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Abstract: The objective of this paper is to first present some issues with impulse invariance filter
(IIF) design during the design of digital infinite impulse response (IIR) filters. Engineers are often
confused about some inconsistent observations. For instance, if the impulse response of a digital filter
is designed using the impulse invariance procedure, then the analog and digital filters’ frequency
and step responses are very different. Two simple remedies are presented in this paper. One is a post-
processing approach that scales the frequency and step responses of the digital filter by the sampling
interval T. Another one is a pre-processing approach that scales the impulse response of the analog
filter by T. However, even after these remedies, there is still a steady state bias in the step response
of the digital filter for certain cases where there is discontinuity in the analog impulse response. A
recommendation is to include a correction term in the digital filter. After that, the steady state bias in
the digital filter is then suppressed. Moreover, the MATLAB R2021a command “impinvar” needs
to also include a correction term so that the frequency and step responses can be more accurate in
the digital filter. Two comparative studies were carried out to compare the improved IIF filter with
three competing digital IIR filter design methods. Although the above issues and improvements
have been proposed by researchers in the past, many researchers, engineers, and students are still not
aware of them. This paper provides a fresh revisit of these issues and improvements by using figures,
equations, and examples. Proper credits are also given to those researchers who first pointed out
those issues and improvements. It is hoped that through an open access journal, future rediscovery
of issues and improvements in IIF can be prevented.

Keywords: infinite impulse response (IIR); impulse invariance filter (IIF); frequency response; step
response; impulse response; MATLAB R2021a

1. Introduction
1.1. Overview of Digital Filters

Digital filters are broadly categorized into finite impulse response (FIR) and infinite
impulse response (IIR) filters [1–22]. Each category presents its own set of advantages and
disadvantages. FIR filters are renowned for their linear phase properties, but they have a
drawback where they require a larger number of filter coefficients to achieve comparable
cutoff frequencies [9]. Conversely, IIR filters offer a more compact design but may exhibit
non-linear phase characteristics [10]. In recent years, both categories have been significantly
developed and contain many innovative designs for both IIR [4–6,11] and FIR [7,8] filters.

1.2. Motivation and Issues in Digital Filter Design

This paper is motivated by the perplexing issues encountered in practical applications
of digital filters. First, Example 10.3.3 in Proakis and Manolakis’ textbook [1] illustrates
notable discrepancies in frequency responses between analog and digital filters, particularly
in terms of amplitude. The digital filter’s frequency and step responses are typically scaled
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by a factor of 1/T compared to the analogous analog filter. This phenomenon poses
challenges for engineers to comprehend [13,14].

Second, in Lathi and Green’s textbook [2], the IIF design is presented differently from
that of Proakis and Manolakis [1]. The discrete impulse response is obtained by multiplying
T times the analog filter impulse response. The frequency and step responses of both
analog and digital filters are almost the same, except for the presence of a steady state
bias in the step responses in certain scenarios [13,14]. Additionally, there are instances
where the impulse responses have discontinuities at t = 0, and such instances may result
in slight discrepancies between the analog and digital filter step responses [17]. This
phenomenon was initially elucidated by Jackson [3], but remains overlooked in recent
textbooks [1,2]. Lastly, the MATLAB R2021a impulse invariance (impinvar) command still
uses the outdated method described in [2] without explicit design procedures to tackle the
challenges of managing the steady state bias in the step response of the digital filter [18].

1.3. Prior Works Related to IIF Issues and Remedies

It is worth mentioning that in the first edition of the classic textbook by Oppenheim and
Schafer of 1975 [19] they discussed the scaling issue. On page 203 of [19], it was mentioned
that, for high sampling rates (small T), “the digital filter may have an extremely high gain”.
They recommended that the digital filter impulse response should be obtained by multiplying
the sampling period T by the analog filter impulse response. This remedy will ensure the
analog and digital filters have the same frequency response for bandlimited filters.

In [3], Jackson pointed out in 2000 that the equations for impulse invariance filter
design are incorrect if the impulse response of the causal continuous-time filter is discon-
tinuous at t = 0, which corresponds to some first-order lowpass filters or second-order
bandpass filters. He first gave some background on the impulse invariance filter design
and then showed a correction term for the IIF. He also gave a proof for confirming that
correction term. In the Acknowledgment, Jackson mentioned that a “reviewer pointed out
that this error was previously noted in the textbook by Gabel and Roberts” [21]. He also
acknowledged that Mecklenbräuker also published a paper [20] “with essentially the same
content” in 2000.

Mecklenbräuker [20] independently noticed the same issue in IIF filter design when
the impulse response of the continuous filter is discontinuous. He derived the correction
term, which is the same as that of Jackson’s paper [3]. Mecklenbräuker acknowledged
Jackson’s paper [3] at the end of his paper.

Despite the earlier identification of these issues, many recent and popular digital
signal processing (DSP) textbooks, such as those by Proakis and Manolakis [1], Lathi and
Green [2], and Lyons [22], do not address them. This suggests that the issues are still
not widely recognized or understood within the DSP community. The moral of the above
observation—rediscovery of old research results—is that many people, including professors,
DSP engineers, and students, are still unaware of the issues in impulse invariance filter
design. This could be due to limited access of journals and outdated textbooks. Many DSP
engineers do not have access to journals because the subscription fees are expensive and
their employers simply cannot afford the costs. In our opinion, these issues are still not
“well-known” amongst DSP engineers, students, and even academic researchers. The latest
edition of the book by Proakis and Manolakis in 2021 did not mention either issue, even
though it is the most recent DSP book in the literature.

1.4. Objective and Contributions

The goal of this paper is not the comparison of different digital filters. Instead, the goal
is to address the above confusing issues and provide a consistent impulse invariance filter
design that can yield a good steady state response and can match the frequency response
of the continuous filters. The contributions of this paper are as follows. First, the above
confusing issues in the IIF design procedures [15,16] are clarified. Second, we want to
provide a historical context and properly credit past researchers and outline the timeline of
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the issues, including the rediscovery of these issues. Third, we provide a thorough analysis
of the bias issue, including detailed figures and equations that illustrate both the problem
and potential solutions. While Jackson’s paper [3] mentioned the impinvar function, it
did not explore the details of the bias term, which we address comprehensively. Fourth,
the correct procedures to design the IIF are then described. It is recommended that the
design method described in [2] with the addition of a correction term in [3] be used. As a
result, application engineers can apply the correct and accurate impulse invariance filter
design procedure to solve real-world problems. Fifth, by revisiting these issues, our paper
aims to aid future researchers in selecting appropriate filters for various applications. We
demonstrate how the omission of the bias term can impact filter selection in comparative
studies, which underscores the practical relevance of addressing these issues.

This paper is organized as follows. In Section 2, the standard impulse invariance
filter design procedures will be reviewed. The issues, remedies, and the correct IIF design
procedures will then be presented. In Section 3, two examples will be presented to illustrate
the improved IIF procedures and performance. In Section 4, it is pointed out that the
MATLAB R2021a command for impulse invariance design is the one described in [2] but
without a correction term. It is recommended to incorporate a correction term so that the
digital filter is more accurate in both frequency and step responses. Section 5 compares
four competing digital filters using two examples. Some remarks on IIF design are also
given. Finally, Section 6 concludes the paper.

2. Materials and Methods
2.1. Impulse Invariance Filter (IIF) Design

For digital IIR filters, one popular category of design technique is to convert well-
designed analog filters to digital filters. In this category, there are several techniques,
including IIR filter design using approximation of derivatives, IIR filter design by impulse
invariance, IIR filter design using matched poles and zeros, and IIR filter design by bilinear
transformation. See [1,19] for details.

Here, the IIF design procedures are briefly reviewed. Given a well-designed analog
filter transfer function Ha(s) whose impulse response is represented as ha(t) and its sampled
impulse response is denoted by

h(n) = ha(nT), n = 0, 1, 2, 3, . . .. (1)

where T is the sampling interval.
When a continuous signal ha(t) with spectrum Ha(ω) is sampled with a sampling

interval T or a sampling rate of Fs =
1
T , the spectrum of the sampled signal/digital filter

with sample response h(n) = ha(nT) has the following frequency response [1]:

H( f ) = Fs∑∞
−∞ Ha(( f − kFs)) (2)

or

H(ω) = Fs∑∞
−∞ Ha((ω − 2πkFs)) (3)

or

H(ΩT) = Fs∑∞
−∞ Ha

((
Ω − 2πk

T

))
(4)

where f = F/Fs, ω = 2π f , Ω = 2πF, and ω = ΩT. Details can be found in [1].
To visualize Equations (2)–(4), one can look at Figure 10.3.3 in [1], in which one can

see that the digital filter response H(f ) is a periodic replica of the analog spectral response
Ha(f ).
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In terms of s- and z-transforms, the relationship between the digital filter and the
analog filter is given by [1]:

H(z) =
1
T ∑∞

−∞ Ha

((
s − j

2πk
T

))
(5)

where

H(z) = ∑∞
n=0 h(n)z−n (6)

z = esT (7)

Without loss of generality, the case where the poles of the analog filter are distinct is
considered here. The following materials are summarized from [1]. For repeated poles, the
design can still proceed by including more terms associated with the higher order terms
in the partial fraction expansion. The analog filter using partial fraction expansion is then
given by

Ha(s) = ∑N
k=1

ck
s − pk

(8)

where pk are the poles and ck are the coefficients of the partial fraction expansion. The
impulse response can be obtained as

ha(t) = ∑N
k=1 ckepkt, t ≥ 0 (9)

If one samples ha(t) at t = nT, then the discretized impulse response is

h(n) = ha(nT) = ∑N
k=1 ckepknT (10)

Substituting (10) into (6), the digital IIR filter obtained by the impulse invariance
design procedure is then given by

H(z) = ∑∞
n=0 h(n)z−n = ∑∞

n=0
ck

1 − epkTz−1 (11)

Comparing Ha(s) in (8) and H(z) in (11), one can see that the analog poles are mapped
to the digital filter poles via

zk = epkT , k = 1, 2, . . . , N (12)

2.2. Issues

Earlier, it was mentioned that if one strictly follows the IIF design procedures, then
there will be some confusing issues. Let us use Example 10.3.3 in Proakis and Manolakis’
book [1] to illustrate the issues.

Equation (13) below shows the desired analog filter, which is a bandpass filter, that
needs to be converted to a digital filter.

Ha(s) =
s + 0.1

(s + 0.1)2 + 9
(13)

Following the IIF design procedures described in Section 2.1, the digital filter’s impulse
response is the sampled version of the analog filter’s impulse response. The resulting digital
filter is given by Equation (14).

H1(z) =
1 −

(
e−0.1Tcos3T

)
z−1

1 −
(

2e−0.1Tcos3T
)

z−1 + e−0.2Tz−2
(14)
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Figure 1 shows the impulse responses of the analog filter and digital filter with
different sampling periods of T (T = 0.1, 0.5, 1) seconds. It can be clearly seen that the
impulse responses of the analog and digital filters match. Next, the frequency responses of
the analog and digital filters are plotted in Figure 2. Figure 3 shows the step responses of
the analog and digital filters. From Figures 2 and 3, the first issue is that one can clearly
see that the digital filters’ responses are 1/T times larger than that of the analog filter. The
second issue is that one can see that the digital filters’ step responses not only do not look
similar to the analog filter’s output but also have different steady state responses. From
the above observations, it can be concluded that constraining the digital filter’s impulse
response to be exactly the same as the analog’s impulse response is not a good design
principle because the resulting digital filter differs from the analog filter in both frequency
and step responses. In both the frequency and step responses, the amplitudes differ by a
factor of 1/T.
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2.3. Remedies to Resolve the Inconsistency Issues in Frequency and Step Responses

Now, two remedies will be presented. Remedy 1 can resolve the inconsistencies in
both the frequency and step responses. Remedy 2 can also resolve both inconsistencies in
frequency and step responses. However, the impulse responses of the analog and digital
filters do not match each other anymore in Remedy 2.
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2.3.1. Remedy Method 1: Scale the Digital Filter Frequency and Step Responses by T

One can call Remedy 1 a post-processing step after the filter has been designed using
the standard IIF design procedures.

To explain the behavior of the frequency response in Figure 2, the answer can be found
by looking at Equation (5). From Equation (5), one can see that the digital filter response is
1/T times the analog filter response.

In order to match the analog and digital filter frequency responses, one simple remedy
is to scale the digital filter frequency response by multiplying it with the sampling interval
T. The justification for this method is that the relationship between the analog and digital
filters’ frequency responses due to sampling operations can be illustrated in Figure 4. It
can be clearly seen that the amplitude of the frequency response of the digital filter is 1/T
times that of the analog filter. Because of the above scaling effect, the output of the digital
filter will be scaled by 1/T. Hence, one should multiply the output of the digital filter by T
in order to obtain the same results as the analog filter’s output.
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Figure 4. Illustration of the frequency responses of the analog and digital filters.

Using the same example (originally from [1]) as in Section 2.2, one can multiply the
frequency response in Figure 2 by T and then obtain Figure 5 below. It can be seen that for
T = 0.1 and T = 0.5, the frequency responses of the analog and digital filters match quite
well over a frequency range of 1 to 5 rad/s. For the step response, one can multiply the step
responses in Figure 3 by T, and the resulting step responses are shown in Figure 6. One
can observe that the step responses of the analog and digital filter are similar, especially for
small Ts. Note that the performance of impulse invariance filter design depends on the
sampling interval T. A smaller T gives better matching results. For large Ts, frequency and
step responses of the digital filter differ more from the analog filter responses.
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Figure 5. Comparison of the frequency responses of the analog and digital filters. The fre-
quency responses are quite similar to one another. Digital filters with smaller Ts are closer to the
analog response.
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Hence, if one directly uses the sampled analog filter impulse response as the digital
filter impulse response, then one should remember to scale the digital filter’s step response
and frequency response by multiplying by the sampling period T. Otherwise, the analog
and digital filter responses will have a scaling difference of 1/T.

2.3.2. Remedy Method 2: Scale the Impulse Response by T

In Remedy 1, it is recommended to scale the digital filter frequency and step responses
by multiplying by the sampling period T. Here, a pre-processing approach is presented,
which was mentioned in [2], where the sampled analog’s impulse response is multiplied
by T to obtain the digital filter impulse response. The digital filter’s outputs will then be
the same as the analog filter’s frequency and step responses. The results are the same as
those in Figures 5 and 6. Hence, those responses are not replicated here.

Mathematically, since the frequency response of the analog filter Ha(ω ) is related to
its impulse response via the Fourier Transform (linear),

Ha(ω) =
∫ ∞

−∞
ha(t)e−jωtdt. (15)

If one discretizes (15), then one will obtain an approximate frequency response Hd(ω):

Hd(ω) = ∑∞
−∞ h(nT)e−jωnTT = ∑∞

−∞ Th(nT)e−jωnT . (16)

From Equation (7), the digital filter response H(ω) will be the same as Hd(ω) if one
defines h(n) = Th(nT) in Equation (16).
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Hence, the idea of Remedy 2 is to scale the analog impulse response by T and use the
scaled version as the impulse response for the digital filter. Here, using the same example
as earlier, the digital filter is given by

H2(z) = TH1(z) =
T
(
1 −

(
e−0.1Tcos3T

)
z−1)

1 −
(

2e−0.1Tcos3T
)

z−1 + e−0.2Tz−2
(17)

Strictly speaking, Remedy 2 or the alternative method mentioned in [2] should be
called a modified impulse invariance method because the analog impulse response and the
digital impulse response are no longer the same. Figure 7 compares the impulse responses
of the analog and digital filters. It can be seen that the digital filters’ impulse responses are
scaled by T times the analog response.
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However, the steady state values of step responses for the digital filter shown in
Figure 6 are different from the analog filter. Smaller Ts have smaller biases. In Section 2.3
below, the reason for the biases will be explained.

2.4. An Improved IIF Design

In Section 2.3, the modified IIF design (Remedy 2) resolves the matching issues in
both the frequency and step responses. However, the existence of steady state errors is
prominent in the step responses. Some minor differences between the analog and digital
filter outputs can be seen from Figure 6. Based on the subplots Figure 6b–d, one can
intuitively link those differences to the digital sampling period T because, for smaller Ts,
one can still observe small biases. The reason is because of the discontinuity at t = 0 in the
analog filter’s impulse response.
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In a paper by Jackson [3], it was pointed out that, for rational analog filters with a
relative degree difference of one, there is a discontinuity at t = 0 in the impulse response.
Due to this discontinuity, the modified impulse invariance method mentioned in Section 2.3
(Remedy 2) should have an additional correction term in order to avoid some biases
between analog and digital filter responses. Details can be found in [5]. Specifically, for an
analog filter of the form

Ha(s) = ∑N
k=1

Ak
s − pk

, (18)

the corrected digital filter based on the modified impulse invariance method is given by

H(z) = ∑N
k=1

TAk
1 − epk z−1 − T

2 ∑N
k=1 Ak. (19)

The same example to illustrate this improved IIF design will be used below.
Following the recommendation described in [5], a correction term mentioned in

Equation (19) is added into Equation (17). Now, the improved digital filter becomes

H3(z) = H2(z)−
T
2
=

T
(
1 −

(
e−0.1Tcos3T

)
z−1)

1 −
(

2e−0.1Tcos3T
)

z−1 + e−0.2Tz−2
− T/2 (20)

Comparing Figures 7 and 8, one can see that the correction term in (9) has negligible
impact in the impulse response (Figure 8). However, comparing Figures 5 and 9, the
frequency responses of the digital filters with the correction term are much closer to the
analog filter’s response. Similarly, comparing Figures 6 and 10, the small biases are much
smaller in the step responses of the digital filters with the correction term.
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3. Additional Examples
3.1. Example 1: Lathi and Green’s Example 5.16 [2]

Here, three impulse invariance filter designs using Example 5.16 in Lathi and Green’s
textbook [2] will be summarized. The analog filter is a simple lowpass filter given by
Equation (21):

Ha(s) =
ωc

s + ωc
(21)

where ωc = 105.

3.1.1. Traditional Impulse Invariance Design (Section 2.1)

Assuming a sampling period T and imposing the same impulse responses in the
analog and digital filters, the digital filter is given by

H1(z) =
ωc

1 − e−ωcTz−1 (22)

Figure 11 shows that all impulse responses are the same, aligning with the design
principle. Three different Ts were used. However, Figure 12 shows that the frequency
responses of the digital filters are different from that of the analog response. From Figure 13,
one can see that the step responses of the analog and digital filters are also different. This
means that imposing the exact impulse responses on both analog and digital filters is
inappropriate and can cause completely different frequency and step responses between
the analog and digital filters. One remedy is to scale the frequency response and step
response of the digital filters by T.
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3.1.2. Modified Impulse Invariance Design (Remedy 2 in Section 2.3)

Instead of scaling the output and frequency response by T, an alternative method is to
scale the impulse response of the analog filter by T and then use the scaled version as the
impulse response of the digital filter. If one does that, the resulting digital filter becomes

H2(z) = TH1(z) =
Tωc

1 − e−ωcTz−1 . (23)

Figure 14 plots all the impulse responses. Although the impulse responses of the
digital filters are not same as the analog one, the frequency and step responses of the digital
filters are much closer to the analog responses, as shown in Figures 15 and 16, respectively.
One can observe that there are some steady state biases between the analog and digital
filter outputs. The magnitude of the biases is proportional to T.
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3.1.3. Improved Impulse Invariance Design with a Correction Term

The biases in Figure 16b–d can be reduced if one includes a correction term in the
digital filter. The resulting filter is then given by

H3(z) =
Tωc

1 − e−ωcTz−1 − Tωc/2 (24)

Although the impulse responses are not the same between the analog and digital
filters, as seen in Figure 17, the frequency responses and step responses in Figures 18 and 19
are much closer between the analog and digital filters. Most importantly, the biases in the
step responses are reduced to almost zero.
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3.2. Example in Jackson’s Paper [3]

The analog filter shown in Equation (25) is a resonant filter (bandpass filter):

Ha(s) =
2as

(s + a)2 + Ω2
0

(25)

where a = 2 and Ω0 = 10. Assuming a sampling period T = 0.1, by imposing the same
impulse response in the analog and digital filters, a direct/traditional impulse invariance
design will yield the following digital filter:

H1(z) =
2a
(
1 − rcos(ω0)z−1)− 2a2/Ω0(rsin(ω0))z−1

1 − 2rcos(ω0)z−1 + r2z−2 (26)

where r = e−aT and ω0 = Ω0T. The digital filter designed using the modified impulse
invariance method is given by

H2(z) =
2aT

(
1 − rcos(ω0)z−1)− 2aTa/Ω0(rsin(ω0))z−1

1 − 2rcos(ω0)z−1 + r2z−2 . (27)

Using the improved impulse invariance method with correction term (Equation (19)),
one has

H3(z) = H2(z)− aT (28)

Figure 20 compares the impulse responses of the analog and digital filters. H1 is
similar to the analog filter, whereas H2 and H3 are different. However, from Figure 21, H3
has the closest frequency response to the analog filter. Also, from the step responses shown
in Figure 22, H3 has the closest response to the analog filter. H1 differs the most from the
analog filter’s step response.
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4. MATLAB R2021a’s Impinvar Command Using the Modified Impulse Invariance
Method without a Correction Term

MATLAB R2021a’s impinvar is using the modified impulse invariance method (Remedy
2), but there is no correction term. This fact was not explicitly stated in MATLAB R2021a’s
help menu. The following example is employed to validate the preceding statement.

Example 3: Apply MATLAB R2021a’s Impinvar Command to Equation (21)

Using the MATLAB R2021a impinvar command, one will get

>> omegac = 105; Ba = [omegac]; Aa = [1 omegac]; Fs = 106/pi;
>> [B,A] = impinvar(Ba,Aa,Fs)
B = 0.3142
A = 1.0000−0.7304; % without correction term

In other words, the digital filter using impinvar is given by

H1(z) =
0.3142

1 − 0.7304z−1 . (29)

Equation (29) is the same as Equation (23), which is the filter designed by Remedy 2
or the modified impulse invariance filter design. If the correction term is included, the
following filter is obtained:

H2(z) =
0.3142

1 − 0.7304z−1 − Tωc

2
=

0.3142
1 − 0.7304z−1 − 0.01/π (30)

The frequency response of the filter (with correction term) in Equation (30) is compared
with the filter using impinvar in Equation (29) without correction term. The result shown
in Figure 23 concludes that the impinvar filter indeed does not contain the correction term.
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೅
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Using the MPZ technique, we substitute each pole and zero with 𝑧 = 𝑒ି௦் to get a 
digital filter of the form 

Figure 23. Comparison of frequency responses. H2 in Equation (30) is closer to the analog version
than H1 in Equation (21).

In addition, it is recommended to include a correction term to the impinvar filter so that
both the step and frequency responses of the digital filter will be close to the analog filter.
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5. Comparative Studies with Three Well-Known Digital IIR Filter Design Techniques

Here, we focus on the comparison of the improved IIF with three well-known digital
IIR filter design techniques. One is called the approximation of derivatives (AD) [1] and
the second is the bilinear transformation (BT) [1]. The third one is the matched pole zero
(MPZ) filter design, which is very popular in digital control [23].

5.1. Comparative Study 1

We repeat the analog filter given by Equation (21) here:

Ha(s) =
ωc

s + ωc
(31)

where ωc = 105.
Using the AD method described in [1], we substitute the variable s in Equation (31)

with s = 1−z−1

T to get the digital IIR filter

HAD(z) =
ωcT

1 + ωcT − z−1 (32)

Using the BT technique, we substitute the variable s in Equation (31) by s = 2
T

1−z−1

1+z−1 to
get the digital IIR filter

HBT(z) =
ωc

(
1 + z−1)( 2

T + ωc
)
+

(
ωc − 2

T
)
z−1

. (33)

Using the MPZ technique, we substitute each pole and zero with z = e−sT to get a
digital filter of the form

HMPZ(z) =
(
1 − e−ωcT)(1 + z−1)

2(1 − e−ωcTz−1)
(34)

Now, we can compare the time and frequency domain responses of IIF in Equation (24),
AD in Equation (32), BT in Equation (33), and MPZ in Equation (34) for two Ts (10−6,
2 × 10−6). Figure 24 compares the impulse responses of the four filters for T = 10−6 s.
All have similar responses except for the AD method. Figure 25 compares the frequency
responses of the four digital filters with the analog filter for T = 10−6 s. It is observed that
the IIF and BT responses overlap on top of each other. AD and MPZ show big differences
from the analog response. Figure 26 compares the step responses for T = 10−6 s. All filters
have similar responses.
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Now, we show results for T = 2 × 10−6 s. Figure 27 compares the impulse responses.
MPZ has the worst performance and the others have a similar performance. Figure 28
shows the frequency responses, and one can see that AD and MPZ have a poor performance
as compared with the IIF and BT methods. Figure 29 shows the step responses of the various
filters. The responses all look similar.
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5.2. Comparative Study 2

We repeat the resonant filter (bandpass filter) below:

Ha(s) =
2as

(s + a)2 + Ω2
0

(35)

where a = 2 and Ω0 = 10, and the sampling period T = 0.1.
Using the AD method described in [1], we substitute the variable s in Equation (35) by

s = 1−z−1

T to get the digital IIR filter

HAD(z) =
2aT

(
1 − z−1)

1 + (a 2 + Ω2
0

)
T2 − 2(1 + aT)z−1 + z−2

(36)

Using the BT technique, we substitute the variable s in Equation (35) by s = 2
T

1−z−1

1+z−1 to
get the digital IIR filter

HBT(z) =
4aT

(
1 − z−2)[

(2 + aT)2 + Ω2
0T2

]
+ 2

[
(2 + aT)(aT − 2) + Ω2

0T2
]
z−1 +

[
(aT − 2)2 + Ω2

0T2
]
z−2

. (37)
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Using the MPZ technique, we substitute each pole and zero with z = e−sT to get a
digital filter of the form

HMPZ(z) =
2a(1−z−2)

[1−e−(a+jΩ0)Tz−1][1−e−(a−jΩ0)Tz−1]

=
2a(1−z−2)

1−2e−aTcos(Ω0T)z−1+e−2aTz−2

(38)

Now we can compare the time and frequency domain responses of IIF in Equation (28),
AD in Equation (36), BT in Equation (37), and MPZ in Equation (38) for T = 0.1 s. Figure 30
compares the impulse responses. One can see that all of the digital filters have similar
responses. Figure 31 is an important figure, which clearly illustrates the benefit of IIF. One
can see that the IIF response overlaps with the analog response across the frequency range
of interest. BT performs the second best. AD and MPZ have moderately large differences as
compared to the analog response. Figure 32 shows the step responses. One can see that IIF
has a small bias. However, this bias would have been much bigger without the correction
term shown in Equation (28).
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the analog filter’s response. The IIF has a small bias. However, without correction, the IIF would
have a much bigger bias, as shown in Figure 22.

It is important to emphasize that the most important feature of digital filters is the
frequency response because the goal of a digital filter is to filter out uncertain signals. If a
digital filter can match the corresponding analog filter’s frequency response, then it is a
good design. With respect to this feature, IIF clearly shows a key advantage over the other
three competing methods.

5.3. Remarks

Here, we include a few notes about filter choices and errors related to large sampling
periods:

• Applicability of IIF
As noted by Oppenheim and Schafer in 1975 [19], IIF is most suitable for bandlimited
applications, such as lowpass and bandpass filters. For applications requiring highpass
filtering, bilinear transformation (BT) or other methods may be more appropriate.

• Scaling and Bias Term

# Scaling: The scaling issue is relevant to all IIF filters and should be addressed to
ensure accurate filter design.

# Bias Term: The correction for the bias term is necessary primarily for IIF filters
with a relative degree of one where discontinuities in the impulse response occur.
For filters with a relative degree greater than one, the bias term is generally not
required because the initial value theorem ensures that the initial impulse response
value is zero.

• Importance of Correct Filter Design
In order to select the best filter for an application, one needs to assess several available
filters in the literature. If one filter has some inherent issues, such as the IIF without the
bias term, then one may easily eliminate the IIF and select other filters. For example,
in the second case study in our paper, if the IIF filter is used in the comparison without
adding the bias term, then the IIF will be eliminated in the trade-off studies and
another filter will be chosen instead. Hence, it is critical to have the correct filters in
order to choose the right filter for a given application.

• Mathematical Analysis of Errors
It will be important to provide a detailed mathematical analysis of the errors intro-
duced by the correction term, especially for a larger sampling interval T. Jackson’s
paper [3] did address this issue, providing a mathematical expression for the error
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term, which highlights that the contribution of the bias term increases with the sam-
pling period T. In particular, the mathematical expression from Jackson’s paper is
as follows:

H(z) = ∑N
k=1

TAk
1 − epk z−1 − T

2 ∑N
k=1 Ak,

which is actually Equation (19) in our paper. We can see that the last term − T
2 ∑N

k=1 Ak
shows the contribution of the bias term, which is proportional to the sampling period
T. Larger Ts will give larger errors in the frequency response.

6. Conclusions

In IIR filter design, engineers frequently show confusion relating to certain aspects
of impulse invariance filter (IIF) design. For instance, if one constrains the analog and
digital filters to have the same impulse response, then the frequency response and outputs
of the analog and digital filters will be different by a scaling factor. If one scales the impulse
response of the analog filter by T and makes the scaled impulse response the same as that
of the digital filter, then the frequency response and filter outputs will be close, but still
not the same in some cases. It was pointed out that if the analog filter’s relative degree
difference is one, then a correction term will need to be added in the digital filter transfer
function. Moreover, it was highlighted that the MATLAB R2021a command impinvar does
not have a correction term and hence will show some slight differences between the analog
and digital filter frequency responses. Finally, comparative studies with four digital IIR
filter design techniques were carried out. It was observed that the improved IIF design has
a comparable or better performance than other competing methods, especially in frequency
response. Examples were provided to help engineers and practitioners understand these
issues and come up with more accurate digital filter designs.
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