103713.

[CrossRef]
31. Sutrisnowati, R.A.; Bae, H.; Dongha, L.; Minsoo, K. Process model discovery based on activity lifespan. Int. Conf. Technol. Innov.

Ind. Manag. 2014, 137–156. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=zbYb2
_4AAAAJ&citation_for_view=zbYb2_4AAAAJ:WF5omc3nYNoC (accessed on 6 August 2024).

32. Sarno, R.; Kartini; Wibowo, W.A.; Solichah, A. Time Based Discovery of Parallel Business Processes. In Proceedings of the
International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Bandung, Indonesia, 5–7 October
2015; pp. 28–33. [CrossRef]

33. Sarno, R.; Haryadita, F.; Sunaryono, D.; Munif, A. Model discovery of parallel business processes using modified Heuristic Miner.
In Proceedings of the 2015 International Conference on Science in Information Technology (ICSITech), Yogyakarta, Indonesia,
27–28 October 2015; pp. 30–35. [CrossRef]

34. Sarno, R.; Wibowo, W.A.; Kartini; Amelia, Y.; Rossa, K. Determining process model using Time-based Process Mining and
control-flow pattern. Telkomnika (Telecommun. Comput. Electron. Control) 2016, 14, 349–3591. [CrossRef]

35. Sungbum, P.; Young Sik, K. A Study of Process Mining-based Business Process Innovation. Procedia Comput. Sci. 2016, 91, 734–743.
[CrossRef]

36. Liu, D.; Guo, Y.; Huang, S.; Wang, S.; Wu, T. Dynamic production bottleneck prediction using a data-driven method in discrete
manufacturing system. Adv. Eng. Inform. 2023, 58, 102162. [CrossRef]

37. Elkhuizen, S.G.; Burger, M.P.M.; Jonkers, R.E.; Limburg, M.; Klazinga, N.; Bakker, P.J.M. Using Business Process Redesign to
Reduce Wait Times at a University Hospital in the Netherlands. Jt. Comm. J. Qual. Patient Saf. 2007, 33, 332–341. [CrossRef]

38. Dumas, M.; Van der Aalst, W.M.P.; Ter Hofstede, A.H.M. Process-Aware Information Systems: Bridging People and Software through
Process Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005.

39. Rozinat, A.; van der Aalst, W.M.P. Conformance checking of processes based on monitoring real behavior. Inf. Syst. 2008, 33,
64–95. [CrossRef]

40. De Medeiros, A. Process Mining: Extending the α-Algorithm to Mine Short Loops; BETA Working Paper Series, WP 113; Eindhoven
University of Technology: Eindhoven, The netherlands, 2004.

41. Effendi, Y.A.; Sarno, R. Modeling parallel business process using modified time-based alpha miner. Int. J. Innov. Comput. Inf.
Control 2018, 14, 1565–1579. [CrossRef]

42. Mikolajczak, B.; Chen, J.L. Workflow Mining Alpha Algorithm—A Complexity Study. In Intelligent Information Processing and
Web Mining. Advances in Soft Computing; Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K., Eds.; Springer: Berlin/Heidelberg,
Germany, 2005; Volume 31. [CrossRef]

43. Sarno, R.; Effendi, Y.A.; Haryadita, F. Modified time-based heuristics miner for parallel business processes. Int. Rev. Comput.
Softw. (IRECOS) 2016, 11, 249–260. [CrossRef]

https://doi.org/10.1016/j.jbi.2012.06.007
https://doi.org/10.1016/j.is.2021.101851
https://doi.org/10.1007/978-3-031-08848-3_8
https://doi.org/10.1016/j.eswa.2017.03.039
https://doi.org/10.1109/ICDM.2012.66
https://doi.org/10.4097/kjae.2013.64.5.402
https://doi.org/10.3390/app112210556
https://doi.org/10.4103/ija.IJA_450_19
https://doi.org/10.1007/978-3-642-35632-2_17
https://www.nzism.gcsb.govt.nz/ism-document/pdf/Section/15629
https://doi.org/10.2147/JMDH.S183275
https://doi.org/10.1016/j.autcon.2021.103713
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=zbYb2_4AAAAJ&citation_for_view=zbYb2_4AAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=zbYb2_4AAAAJ&citation_for_view=zbYb2_4AAAAJ:WF5omc3nYNoC
https://doi.org/10.1109/IC3INA.2015.7377741
https://doi.org/10.1109/ICSITech.2015.7407772
https://doi.org/10.12928/telkomnika.v14i1.3257
https://doi.org/10.1016/j.procs.2016.07.066
https://doi.org/10.1016/j.aei.2023.102162
https://doi.org/10.1016/S1553-7250(07)33038-9
https://doi.org/10.1016/j.is.2007.07.001
https://doi.org/10.24507/ijicic.14.05.1565
https://doi.org/10.1007/3-540-32392-9_51
https://doi.org/10.15866/irecos.v11i3.8717

Electronics 2024, 13, 3752 28 of 28

44. Porouhan, P.; Jongsawat, N.; Premchaiswadi, W. Process and deviation exploration through Alpha-algorithm and Heuristic miner
techniques. In Proceedings of the 2014 Twelfth International Conference on ICT and Knowledge Engineering, Bangkok, Thailand,
18–21 November 2014; pp. 83–89. [CrossRef]

45. Effendi, Y.A.; Sarno, R.; Marsha, D.V. Improved fuzzy miner algorithm for business process discovery. Telecommun. Comput.
Electron. Control 2023, 19, 1830–1839. [CrossRef]

46. Siek, M. Investigating inductive miner and fuzzy miner in automated business model generation. In Proceedings of the
3rd International Conference on Computer, Science, Engineering and Technology, Changchun, China, 22–24 September 2023;
Volume 2510. [CrossRef]

47. Pohl, T.; Pegoraro, M. An Inductive Miner Implementation for the PM4PY Framework; i9 Process and Data Science (PADS); RWTH
Aachen University: Aachen, Germany, 2019.

48. Difflib—Helpers for Computing Deltas. Available online: https://docs.python.org/3/library/difflib.html (accessed on 2
September 2024).

49. SequenceMatcher in Python. Available online: https://towardsdatascience.com/sequencematcher-in-python-6b1e6f3915fc
(accessed on 2 September 2024).

50. van Dongen, B.F.; Carmona, J.; Chatain, T. A unified approach for measuring precision and generalization based on anti-
alignments. In Business Process Management, 14th International Conference, BPM 2016, Rio de Janeiro, Brazil, 18–22 September 2016;
Proceedings; Springer: Berlin/Heidelberg, Germany, 2016; pp. 39–56.

51. Adriansyah, A.; van Dongen, B.F.; van der Aalst, W.M.P. Conformance Checking Using Cost-Based Fitness Analysis. In
Proceedings of the 2011 IEEE 15th International Enterprise Distributed Object Computing Conference, Helsinki, Finland, 29
August–2 September 2011; pp. 55–64. [CrossRef]

52. Bergami, G.; Maggi, F.M.; Montali, M.; Peñaloza, R. Probabilistic Trace Alignment. In Proceedings of the 2021 3rd International
Conference on Process Mining (ICPM), Eindhoven, The Netherlands, 31 October—4 November 2021; pp. 9–16. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICTKE.2014.7001540
https://doi.org/10.12928/telkomnika.v19i6.19015
https://doi.org/10.1063/5.0128639
https://docs.python.org/3/library/difflib.html
https://towardsdatascience.com/sequencematcher-in-python-6b1e6f3915fc
https://doi.org/10.1109/EDOC.2011.12
https://doi.org/10.1109/ICPM53251.2021.9576856

	Introduction
	Research Background
	Process Mining
	Event Log Completeness
	Dual-Timestamp Event Log
	Behavioral and Structural Appropriateness
	Behavioral Appropriateness
	Structural Appropriateness

	Process Discovery

	Experimental Setup
	Comparison of Algorithms for the Recovery of Missing Events
	Original Genetic Process Mining Algorithm
	Timed Genetic Process Mining Algorithm

	In-Depth Comparison of Experiments and Analysis
	Advanced Metrics for Conformance Checking
	Conclusions
	Appendix A
	References

