
Citation: Arévalo, P.; Ochoa-Correa,

D.; Villa-Ávila, E. Optimizing

Microgrid Operation: Integration of

Emerging Technologies and Artificial

Intelligence for Energy Efficiency.

Electronics 2024, 13, 3754. https://

doi.org/10.3390/electronics13183754

Academic Editors: Mohamed

Benbouzid, Sara Deilami, Jahangir

Hossain, Antonio J. Marques Cardoso

and Seyedfoad F. Taghizadeh

Received: 19 August 2024

Revised: 15 September 2024

Accepted: 19 September 2024

Published: 21 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Systematic Review

Optimizing Microgrid Operation: Integration of Emerging
Technologies and Artificial Intelligence for Energy Efficiency
Paul Arévalo 1,2,* , Danny Ochoa-Correa 1 and Edisson Villa-Ávila 1,2

1 Department of Electrical Engineering, Faculty of Engineering, Electronics and Telecommunications (DEET),
University of Cuenca, Balzay Campus, Cuenca 010107, Azuay, Ecuador;
danny.ochoac@ucuenca.edu.ec (D.O.-C.); eava0001@red.ujaen.es (E.V.-Á.)

2 Department of Electrical Engineering, University of Jaen, 23700 Jaen, Spain
* Correspondence: warevalo@ujaen.es

Abstract: Microgrids have emerged as a key element in the transition towards sustainable and resilient
energy systems by integrating renewable sources and enabling decentralized energy management.
This systematic review, conducted using the PRISMA methodology, analyzed 74 peer-reviewed
articles from a total of 4205 studies published between 2014 and 2024. This review examines critical
areas such as reinforcement learning, multi-agent systems, predictive modeling, energy storage, and
optimization algorithms—essential for improving microgrid efficiency and reliability. Emerging
technologies like artificial intelligence (AI), the Internet of Things, and flexible power electronics are
highlighted for enhancing energy management and operational performance. However, challenges
persist in integrating AI into complex, real-time control systems and managing distributed energy
resources. This review also identifies key research opportunities to enhance microgrid scalability,
resilience, and efficiency, reaffirming their vital role in sustainable energy solutions.

Keywords: microgrid operation; artificial intelligence; energy management; PRISMA methodology

1. Introduction

In a context where the need for a reliable and sustainable electricity supply is more
pressing than ever, microgrids (MGs) have emerged as a promising solution for energy
distribution. These decentralized energy networks facilitate the integration of renewable
energy sources and enhance the resilience of energy systems against disruptions and fluc-
tuations in supply and demand [1]. The growing application of emerging technologies,
such as artificial intelligence (AI) and the internet of things (IoT), has further amplified
the potential of MGs by optimizing energy management and improving operational ef-
ficiency [2]. For instance, deep learning algorithms and reinforcement techniques have
been shown to effectively manage the complexity of MG operations, enabling adaptive and
real-time responses to changes in demand and environmental conditions [3,4]. However,
despite significant advancements, critical challenges remain regarding integrating multiple
technologies and managing distributed generation that require ongoing attention and
innovative solutions [5]. This review article evaluates the latest emerging technologies and
AI methods applied to MGs, highlighting future research opportunities to advance toward
a more sustainable and efficient energy future [6,7].

Microgrids have become central to the transition towards sustainable energy systems,
acting as decentralized networks that integrate distributed energy resources to enhance
power system resilience and flexibility. Research underscores their potential to improve
energy efficiency and reliability through advanced technologies and innovative energy man-
agement strategies. Reinforcement learning, for instance, has optimized energy scheduling
amid uncertainties from extreme weather [8]. Integrating IoT with deep learning has
enabled real-time decision-making and efficient load forecasting [9], and reinforcement
learning has developed model-based optimization for stable MG operations [10]. Economic
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dispatch issues have been addressed using neural networks to manage renewable energy
intermittency [11]. Hybrid meta-heuristic techniques have enhanced system reliability in
distributed generation-integrated MGs. Deep reinforcement learning frameworks empha-
size resilience and environmental benefits in long-term MG expansion [12], while bi-layer
scheduling methods optimize day-ahead and intra-day operations [13]. Forecast-driven
stochastic optimization has improved lifecycle cost management in isolated MGs using
hydrogen [14], and deep reinforcement learning optimizes multi-objective dispatch models,
addressing wind and solar uncertainties [1].

Industry 4.0 technologies, including AI, have revolutionized MG energy management,
tackling challenges like intermittent generation and voltage harmonics [2]. AI-driven
scheduling optimizes day-ahead operations, considering battery degradation and demand
response [3], and reinforcement learning manages energy with renewable sources [15].
Advances in digital twin technology optimize power generation in smart building MGs,
providing economic and ecological insights [16]. Stochastic optimal energy management
frameworks in isolated MGs use Gaussian process regression for demand forecasting [17].
Neural networks improve battery degradation prediction accuracy, enhancing day-ahead
scheduling models [18]. V2G systems foster local renewable energy consumption with
hybrid learning frameworks integrating battery protection [19]. AI-based models address
optimal power flow in solar MGs [4], enhancing solar radiation and wind speed forecast-
ing for dynamic MG analysis [20]. Deep learning algorithms boost energy performance
in photovoltaic-integrated MGs [21]. Multi-agent reinforcement learning facilitates en-
ergy transactions in collaborative multi-MG systems [22], and decentralized reinforcement
learning adapts energy management under stochastic conditions [23]. Real-time energy
management in maritime MGs uses stochastic model predictive control to manage solar
energy and load uncertainties [24]. Multi-objective load dispatch models tackle the chal-
lenges of unstable renewable generation in smart grids [25]. Collaborative optimization
reduces real power losses in grid-connected MGs [26], and deep neural networks with
column generation techniques accelerate optimization in model predictive control-based
systems [27].

Policy gradient techniques ensure reliability and reduce blackout risks in rural and
islanded MGs [28]. State-of-the-art reviews emphasize advanced control strategies for
networked MG systems [6]. Reinforcement learning is key in developing decentralized
energy management systems for smart MGs, maximizing stakeholder benefits [7]. Robust
economic dispatch models address renewable energy generation and load uncertainty [29].
Innovative energy management architectures using deep reinforcement learning improve
MG scheduling and stability [30]. AI optimization techniques enhance hybrid MGs’ power
quality and fault management [31]. Multi-agent deep reinforcement learning supports
collaboration in multi-MG systems [5], and advanced frequency control optimizes power
generation in island city MGs [32]. Integral Q-learning minimizes costs and extends battery
life in MGs [33]. Combining rule-based and deep learning techniques, hybrid control
systems optimize MG operations under variable conditions [34]. AI optimization in hybrid
electric vehicle charging reduces costs and emissions in renewable MGs [35]. Deep neural
networks enhance MG operations through optimal scheduling [36]. Deep learning power
control strategies reduce losses and enhance stability in MGs [37]. The transportation sector
advances onboard MG energy management using AI and digital twins [38]. Reinforcement
learning-based control systems improve DC MG efficiency by minimizing power losses [39].
Economic assessments of bidirectional electric vehicle charging optimize costs in workplace
MGs [40]. Day-ahead scheduling models improve cost efficiency in isolated MGs [41],
and real-time scheduling frameworks for EV charging stations optimize energy manage-
ment [42]. Community control approaches using deep reinforcement learning balance
profitability and user comfort in MGs [43], and battery scheduling control methods opti-
mize energy trading [44]. Model predictive control-based reinforcement learning enhances
residential MG energy management [45], while stochastic scheduling strategies address
dependencies in campus-isolated MGs [46]. Data-driven fault tolerance methods improve
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frequency stability and reduce costs in islanded MGs [47]. Advanced data-driven energy
management strategies based on deep reinforcement learning enhance MG stability and
economy [48]. Recent advances in microgrid energy management have increasingly relied
on integrating AI techniques to enhance system reliability, optimize energy distribution,
and reduce operational costs. Hybrid Energy Storage Systems (HESSs) have emerged as
a key solution to manage the variability of renewable energy sources, combining mul-
tiple storage technologies to achieve better performance. However, the complexity of
control and power management in such systems has led to the exploration of AI-driven
techniques, including fuzzy logic, neural networks, and reinforcement learning, to en-
hance system efficiency and adaptability [49]. AI-enhanced energy management systems
(EMSs) have shown promising results in various microgrid configurations. For instance,
field-programmable gate arrays (FPGAs) equipped with AI algorithms have significantly
improved cost savings and reliability by dynamically adjusting to load and generation
changes [50]. Predictive algorithms for energy management in DC microgrids have been
successfully applied, improving overall system stability and financial outcomes by adapt-
ing to market fluctuations [51]. Furthermore, hydrogen-fueled microgrids have benefitted
from novel AI-driven EMS approaches, which dynamically respond to varying conditions,
enhancing system efficiency and reliability, particularly in managing renewable energy
sources [52]. Recent studies have also demonstrated the feasibility of reducing carbon emis-
sions in microgrids by optimizing cost management through AI, utilizing algorithms like
the Improved Artificial Rabbits Optimization Algorithm (IAROA) and Whale Optimization
Algorithm (WOA) to significantly reduce operational costs [53]. The application of deep
reinforcement learning (DRL) has shown great potential in enhancing the control and
management of microgrids, addressing complex challenges such as power distribution and
stability in renewable energy systems [54]. Adaptive AI-based home energy management
systems (HEMSs) have also been developed to improve the performance and resilience of
autonomous microgrids, optimizing energy use and minimizing operational costs through
advanced optimization techniques [55]. Additionally, edge-cloud computing environments
have been explored to address the challenges of privacy and communication resources in
centralized reinforcement learning-based microgrid management, utilizing federated deep
reinforcement learning (FDRL) to optimize energy management strategies [56].

Critical research gaps remain despite significant advancements in optimizing MGs
through emerging technologies such as AI and the IoT. While AI-based models, includ-
ing deep learning and reinforcement learning, have proven effective in managing the
operational complexity of MGs [4,8], integrating multiple technologies across diverse
environments remains a major challenge [2,34]. Current research tends to focus on iso-
lated aspects, such as energy scheduling or fault detection but lacks a holistic approach
that integrates these technologies to enhance the efficiency and reliability of MGs [3,35].
Furthermore, the real-world application of AI for real-time demand prediction and dis-
tributed generation optimization is limited, and economic assessments of scalability and
sustainability across different contexts remain underexplored [21,36].

This review addresses these gaps by systematically evaluating and synthesizing the
challenges and opportunities of integrating emerging technologies and AI in microgrid
operations, utilizing the PRISMA methodology.

The structure of this article is organized as follows. Section 2 presents the method-
ology used for conducting the systematic literature review, following the guidelines of
the PRISMA 2020 statement. Section 3 comprehensively analyzes the selected literature,
highlighting key trends, research areas, practical applications, and challenges in microgrid
optimization and integrating emerging technologies. Finally, Section 4 concludes the article
with a summary of key insights and directions for future research.

2. Materials and Methods

The methodology for this systematic review is grounded in the guidelines provided by
the PRISMA 2020 statement [57], which structures the review process into distinct phases to
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ensure clarity, accuracy, and thoroughness. These phases include identification, screening,
eligibility and inclusion, and synthesis, each of which plays a critical role in the systematic
review process. The identification phase involves retrieving relevant items through a
well-defined search strategy across selected databases. The screening phase thoroughly
reviews abstracts to ensure they meet predefined inclusion and exclusion criteria. During
the eligibility and inclusion phase, a meticulous approach is applied to confirm that only
high-quality and relevant studies are chosen for further analysis. Finally, the synthesis
phase integrates and analyzes the selected literature to form the basis for the findings and
conclusions presented in the review. A simplified diagram of these phases is depicted in
Figure 1.
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Figure 1. Simplified diagram of the PRISMA 2020 methodology phases.

2.1. Identification Phase

In the identification phase of this systematic literature review, the focus is on gathering
high-quality research articles published between 2014 and 2024, specifically addressing
the integration of emerging technologies and AI in optimizing microgrid operations. The
search is confined to peer-reviewed journal articles written in English, with full-text access
provided through institutional subscriptions or open access. The bibliographic resources
for this review were sourced from Scopus and Web of Science, two databases recognized for
their extensive coverage of high-impact research across various disciplines. These platforms
offer access to publications from leading publishers such as Elsevier, Springer, Wiley, Taylor
& Francis, MDPI, and IEEE, among others. Additionally, their advanced citation tracking
features are crucial for identifying the most influential studies in the field. To align with the
objectives of this research and based on the preliminary literature exploration presented in
the introduction, the search terms summarized in Table 1 were employed.

The literature search conducted across the Scopus and Web of Science databases
resulted in a total of 4205 documents. Specifically, Scopus returned 2285 documents,
while Web of Science yielded 1920. After removing duplicates, 29 from Scopus and 1494
from Web of Science, 1523 duplicates were excluded. This process left a final sample of
2682 documents for the screening phase.
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Table 1. Literature search terms and summary of database search results.

Database Query String
N◦ of

Returned
Documents

Removal of
Duplicates

Final Sample for
Screening Phase

Scopus

(TITLE-ABS-KEY (“microgrid”) AND
TITLE-ABS-KEY (“operation”)) AND
(TITLE-ABS-KEY (“Artificial Intelligence”)
OR TITLE-ABS-KEY (“Machine Learning”)
OR TITLE-ABS-KEY (“IoT”) OR
TITLE-ABS-KEY (“Deep Learning”) OR
TITLE-ABS-KEY (“Reinforcement Learning”)
OR TITLE-ABS-KEY (“Stochastic”) OR
TITLE-ABS-KEY (“Meta-Heuristic”) OR
TITLE-ABS-KEY (“Scheduling”)) AND
PUBYEAR > 2013 AND PUBYEAR < 2025
AND (LIMIT-TO (DOCTYPE, “ar”))

2285 29 2256

Web of Science

(ALL=(“microgrid”) AND
ALL=(“operation”)) AND (ALL=(“Artificial
Intelligence”) OR ALL=(“Machine Learning”)
OR ALL=(“IoT”) OR ALL=(“Deep Learning”)
OR ALL=(“Reinforcement Learning”) OR
ALL=(“Stochastic”) OR
ALL=(“Meta-Heuristic”)OR
ALL=(“Scheduling”))

Refined By: Publication Years: 2024 or 2023 or
2022 or 2021 or 2020 or 2019 or 2018 or 2017 or
2016 or 2015 or 2014; Document Types: Article

1920 1494 * 426

Total items 4205 1523 2682

* Scopus items were used as a reference during the duplicate identification process. Thus, our bibliographic
management tool removed the Web of Science entry when a Web of Science item had a DOI identical to a
Scopus item.

2.2. Screening Phase

During the Screening Phase, abstracts were carefully reviewed against the inclusion
and exclusion criteria in Table 2 by two independent reviewers using a binary scoring
system. Discrepancies were resolved through consensus to ensure an unbiased selection.
The review focused on peer-reviewed journal articles to maintain a sample of primary
literature sources, making them particularly suited for systematic reviews of this nature.
Only English-language articles published between 2014 and 2024 were included to reflect
recent advancements and avoid potential obsolescence. Full-text access was required to
allow for a thorough evaluation of each study, with non-accessible articles excluded to
maintain the review’s rigor.

The Screening process carefully evaluated 2682 items, resulting in 646 works (24% of
the total) passing this phase, with the remaining 76% excluded for not meeting the inclusion
and exclusion criteria. Among the selected items, Energies led with 55 contributions,
highlighting its focus on energy systems and renewable energy research. Applied Energy
followed with 47 items, emphasizing its role in applied research for optimizing energy
systems. IEEE Transactions on Smart Grid contributed 38 items, reflecting the journal’s focus
on smart grid technologies and their intersection with microgrid innovations. IEEE Access
and the Journal of Energy Storage each provided 20 items, underscoring the importance
of accessible research in engineering and the critical role of energy storage in microgrids,
respectively. The journal Energy also added 20 items, showcasing its broad coverage of
energy-related topics. The International Journal of Electrical Power & Energy Systems and
Sustainable Cities and Society each contributed 17 items, highlighting their relevance in power
systems research and the integration of microgrids in sustainable urban environments.
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Energy Reports added 16 items, reflecting its focus on global energy challenges and the
role of microgrids in sustainable energy systems. Additionally, 263 items were sourced
from various other journals, demonstrating the multidisciplinary nature of research on
microgrid operations.

Table 2. Inclusion and exclusion criteria for systematic literature review.

Criterion Inclusion Exclusion

Publication Type Peer-reviewed journal articles Conference papers, editorials, review articles, book chapters,
theses, white papers, non-peer-reviewed materials

Language English Non-English

Publication Date 2014–2024 Articles published before 2014

Accessibility Full-text access via institutional
subscription or open access Articles without full-text access

Research Focus
Studies on the integration of emerging
technologies (AI, IoT, machine learning,
smart grids, etc.) in microgrid operation

Articles that do not focus on microgrids, emerging technologies,
or machine learning in energy management, or articles focusing
solely on non-technological aspects of energy systems (e.g.,
policy, economics without tech analysis)

The annual progression of publications shows significant growth, starting with four
items in 2014 and gradually increasing to 33 in 2019. A notable surge occurred in 2020 with
54 items, continuing to rise to 95 in 2021, 124 in 2022, peaking at 141 in 2023, and slightly
decreasing to 129 in 2024, reflecting sustained interest and advancements in the field. These
statistics are summarized in Figure 2, providing a visual overview of the distribution of
selected items across journals and the yearly evolution of research.
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2.3. Eligibility and Inclusion Phase

The eligibility and inclusion phase was crucial in selecting only the most relevant
and high-quality studies for the review. Each article underwent a comprehensive full-text
assessment using a three-level Likert scale based on criteria such as relevance to emerging
microgrid technologies, methodological rigor, experimental validation, novelty, and clarity.
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Studies were rated from one to three on each criterion, and only those that scored well were
included, ensuring a focused and high-quality review of the integration of technologies like
AI and IoT in microgrid operations. The detailed criteria and evaluation metrics designed
by the authors for this literature review are summarized in Table 3.

Table 3. Criteria and evaluation metrics for full-text review.

N◦ Criterion Description and Evaluation Metrics

1 Relevance to Emerging Technologies
in Microgrids

How well the study addresses the integration of emerging technologies
(AI, IoT, etc.) and machine learning in microgrid operation.
(1: Somewhat Relevant, 2: Relevant, 3: Central Focus)

2 Methodological Rigor
The robustness and appropriateness of the research methodology
employed in the study.
(1: Foundational, 2: Adequate, 3: Comprehensive)

3 Experimental Validation and
Real-world Application

The extent to which the study includes experimental results, simulations,
case studies, or real-world implementations.
(1: Preliminary, 2: Moderate, 3: Extensive)

4 Novelty and Contribution The originality and significance of the study’s contributions to the field.
(1: Incremental, 2: Significant, 3: Highly Innovative)

5 Clarity and Technical Depth
The clarity of writing, technical detail, and completeness of the
information provided in the study.
(1: Clear, 2: Thorough, 3: Exceptionally Detailed)

In the eligibility and inclusion phase, out of the 646 items evaluated, 74 articles (11% of
the total screened items) were selected for the systematic review. This selection was based
on a rigorous threshold of 11 out of 15 points, ensuring that the chosen studies exhibited a
strong combination of relevance, methodological rigor, experimental validation, novelty,
and clarity. Figure 3 shows the verification matrix employed for the eligibility of items,
visually presenting the scoring system used in the full-text review process. After a com-
prehensive evaluation of each of the 646 items in the previous phase, the authors assigned
scores based on the criteria outlined in Table 3. Each work was rated from one to three
on five criteria: (1) relevance to emerging technologies in microgrids, which assessed how
central the study was to the integration of technologies like AI, IoT, and machine learning
in microgrid operations; (2) methodological rigor, which measured the robustness and
appropriateness of the research methods; (3) experimental validation, which considered the
extent of real-world applications, simulations, or case studies; (4) novelty and contribution,
which evaluated the originality of the research; and (5) clarity and technical depth, assessing
the thoroughness of the study’s presentation. Studies that achieved a cumulative score
of 11 points or higher across these criteria were deemed eligible for inclusion. For ease of
visualization, Figure 3 only shows the ranking of items that met this minimum threshold,
reflecting the systematic and objective nature of the selection process. The bibliographic
information of the 74 selected items can be consulted and downloaded from the following
GitHub link: https://t.ly/SrM8k (access on 18 September 2024).

2.4. Synthesis Phase

This section synthesizes the 74 articles selected during the eligibility and inclusion
phase to provide a comprehensive overview of the current research on integrating emerging
technologies in microgrid operations. These articles represent a carefully curated subset of
the broader literature, ensuring that only the most relevant and high-quality studies are
included in this analysis. The selected works span various thematic areas and have been
sourced from diverse journals, reflecting the field’s multidisciplinary nature.

https://t.ly/SrM8k
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Figure 3. Verification matrix for eligibility and inclusion.

Journal statistics in Figure 4 reveal that Energies led the selection with eight articles,
contributing to research on microgrids, particularly in areas such as energy storage and
stochastic optimization and optimal operation and power management. This journal’s
focus on the intersection of energy systems and cutting-edge technological integration
makes it a key resource for studies aiming to enhance microgrid performance. With six
articles, Applied Energy also plays a crucial role, particularly in intelligent control, predictive
modeling, day-ahead scheduling, and optimization algorithms, which are essential for
efficiently managing microgrid resources. IEEE Transactions on Sustainable Energy and
IEEE Transactions on Smart Grid, each contributing four articles, highlight their emphasis
on reinforcement learning and multi-agent systems real-time scheduling and multi-scale
energy management, critical for advancing smart grid technologies and sustainable energy
practices. The International Journal of Electrical Power and Energy Systems, with four articles,
focuses on intelligent control and optimal operation strategies, underscoring its relevance
to electrical power systems and their application in microgrid contexts.

Other journals made significant contributions as well. IEEE Access and Journal of Energy
Storage each provided three articles, reflecting the importance of open-access research and
energy storage solutions in the microgrid landscape. Sustainability (Switzerland), with two
articles, emphasizes the integration of sustainable practices with advanced technological
solutions, particularly in the context of microgrid operations. Journals like Electric Power
Systems Research, Renewable Energy, and Energy Conversion and Management contributed to
areas such as energy storage and stochastic optimization, further diversifying the thematic
coverage of the selected studies.
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The yearly statistics provide additional insights into the evolution of research activity
in this field. The selected articles reveal a clear trend of increasing research output over
time, which mirrors the growing interest and advancements in microgrid technologies.
In the early years, such as 2016 and 2017, the contributions were relatively modest, with
only two articles each, reflecting the nascent research stage in this domain. However,
as awareness of the potential of microgrids grew, the output steadily increased, with six
articles each in 2019 and 2020, marking a rising focus on integrating emerging technologies
into microgrid systems. The most significant growth occurred in the later years, particularly
in 2023 and 2024, with 15 and 22 articles, respectively. This surge in publications highlights
the accelerating pace of innovation and the critical importance of microgrids in addressing
modern energy challenges, particularly in enhancing resilience and efficiency through
advanced technological integration.

Figure 4 also presents a word cloud map constructed from the keywords of the selected
articles. In this map, the most frequently occurring terms are visible, with prominent men-
tions of reinforcement learning and multi-agent systems in energy management, intelligent
control and predictive modeling in microgrids, energy storage and stochastic optimization
in microgrids, optimal operation, and power management using AI, real-time schedul-
ing and multi-scale energy management, and day-ahead scheduling and optimization
algorithms in microgrids.

The synthesis of the included articles provides a robust overview of the current
research landscape in microgrid operations and suggests that the studies can be broadly
grouped into six thematic categories:

• Reinforcement Learning and Multi-Agent Systems in Energy Management—Focus
on reinforcement learning, deep learning, and multi-agent approaches in microgrid
energy management.
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• Intelligent Control and Predictive Modeling in Microgrids—Research on control strate-
gies, predictive models, and intelligent systems within microgrids, including DC
grid applications.

• Energy Storage and Stochastic Optimization in Microgrids—Studies involving en-
ergy management, storage solutions, renewable energy integration, and stochastic
optimization in multi-microgrid systems.

• Optimal Operation and Power Management using AI—Exploration of microgrid
operation, power optimization, and scheduling using AI-based approaches.

• Real-Time Scheduling and Multi-Scale Energy Management—Focus on real-time schedul-
ing, multi-scale considerations, and energy management strategies in microgrids.

• Day-Ahead Scheduling and Optimization Algorithms in Microgrids—Investigations
into day-ahead scheduling, optimal algorithms, and energy management in micro-
grid systems.

Section 3 presents a comprehensive analysis of the content and contributions of the ar-
ticles included in this review, with the discussions organized into these six thematic groups.
Finally, Figure 5 provides the standardized PRISMA 2020 flowchart [57], which outlines the
steps and results obtained throughout the execution of the literature search methodology.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 26 
 

 

 
Figure 5. PRISMA 2020 flowchart of the literature review process. 

3. Results and Discussions 
This section provides a detailed analysis of the advancements and challenges in 

optimizing microgrid operations, focusing on integrating emerging technologies. The 
following subsections—Sections 3.1–3.6—examine critical areas shaping microgrid 
efficiency while addressing the shortcomings identified in current research. Section 3.1 
explores the application of reinforcement learning and multi-agent systems in managing 
the complexities and uncertainties inherent in microgrid operations, alongside their 
scalability and real-world implementation limitations. In Section 3.2, attention is given to 
intelligent control and predictive modeling, emphasizing their role in enhancing grid 
stability and reliability while recognizing gaps related to real-time adaptability and the 
accuracy of predictive models. 

Section 3.3 focuses on energy storage and stochastic optimization, highlighting their 
capacity to manage the variability of renewable energy sources yet noting the challenges 
associated with model integration and scalability. Optimal operation and power 
management are discussed in Section 3.4, where the benefits of current multi-criteria 
optimization strategies are presented, along with the limitations in balancing multiple 
objectives such as cost, efficiency, and sustainability. In Section 3.5, real-time scheduling 
and multi-scale energy management are examined, stressing the importance of flexible 

Figure 5. PRISMA 2020 flowchart of the literature review process.



Electronics 2024, 13, 3754 11 of 25

3. Results and Discussions

This section provides a detailed analysis of the advancements and challenges in opti-
mizing microgrid operations, focusing on integrating emerging technologies. The following
subsections—Sections 3.1–3.6—examine critical areas shaping microgrid efficiency while
addressing the shortcomings identified in current research. Section 3.1 explores the applica-
tion of reinforcement learning and multi-agent systems in managing the complexities and
uncertainties inherent in microgrid operations, alongside their scalability and real-world
implementation limitations. In Section 3.2, attention is given to intelligent control and
predictive modeling, emphasizing their role in enhancing grid stability and reliability while
recognizing gaps related to real-time adaptability and the accuracy of predictive models.

Section 3.3 focuses on energy storage and stochastic optimization, highlighting their
capacity to manage the variability of renewable energy sources yet noting the challenges
associated with model integration and scalability. Optimal operation and power manage-
ment are discussed in Section 3.4, where the benefits of current multi-criteria optimization
strategies are presented, along with the limitations in balancing multiple objectives such
as cost, efficiency, and sustainability. In Section 3.5, real-time scheduling and multi-scale
energy management are examined, stressing the importance of flexible systems capable
of adapting to real-time changes and identifying the shortcomings in managing dynamic,
multi-scale grid conditions. Finally, Section 3.6 addresses day-ahead scheduling and op-
timization algorithms, which are crucial for resource planning but also constrained by
forecasting accuracy and flexibility limitations. In each subsection, the discussion high-
lights technological advancements and critically evaluates the remaining gaps, providing a
foundation for future research in improving microgrid operations.

3.1. Reinforcement Learning and Multi-Agent Systems
3.1.1. Current Context

Reinforcement learning (RL) and multi-agent systems (MASs) have emerged as piv-
otal approaches in optimizing MG operations due to their capacity to handle the inherent
complexity and uncertainty of these systems [58]. The variability of renewable energy
sources, such as solar and wind, introduces challenges that necessitate adaptive and rapid
responses, capabilities that RL and MASs are particularly well-suited to provide. For
instance, RL algorithms have been deployed to enable real-time adaptive management by
continuously refining control policies based on system conditions, optimizing resource
utilization, and improving grid stability [59,60]. Furthermore, MASs facilitate decentral-
ized yet coordinated management of distributed resources, enhancing MGs’ operational
efficiency and resilience [61–63]. Implementing RL strategies has also been instrumental
in managing extreme events and faults within microgrids, allowing systems to learn and
adapt autonomously to adverse conditions without human intervention [60,64,65]. In addi-
tion, MASs have proven effective in improving the operational stability of MGs in complex
and stochastic environments, which is critical for ensuring uninterrupted operation under
varying conditions [66,67].

3.1.2. Research Opportunities and Future Directions

• Hybrid RL–MAS Frameworks: One promising research direction is the development
of hybrid frameworks combining RL and MASs for managing distributed energy re-
sources (DERs) within interconnected microgrids. These frameworks should consider
energy price dynamics and renewable variability, optimizing internal operations and
interactions between multiple microgrids [68–71]. Such systems could also focus on co-
operation and controlled competition, where MAS models facilitate energy exchange
and coordination among microgrids while optimizing energy flows and reducing
costs [72–76].

• Electric Vehicle Integration: Another significant opportunity lies in applying RL–MAS
frameworks to microgrids with high electric vehicle penetration, where energy de-
mand is volatile and complex. RL strategies could optimize charging and discharging
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patterns, ensuring better integration of electric vehicles into microgrid systems [77,78].
In addition, transfer learning techniques could be explored to accelerate the deploy-
ment of these models across different environments [79–82].

3.1.3. Shortcomings in Reinforcement Learning and Multi-Agent Systems

Despite the promise of RL and MASs in optimizing microgrid operations, current
research faces significant limitations. One major challenge is the complexity of applying
these methods in real-world systems, where RL algorithms’ high computational demands
and latency hinder real-time adaptability. Existing studies often focus on isolated aspects
of RL and MASs without providing comprehensive frameworks that address internal
microgrid operations and interactions between multiple microgrids. Hybrid RL–MAS
frameworks that could optimize energy flows and costs through microgrid cooperation
remain underexplored.

Additionally, integrating RL–MAS with electric vehicles faces challenges due to the
scattered load and the unpredictable energy demand in such systems. Current research
lacks scalable solutions for handling the dynamic energy demands of EVs, and transfer
learning techniques that could improve model adaptability across different environments
are underutilized. To overcome these limitations, further research is needed to develop
more robust and scalable algorithms capable of handling the complexity and variability of
modern microgrids.

3.2. Intelligent Control and Predictive Modeling
3.2.1. Current Context

Intelligent control and predictive modeling are fundamental to MGs’ operation, en-
abling proactive management of demand and distributed generation [68]. These tech-
niques have become increasingly important as microgrids integrate more renewable energy
sources, which are inherently variable and unpredictable. AI-based predictive models allow
for anticipating fluctuations in energy supply and demand, thus optimizing overall energy
management and enhancing grid stability [69,70]. Additionally, these models facilitate
detecting and mitigating potential faults before they escalate into critical issues, improving
the system’s resilience [61,71,72].

Implementing these advanced models is particularly relevant in scenarios involving
high penetration of renewable energies and electric vehicles, where the variability of
energy supply and demand can be challenging to manage [73,74]. For instance, predictive
control systems that leverage AI can optimize the operation of microgrids by continuously
adjusting operational parameters based on real-time data and historical trends, thereby
ensuring a more stable and efficient energy distribution [75,76]. Moreover, the integration
of stochastic predictive models has been shown to significantly improve the accuracy of
forecasts in microgrids, particularly in managing uncertainties related to renewable energy
sources [63,65].

3.2.2. Research Opportunities

AI-Based Predictive Control: There is a growing need to develop predictive models
incorporating historical and real-time data to enhance operational stability. These models
should handle the complexities introduced by renewable energy sources and electric
vehicles, characterized by significant variability and unpredictability [81–83]. Leveraging
deep learning techniques can significantly improve the predictive accuracy of these models
in dynamic environments [74,75,80].

Real-Time Optimization Systems: Research should focus on developing real-time
predictive control systems that adapt to changes in load and generation, using advanced
neural networks and optimization techniques [76,81]. These systems should continuously
learn from previous decisions, enhancing their effectiveness over time [67–72].
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3.2.3. Shortcomings of Intelligent Control and Predictive Modeling

Although intelligent control and predictive modeling have significantly contributed
to optimizing microgrid operations, several gaps remain in current research. One of
the primary challenges is the difficulty in accurately forecasting real-time energy supply
and demand fluctuations, particularly given the inherent variability of renewable energy
sources and the unpredictable behavior of electric vehicles. While AI-driven predictive
models aim to address these issues, their performance often declines when faced with rapid
changes in the energy landscape, limiting their reliability for immediate decision-making.

Furthermore, real-time optimization remains an area of concern. Many existing models
do not fully integrate continuous learning from historical and real-time data, making
adapting to evolving microgrid conditions difficult. This limitation becomes especially
pronounced in complex environments where renewable energy sources and electric vehicles
interact dynamically. Despite some progress with stochastic predictive models, which
improve uncertainty handling, their practical application in managing highly variable
microgrid systems is still insufficiently explored. To overcome these barriers, future research
must focus on developing more adaptive and flexible real-time control systems capable of
consistently optimizing microgrid performance, even in volatile conditions.

3.3. Energy Storage and Stochastic Optimization
3.3.1. Current Context

Energy storage is essential for managing the intermittency of renewable energy sources
in microgrids [77]. Effective energy storage solutions allow microgrids to balance supply
and demand, especially when integrating variable renewable sources such as wind and
solar power. Stochastic optimization plays a crucial role in the planning and operating of
these storage systems by addressing the uncertainties associated with renewable energy
generation and fluctuating demand [78,79]. This optimization approach ensures that
energy storage resources are utilized most efficiently, accounting for degradation costs and
operational reliability [80].

Given the stochastic and intermittent nature of renewable energy sources, incorporat-
ing stochastic optimization techniques is vital for enhancing the efficiency and reliability
of microgrid operations [81,82]. These techniques enable the prediction and management
of energy storage in a way that balances cost, availability, and system resilience [83,84].
Moreover, integrating advanced predictive models with stochastic optimization has been
shown to significantly improve the performance of microgrids, especially in environments
with high renewable energy penetration [85,86].

3.3.2. Research Opportunities

Optimizing Grid-Integrated Storage: Research should explore stochastic optimization
techniques that address the variability of energy generation and the degradation costs of
storage devices. Integrating real-time data with stochastic models can further enhance the
efficiency of energy storage management [60,61]. Moreover, distributed storage solutions
can be optimized using decentralized intelligence to manage local energy demands and
improve overall system resilience [78–80]. The proposed work focuses on optimizing
energy efficiency in urban environments by integrating renewable energy sources and the
strategic role of electric vehicles in energy storage and load management. It emphasizes
using technologies like solar photovoltaic and wind energy to achieve nearly zero, zero,
and positive energy buildings (nZEBs, ZEBs, PEBs), while electric vehicles contribute by
balancing energy fluctuations through vehicle-to-grid systems. A boundary framework is
proposed to streamline energy flows within building districts, facilitating energy sharing
and surplus management. Case studies from various countries illustrate the effective-
ness of these strategies in reducing energy consumption and carbon emissions in urban
settings [81].
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3.3.3. Shortcomings of Energy Storage and Stochastic Optimization

Despite the important role of energy storage and stochastic optimization in enhancing
microgrid operations, current research still faces several challenges. One key issue is the
lack of comprehensive models that accurately address both the unpredictable nature of
renewable energy generation and the long-term degradation costs of storage systems.
While stochastic optimization techniques are essential for managing these uncertainties,
many models fail to integrate real-time data effectively, limiting their ability to adapt to
rapidly changing conditions in microgrid environments.

Additionally, the scalability of distributed energy storage systems is another area that
remains underexplored. Existing methods often focus on centralized storage solutions,
overlooking the potential benefits of decentralized intelligence that could optimize local
energy demand and enhance overall system resilience. Moreover, while the combination of
predictive modeling with stochastic optimization has shown promise, the current research
is still insufficient in addressing the complexities of high renewable energy penetration.
Models tend to oversimplify the dynamic interactions between energy generation, storage
capacity, and consumption patterns, reducing the effectiveness of storage management in
real-world applications.

To move beyond these limitations, future research must focus on developing more
robust stochastic models that incorporate real-time data and degradation costs more seam-
lessly. Decentralized storage optimization, leveraging local intelligence, could also provide a
more resilient and efficient approach to energy management in complex microgrid systems.

3.4. Optimal Operation and Power Management
3.4.1. Current Context

Optimal operation and power management are fundamental in maximizing efficiency
and minimizing the losses in microgrids, particularly in systems with a high penetration
of distributed energy resources. Microgrids, by design, aim to enhance energy resilience
and flexibility, but the integration of renewable energy sources such as wind and solar
introduces significant variability and unpredictability [87]. This variability can lead to
stable and reliable power supply challenges, underscoring the importance of sophisticated
optimization and power management strategies [88,89].

The need for optimal operation is driven by the dual goals of ensuring energy reliabil-
ity and achieving sustainability targets. As microgrids incorporate more renewable energy
sources, the operational complexity increases, necessitating advanced algorithms that can
dynamically respond to real-time changes in both generation and demand [90]. Integrating
real-time data analytics with predictive control systems has become a key approach in
addressing these challenges [91]. These systems can optimize power flows by considering
various factors, such as load forecasts, real-time pricing, and renewable generation pro-
files, enabling more stable and efficient operations even under uncertainty [61,64,92]. For
instance, recent advancements have shown that incorporating AI techniques into power
management systems can significantly enhance their ability to predict and adapt to chang-
ing conditions. These systems can analyze historical and real-time data to make informed
decisions that optimize the distribution of power within the microgrid, reducing opera-
tional costs and enhancing system resilience [62,72]. Additionally, the use of predictive
models that leverage weather forecasts and other relevant data can further improve the
accuracy and efficiency of power management strategies, particularly in mitigating the
impact of renewable energy variability [93,94].

3.4.2. Research Opportunities

Multi-Criteria Optimization: Research should focus on developing algorithms that
optimize multiple objectives simultaneously, such as energy efficiency, cost reduction,
and environmental sustainability. Integrating AI techniques into these algorithms can
enhance adaptability and lead to more resilient microgrid operations [60,61]. Additionally,
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predictive models based on AI can improve the accuracy of power forecasts, helping
microgrids to anticipate demand and supply changes [52–55,95].

3.4.3. Shortcomings of Optimal Operation and Power Management

Although optimal operation and power management in microgrids have seen signifi-
cant improvements, various limitations persist in existing approaches. One major issue is
the inability of current algorithms to cope efficiently with the unpredictability and variabil-
ity introduced by renewable energy sources like wind and solar. While machine learning
and AI techniques optimize power flow, they often struggle to accommodate real-time
energy generation and demand changes. This lack of adaptability can result in inefficient
operations, especially in scenarios with high penetration of distributed energy resources.

Another challenge is balancing multiple objectives, such as cost, energy efficiency, and
environmental sustainability. Existing multi-criteria optimization methods focus on specific
goals without considering the broader picture, limiting their effectiveness in achieving
a well-rounded microgrid operational strategy. Furthermore, while predictive models
anticipate demand and generation fluctuations, their accuracy is frequently compromised by
incomplete real-time data integration, leading to less effective power management solutions.

Overall, the current methods lack the robustness required to address the complexities
of microgrid operations. Future research needs to prioritize the development of more
flexible, data-driven algorithms capable of handling the intricacies of renewable energy
variability while simultaneously balancing competing operational goals to ensure efficiency,
cost-effectiveness, and resilience.

3.5. Real-Time Scheduling and Multi-Scale Energy Management
3.5.1. Current Context

In the current energy management landscape, the increasing penetration of renewable
energy sources into power grids has heightened the need for advanced real-time scheduling
and energy management techniques. The stochastic and intermittent nature of renewables,
such as solar and wind energy, poses significant challenges to grid operation and balance.
This necessitates an energy management approach that is flexible, adaptable across multiple
scales, and capable of real-time operation to maximize system efficiency and reliability [83].
Integrating emerging paradigms, such as distributed energy systems, has proven to be a
promising solution. These paradigms enable the coordination among DERs and optimize
their operation across various temporal and spatial scales [95].

In this context, real-time scheduling and management have become crucial to en-
sure that demand and generation are efficiently balanced, thereby reducing reliance on
non-renewable sources and minimizing operational costs. Additionally, incorporating
smart technologies, such as AI, has enhanced energy management systems’ predictive
and decision-making capabilities, allowing for quicker and more accurate responses to
fluctuations in demand or generation [96].

3.5.2. Research Opportunities

• Development of Optimization Algorithms: New research opportunities arise as power
grids become more complex in topology and elements and integrate more DERs. A key
area of interest is the development of optimization algorithms that can efficiently man-
age multiple temporal and spatial scales within the energy system. These algorithms
must be capable of operating under conditions of uncertainty, dynamically adapting
to variations in generation and demand [83]. Research in this area could focus on
improving system resilience against disturbances, such as grid failures or extreme
events, ensuring the system can recover quickly and maintain operational stability.

• Internet of Things: Another significant opportunity lies in integrating emerging tech-
nologies, such as the IoT and cloud computing, into energy management systems.
These technologies can offer scalable and flexible real-time data collection and analysis
solutions, crucial for informed decision-making and system-wide optimization [95].
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Moreover, implementing advanced energy storage systems, such as solid-state bat-
teries or supercapacitors, can complement real-time management by enabling better
integration of renewable energy sources and enhancing grid stability [81].

3.5.3. Prospective Topics for Future Research Papers of Real-Time Scheduling and
Multi-Scale Energy Management

Looking forward, there are several promising topics for future research in real-time
scheduling and multi-scale energy management. One area ripe for exploration is the
development of multi-scale optimization algorithms that consider both temporal and
spatial dimensions to enhance the operational efficiency of energy management systems.
These algorithms should be capable of integrating diverse data sources and dynamically
adapting to changing grid conditions, ensuring optimal performance even under fluctuating
circumstances [83].

Another critical topic is advancing AI-based predictive models that accurately forecast
short-term and long-term energy generation and demand. These models must be robust
enough to operate under uncertainty while providing real-time recommendations that
guide system operations. This is particularly important given the variable nature of
renewable energy sources, which makes accurate prediction a cornerstone of effective
energy management [96]. Integrating the IoT into energy management systems is also
an area with significant potential. Research in this domain could focus on how IoT can
enhance connectivity and control over distributed energy resources, improving the overall
responsiveness and efficiency of energy systems. This includes addressing challenges
related to communication protocols, data security, and the interoperability of various
devices and systems [95]. Lastly, the role of emerging energy storage technologies in real-
time energy management deserves considerable attention. Investigating how technologies
such as solid-state batteries or supercapacitors can be integrated into energy management
systems could significantly improve grid stability and facilitate the increased penetration of
renewable energy. These storage solutions could provide the necessary buffering capacity
to balance supply and demand in real-time, particularly during periods of peak demand or
low renewable output [81].

3.5.4. Shortcomings of Real-Time Scheduling and Multi-Scale Energy Management

While real-time scheduling and multi-scale energy management are promising for
optimizing energy systems, several limitations still hinder their effectiveness. One major
shortcoming is the lack of truly adaptive algorithms capable of efficiently managing both
temporal and spatial dimensions under the inherent uncertainty of renewable energy
sources. Although current methods address the intermittent nature of solar and wind
energy, many algorithms struggle to handle dynamic fluctuations in real-time, especially
when operating across multiple scales and DERs. This inability to dynamically adapt to
changing grid conditions weakens the overall system resilience and responsiveness.

Another critical issue is integrating emerging technologies such as IoT and cloud
computing into energy management systems. While these technologies offer potential for
scalable, real-time data collection and decision-making, existing research often overlooks
interoperability, communication protocols, and data security challenges. Without address-
ing these foundational issues, the full potential of IoT in enhancing energy management
remains unrealized.

Moreover, despite the increasing role of AI-based predictive models, their accuracy
and robustness under uncertain and fluctuating conditions still require significant improve-
ment. Many current models cannot provide reliable short-term and long-term predictions,
crucial for maintaining grid stability and optimizing energy flows. Similarly, integrating ad-
vanced energy storage solutions, like solid-state batteries or supercapacitors, into real-time
management systems is underdeveloped, with many studies failing to fully explore how
these technologies can buffer supply and demand more effectively during peak periods.
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3.6. Day-Ahead Scheduling and Optimization Algorithms
3.6.1. Current Context

Day-ahead scheduling and optimization algorithms are essential for effectively plan-
ning microgrid operations, ensuring the efficient use of energy resources. These processes
involve forecasting energy demand and generation for the upcoming day, allowing mi-
crogrids to prepare and allocate resources accordingly [68]. Integrating renewable energy
sources into microgrids adds complexity to this task due to the inherent variability and
unpredictability of wind and solar power sources. Consequently, accurate day-ahead
scheduling becomes crucial for maintaining operational stability and efficiency [64,72,89].

Recent advancements in predictive analytics have significantly enhanced the ability of
microgrids to anticipate and manage these uncertainties. Day-ahead scheduling algorithms
can optimize energy generation and storage by integrating weather forecasts, historical
consumption patterns, and real-time data, reducing reliance on non-renewable sources and
improving overall energy efficiency [62,73]. Moreover, developing advanced optimization
algorithms has further strengthened the robustness and reliability of these scheduling
processes, enabling microgrids to maintain stable operations even under highly variable
conditions [65,93,97].

One of the key benefits of day-ahead scheduling is its ability to provide a framework for
proactive management of energy resources, allowing microgrids to minimize operational
costs while maximizing the use of available renewable energy. The scheduling process must
consider a wide range of factors, including expected weather conditions, load demand
forecasts, and the availability of storage resources, to ensure that energy supply matches
demand as closely as possible [79,98]. This approach not only improves operational
efficiency but also enhances the sustainability of microgrids by reducing their carbon
footprint [60].

3.6.2. Research Opportunities

• Predictive Scheduling Algorithms: There is a growing opportunity to develop predic-
tive scheduling algorithms that leverage AI techniques to integrate weather forecasts
and consumption patterns for optimizing energy generation and storage. These algo-
rithms can continuously improve their predictive accuracy by learning from historical
and real-time data, allowing microgrids to better prepare for fluctuations in demand
and renewable energy output [98–100]. For example, AI models can be trained to
predict solar and wind energy generation with higher precision, enabling more ef-
fective day-ahead planning [60,79]. Additionally, these algorithms could incorporate
real-time sensor data to adjust scheduling decisions dynamically, further enhancing
the flexibility and resilience of microgrid operations [17].

• Robust Optimization: Another critical area of research involves developing robust
optimization algorithms to handle generation and demand forecasting uncertainties.
Given the stochastic nature of renewable energy sources, these algorithms must main-
tain effective day-ahead schedules even when actual conditions deviate significantly
from predictions [85,101]. Robust optimization techniques can help microgrids miti-
gate the risks associated with over or under-estimating energy availability, ensuring a
more reliable power supply and reducing costly backup generation [96,102]. Exploring
hybrid optimization methods that combine elements of deterministic and stochastic
approaches could also lead to more resilient and adaptive scheduling strategies [64,89].

3.6.3. Policy and Practical Recommendations

Based on the comprehensive review of the integration of artificial intelligence (AI) and
emerging technologies in microgrid operations, several policy and practical recommenda-
tions can be made to support further advancements in this field:

• Policy Recommendations: Promote AI Integration in Microgrid Regulations: Govern-
ments and regulatory bodies should encourage incorporating AI-driven technologies
within energy policies. Creating incentives for deploying AI solutions in microgrid
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management can enhance the efficiency of renewable energy integration, helping to
meet sustainability goals [2,4].

• Standardization of Data and Interoperability: Establishing industry-wide standards for
data sharing and communication between different energy systems and AI platforms
will be crucial. This will enable more seamless integration of AI into microgrid
operations and enhance real-time optimization of energy use [9,17].

• Support for R&D Initiatives: Policymakers should allocate funding for research and
development in AI and energy storage technologies. Support for pilot projects and
collaborative research initiatives between academia and industry can accelerate devel-
oping and deploying advanced microgrid systems [7,12].

• Practical Recommendations: Adoption of AI for Predictive Energy Management: Energy
providers and microgrid operators should adopt AI-driven predictive control systems
that can optimize demand forecasting, energy storage management, and distributed
generation, particularly in areas with high penetration of renewable energy [3,8].

• Integration of Occupancy and Behavior Data: Incorporating occupancy behavior data
into AI models can improve the accuracy of energy demand predictions, allowing for
more responsive and adaptive microgrid operations. This can significantly enhance
energy efficiency in residential and commercial buildings [15,22].

• Focus on Energy Storage Optimization: Operators should invest in advanced energy
storage technologies and integrate AI-based stochastic optimization methods to man-
age energy variability more effectively. This will ensure better stability and resilience,
especially in regions relying heavily on intermittent renewable sources [11,14].

3.6.4. Prospective Topics for Future Research Papers

A promising research direction could involve the development of a day-ahead schedul-
ing framework that integrates deep learning with robust optimization techniques, ad-
dressing the uncertainties in renewable energy generation and fluctuating demand. This
framework could utilize advanced predictive analytics to continuously refine scheduling
decisions based on evolving conditions, offering a more adaptive and resilient approach to
managing microgrid operations [62,72,93].

Another potential research area could focus on combining predictive algorithms with
stochastic optimization methods to create a hybrid scheduling model. Such a model
would balance the need for accuracy in forecasting with the flexibility to respond to un-
expected changes, thereby improving the overall reliability and efficiency of microgrid
operations [65,94,103]. Investigating the role of AI-driven predictive models in enhancing
the robustness of day-ahead scheduling could provide valuable insights into future micro-
grid management practices, particularly in environments characterized by high variability
and uncertainty [97,104,105]. Additionally, research could explore the integration of real-
time data analytics with day-ahead scheduling algorithms to create a more dynamic and
responsive scheduling process. Microgrids could achieve higher operational efficiency and
reliability by continuously updating forecasts and adjusting schedules in response to new
data, reducing their dependence on non-renewable energy sources and minimizing their
environmental impact [60,79]. This approach would be particularly beneficial in regions
with highly variable weather patterns, where quickly adapting to changing conditions is
crucial [85,96,102].

3.6.5. Shortcomings of Day-Ahead Scheduling and Optimization Algorithms

Day-ahead scheduling and optimization algorithms, while critical to the efficient
operation of microgrids, still face several challenges. One of the main limitations lies in
the accuracy of forecasting models. Although significant advancements have been made
in predictive analytics, the unpredictable nature of renewable energy sources such as
wind and solar still results in large forecasting errors. Many current models are unable
to fully capture the variability and intermittency of these energy sources, leading to less
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reliable day-ahead schedules, which in turn can affect the overall stability and efficiency of
the microgrid.

Another key shortcoming is the rigidity of existing optimization algorithms. Although
robust optimization techniques have been developed, they often struggle to adapt to real-
time deviations from forecasts, particularly when actual energy generation or demand
significantly deviates from expected values. These algorithms tend to operate under
relatively fixed conditions and are not sufficiently flexible to manage dynamic, rapidly
changing grid scenarios, which limits their ability to provide reliable day-ahead planning.

Furthermore, while research has explored hybrid optimization methods that combine
deterministic and stochastic approaches, integrating these techniques remains underdevel-
oped. Current hybrid models lack the scalability needed for widespread deployment across
different microgrids and often fail to account for the wide range of variables influencing
energy production and consumption in real-world environments.

Finally, Table 4 summarizes the key findings, promising research areas, and challenges
of optimizing and managing microgrids. This summary covers reinforcement learning,
multi-agent systems, intelligent control, predictive modeling, energy storage, stochastic
optimization, and day-ahead scheduling.

Table 4. Summary of key findings, promising research areas, and challenges in microgrid optimization
and management.

Ref. Key Findings/Opportunities Promising Research Areas Challenges

[9]
RL algorithms enable real-time adaptive

management, optimizing resource
utilization and improving grid stability.

Developing hybrid RL–MAS frameworks
for the efficient management of
distributed energy resources in

interconnected microgrids.

Managing the complexity of
high-dimensional and nonlinear dynamics

in real-time operations.

[59]
MASs facilitate decentralized

management, enhancing operational
efficiency and resilience in microgrids.

Advancing DRL algorithms to handle the
complexities of real-time microgrid

operations, focusing on high-dimensional
data management.

Balancing the need for energy resource
optimization with ensuring overall system

resilience and reliability.

[60]

RL strategies are effective in managing
extreme events and faults within
microgrids, enabling autonomous
adaptation to adverse conditions.

Exploring resilient strategies for microgrid
fault management under extreme

conditions, utilizing autonomous learning
and adaptation.

Addressing the uncertainties in renewable
energy generation and demand forecasts,

particularly under extreme conditions.

[61]

MASs have been shown to improve the
operational stability of microgrids in

complex and stochastic environments,
ensuring continuous operation.

Enhancing the application of MASs in
rural and isolated microgrids, addressing

specific operational challenges and
improving resilience.

Adapting MAS frameworks to diverse and
challenging operational environments,

such as rural or isolated microgrids.

[62]

Deep reinforcement learning (DRL)
techniques manage high-dimensional,

nonlinear dynamics, offering promising
avenues for real-time

interaction management.

Investigating the integration of transfer
learning in EV-integrated microgrids to

improve model adaptability and
operational efficiency.

Improving the accuracy of predictive
models, especially in the context of high
variability and stochastic environments.

[63]
Cooperation among MGs using MASs can

optimize energy exchange, balancing
supply and demand in real-time scenarios.

Expanding the use of stochastic
optimization for energy storage

integration, focusing on cost efficiency and
system reliability.

Reducing the costs associated with
implementing advanced DRL and MAS

techniques in microgrid operations.

[64]

Controlled competition among agents in
MGs drives operational efficiency,

reducing costs and maximizing the
utilization of renewable resources.

Implementing decentralized intelligence
in distributed storage systems to optimize

local energy management and reduce
grid dependency.

Overcoming scalability challenges in
distributed storage systems, particularly

in managing local energy
demands efficiently.

[65]

MAS frameworks can be tailored to
specific contexts, such as rural or isolated
MGs, addressing unique challenges and

leveraging localized benefits.

Developing AI-based robust day-ahead
scheduling models that account for
renewable energy variability and

demand fluctuations.

Enhancing the robustness of day-ahead
scheduling under variable conditions,

ensuring consistent and
reliable operations.

[66]

Hybrid frameworks combining RL and
MASs can efficiently manage distributed

energy resources in interconnected
microgrids, improving
system-wide stability.

Combining predictive analytics with
stochastic optimization techniques to
create hybrid scheduling frameworks

for microgrids.

Balancing the trade-offs between
forecasting accuracy and operational

flexibility in hybrid scheduling models.
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Table 4. Cont.

Ref. Key Findings/Opportunities Promising Research Areas Challenges

[25]

RL strategies tailored for electric vehicles
improve their integration into MGs by

learning from charging and
discharging patterns.

Designing dynamic real-time scheduling
frameworks using AI, enhancing the

flexibility and responsiveness of
microgrid operations.

Ensuring the system’s resilience while
minimizing operational costs, particularly

in real-time scheduling processes.

[67]

Transfer learning can be utilized to
accelerate the deployment of RL and MAS

models across different operational
environments, enhancing adaptability.

Investigating MAS-based fault
management in interconnected networks,
focusing on improving resilience under

variable conditions.

Managing the variability of renewable
energy sources in fault management

strategies, ensuring consistent
system performance.

[94]

MASs enhance fault response in
interconnected networks, allowing

different microgrids to cooperate and
maintain stability during

adverse conditions.

AI integrated with predictive models for
robust microgrid operations.

Ensuring accuracy in real-time
predictive control.

4. Conclusions

This systematic review has thoroughly examined the integration of emerging technolo-
gies and AI techniques in optimizing microgrid operations, a field of growing importance as
energy systems transition towards sustainability and decentralization. Using the PRISMA
methodology, the review synthesized 74 high-quality studies published between 2014
and 2024, offering a thorough assessment of key research areas, including reinforcement
learning, multi-agent systems, predictive modeling, energy storage, and optimization
algorithms; all of which are important to improving microgrid efficiency and reliability.

The review reveals significant advancements, particularly in applying RL and MASs,
which effectively manage microgrids’ inherent complexity and variability. However, fur-
ther research is needed to develop more advanced RL algorithms that can handle high-
dimensional, nonlinear dynamics and MAS models, enhancing cooperation and competi-
tion between microgrids to maximize efficiency. Additionally, AI-based predictive models
have proven critical for anticipating energy fluctuations and stabilizing microgrid opera-
tions. However, there is still a demand for more advanced real-time control systems that
swiftly adapt to the dynamic nature of renewable energy and electric vehicle integration.
Energy storage and stochastic optimization are essential for addressing the intermittency of
renewable energy sources, but further exploration is needed in decentralized intelligence
for distributed storage systems to improve resilience and efficiency. Similarly, there is a
need for enhanced multi-criteria optimization algorithms that balance energy efficiency,
cost reduction, and sustainability more effectively. Real-time scheduling and multi-scale
energy management, supported by IoT and cloud computing, offer promising solutions
for real-time data analysis and efficiently balancing supply and demand. In addition to
consumption patterns, behavior patterns such as occupancy behavior play a crucial role in
optimizing energy management within microgrids. Understanding how occupants interact
with energy systems, particularly in residential or commercial settings, can improve de-
mand forecasting accuracy and enhance energy management strategies’ adaptability. By
integrating data on occupancy behavior, AI models can make more informed decisions,
leading to more efficient energy use and increased system reliability. Then, optimizing
energy storage in MGs through stochastic optimization has effectively balanced supply
and demand, enhancing system resilience.

Nevertheless, further exploration of multi-criteria optimization algorithms and AI-
driven real-time and day-ahead scheduling is necessary to minimize operational losses and
improve overall MG resilience. Then, while this review provides a comprehensive analysis
of integrating emerging technologies and AI in microgrid operations, it is important to
recognize that the field is rapidly evolving. As new technologies and paradigms emerge,
future reviews must be updated to reflect these advancements. Continuously revisiting
and expanding the scope of the review process will be essential to capture the most current
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and relevant developments, ensuring that the insights remain aligned with the latest trends
in microgrid management.

Future work should focus on developing hybrid AI models that integrate multiple
techniques, such as reinforcement learning with neural networks, to improve real-time
energy management. Optimizing DERs through MAS frameworks can enhance energy
exchange and system resilience, particularly in isolated or rural microgrids. Further re-
search is needed to advance energy storage management using stochastic optimization
and develop real-time and day-ahead scheduling algorithms that address renewable en-
ergy variability better. Lastly, AI-driven fault management systems should be explored to
improve microgrid resilience during extreme events.
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71. Piotrowski, P.; Parol, M.; Kapler, P.; Fetliński, B. Advanced Forecasting Methods of 5-Minute Power Generation in a PV System
for Microgrid Operation Control. Energies 2022, 15, 2645. [CrossRef]

72. Moretti, L.; Martelli, E.; Manzolini, G. An efficient robust optimization model for the unit commitment and dispatch of multi-
energy systems and microgrids. Appl. Energy 2020, 261, 113859. [CrossRef]

73. Rezaei, N.; Khazali, A.; Mazidi, M.; Ahmadi, A. Economic energy and reserve management of renewable-based microgrids in the
presence of electric vehicle aggregators: A robust optimization approach. Energy 2020, 201, 117629. [CrossRef]

74. Muriithi, G.; Chowdhury, S. Optimal Energy Management of a Grid-Tied Solar PV-Battery Microgrid: A Reinforcement Learning
Approach. Energies 2021, 14, 2700. [CrossRef]

75. Gao, S.; Xiang, C.; Yu, M.; Tan, K.T.; Lee, T.H. Online Optimal Power Scheduling of a Microgrid via Imitation Learning. IEEE
Trans. Smart Grid 2022, 13, 861–876. [CrossRef]

76. Jiao, F.; Ji, C.; Zou, Y.; Zhang, X. Tri-stage optimal dispatch for a microgrid in the presence of uncertainties introduced by EVs and
PV. Appl. Energy 2021, 304, 117881. [CrossRef]

77. Rawa, M.; Al-Turki, Y.; Sedraoui, K.; Dadfar, S.; Khaki, M. Optimal operation and stochastic scheduling of renewable energy of a
microgrid with optimal sizing of battery energy storage considering cost reduction. J. Energy Storage 2023, 59, 106475. [CrossRef]

78. Tomin, N.; Shakirov, V.; Kozlov, A.; Sidorov, D.; Kurbatsky, V.; Rehtanz, C.; Lora, E.E. Design and optimal energy management of
community microgrids with flexible renewable energy sources. Renew. Energy 2022, 183, 903–921. [CrossRef]

79. Ashtari, B.; Bidgoli, M.A.; Babaei, M.; Ahmarinejad, A. A two-stage energy management framework for optimal scheduling of
multi-microgrids with generation and demand forecasting. Neural Comput. Appl. 2022, 34, 12159–12173. [CrossRef]

80. Huy, T.H.B.; Le, T.-D.; Phu, P.V.; Park, S.; Kim, D. Real-time power scheduling for an isolated microgrid with renewable energy
and energy storage system via a supervised-learning-based strategy. J. Energy Storage 2024, 88, 111506. [CrossRef]

81. Rashid, M.M.U.; Alotaibi, M.A.; Chowdhury, A.H.; Rahman, M.; Alam, M.S.; Hossain, M.A.; Abido, M.A. Home Energy
Management for Community Microgrids Using Optimal Power Sharing Algorithm. Energies 2021, 14, 1060. [CrossRef]

82. Kuruvila, A.P.; Zografopoulos, I.; Basu, K.; Konstantinou, C. Hardware-assisted detection of firmware attacks in inverter-based
cyberphysical microgrids. Int. J. Electr. Power Energy Syst. 2021, 132, 107150. [CrossRef]

83. Xu, G.; Shang, C.; Fan, S.; Hu, X.; Cheng, H. A Hierarchical Energy Scheduling Framework of Microgrids With Hybrid Energy
Storage Systems. IEEE Access 2018, 6, 2472–2483. [CrossRef]

84. Liu, D.; Zang, C.; Zeng, P.; Li, W.; Wang, X.; Liu, Y.; Xu, S. Deep reinforcement learning for real-time economic energy management
of microgrid system considering uncertainties. Front. Energy Res. 2023, 11, 1163053. [CrossRef]

85. Meng, Q.; Hussain, S.; Luo, F.; Wang, Z.; Jin, X. An Online Reinforcement Learning-based Energy Management Strategy for
Microgrids with Centralized Control. IEEE Trans. Ind. Appl. 2024, 1–10. [CrossRef]

86. Marino, C.A.; Chinelato, F.; Marufuzzaman, M. AWS IoT analytics platform for microgrid operation management. Comput. Ind.
Eng. 2022, 170, 108331. [CrossRef]

87. Hai, T.; Zhou, J.; Muranaka, K. Energy management and operational planning of renewable energy resources-based microgrid
with energy saving. Electr. Power Syst. Res. 2023, 214, 108792. [CrossRef]

88. Marchesano, M.G.; Guizzi, G.; Vespoli, S.; Ferruzzi, G. Battery Swapping Station Service in a Smart Microgrid: A Multi-Method
Simulation Performance Analysis. Energies 2023, 16, 6576. [CrossRef]

89. Mazidi, M.; Rezaei, N.; Ghaderi, A. Simultaneous power and heat scheduling of microgrids considering operational uncertainties:
A new stochastic p-robust optimization approach. Energy 2019, 185, 239–253. [CrossRef]

90. Fang, X.; Wang, J.; Song, G.; Han, Y.; Zhao, Q.; Cao, Z. Multi-Agent Reinforcement Learning Approach for Residential Microgrid
Energy Scheduling. Energies 2019, 13, 123. [CrossRef]

91. Faraji, J.; Ketabi, A.; Hashemi-Dezaki, H.; Shafie-Khah, M.; Catalao, J.P.S. Optimal Day-Ahead Self-Scheduling and Operation of
Prosumer Microgrids Using Hybrid Machine Learning-Based Weather and Load Forecasting. IEEE Access 2020, 8, 157284–157305.
[CrossRef]

92. Liu, K.; Zhang, S. Smart cities stochastic secured energy management framework in digital twin: Policy frameworks for promoting
sustainable urban development in smart cities. Sustain. Energy Technol. Assess. 2024, 65, 103720. [CrossRef]

93. Li, B.; Wang, H.; Tan, Z. Capacity optimization of hybrid energy storage system for flexible islanded microgrid based on real-time
price-based demand response. Int. J. Electr. Power Energy Syst. 2022, 136, 107581. [CrossRef]

94. Li, Y.; Wang, R.; Yang, Z. Optimal Scheduling of Isolated Microgrids Using Automated Reinforcement Learning-Based Multi-
Period Forecasting. IEEE Trans. Sustain. Energy 2022, 13, 159–169. [CrossRef]

https://doi.org/10.3390/su12135399
https://doi.org/10.1016/j.renene.2024.120705
https://doi.org/10.3390/su16146087
https://doi.org/10.1016/j.ijepes.2024.109991
https://doi.org/10.1016/j.scs.2018.05.044
https://doi.org/10.3390/en15072645
https://doi.org/10.1016/j.apenergy.2019.113859
https://doi.org/10.1016/j.energy.2020.117629
https://doi.org/10.3390/en14092700
https://doi.org/10.1109/TSG.2021.3122570
https://doi.org/10.1016/j.apenergy.2021.117881
https://doi.org/10.1016/j.est.2022.106475
https://doi.org/10.1016/j.renene.2021.11.024
https://doi.org/10.1007/s00521-022-07103-w
https://doi.org/10.1016/j.est.2024.111506
https://doi.org/10.3390/en14041060
https://doi.org/10.1016/j.ijepes.2021.107150
https://doi.org/10.1109/ACCESS.2017.2783903
https://doi.org/10.3389/fenrg.2023.1163053
https://doi.org/10.1109/TIA.2024.3430264
https://doi.org/10.1016/j.cie.2022.108331
https://doi.org/10.1016/j.epsr.2022.108792
https://doi.org/10.3390/en16186576
https://doi.org/10.1016/j.energy.2019.07.046
https://doi.org/10.3390/en13010123
https://doi.org/10.1109/ACCESS.2020.3019562
https://doi.org/10.1016/j.seta.2024.103720
https://doi.org/10.1016/j.ijepes.2021.107581
https://doi.org/10.1109/TSTE.2021.3105529


Electronics 2024, 13, 3754 25 of 25

95. Jia, Y.; Lyu, X.; Lai, C.S.; Xu, Z.; Chen, M. A retroactive approach to microgrid real-time scheduling in quest of perfect dispatch
solution. J. Mod. Power Syst. Clean Energy 2019, 7, 1608–1618. [CrossRef]

96. Hou, J.; Yu, W.; Xu, Z.; Ge, Q.; Li, Z.; Meng, Y. Multi-time scale optimization scheduling of microgrid considering source and load
uncertainty. Electr. Power Syst. Res. 2023, 216, 109037. [CrossRef]

97. Kumar, R.S.; Raghav, L.P.; Raju, D.K.; Singh, A.R. Impact of multiple demand side management programs on the optimal
operation of grid-connected microgrids. Appl. Energy 2021, 301, 117466. [CrossRef]

98. Liu, L.; Shen, X.; Chen, Z.; Sun, Q.; Wennersten, R. Optimal Energy Management of Data Center Micro-Grid Considering
Computing Workloads Shift. IEEE Access 2024, 12, 102061–102075. [CrossRef]

99. Niknami, A.; Askari, M.T.; Ahmadi, M.A.; Nik, M.B.; Moghaddam, M.S. Resilient day-ahead microgrid energy management with
uncertain demand, EVs, storage, and renewables. Clean. Eng. Technol. 2024, 20, 100763. [CrossRef]

100. Ma, M.; Lou, C.; Xu, X.; Yang, J.; Cunningham, J.; Zhang, L. Distributionally robust decarbonizing scheduling considering
data-driven ambiguity sets for multi-temporal multi-energy microgrid operation. Sustain. Energy Grids Netw. 2024, 38, 101323.
[CrossRef]

101. Shuai, H.; Fang, J.; Ai, X.; Tang, Y.; Wen, J.; He, H. Stochastic Optimization of Economic Dispatch for Microgrid Based on
Approximate Dynamic Programming. IEEE Trans. Smart Grid 2019, 10, 2440–2452. [CrossRef]

102. Geramifar, H.; Shahabi, M.; Barforoshi, T. Coordination of energy storage systems and DR resources for optimal scheduling of
microgrids under uncertainties. IET Renew. Power Gener. 2017, 11, 378–388. [CrossRef]

103. Shuai, H.; He, H. Online Scheduling of a Residential Microgrid via Monte-Carlo Tree Search and a Learned Model. IEEE Trans.
Smart Grid 2021, 12, 1073–1087. [CrossRef]

104. Mohamed, M.A.E.; Mahmoud, A.M.; Saied, E.M.M.; Hadi, H.A. Hybrid cheetah particle swarm optimization based optimal
hierarchical control of multiple microgrids. Sci. Rep. 2024, 14, 9313. [CrossRef]

105. Parol, M.; Piotrowski, P.; Kapler, P.; Piotrowski, M. Forecasting of 10-Second Power Demand of Highly Variable Loads for
Microgrid Operation Control. Energies 2021, 14, 1290. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s40565-019-00574-2
https://doi.org/10.1016/j.epsr.2022.109037
https://doi.org/10.1016/j.apenergy.2021.117466
https://doi.org/10.1109/ACCESS.2024.3432120
https://doi.org/10.1016/j.clet.2024.100763
https://doi.org/10.1016/j.segan.2024.101323
https://doi.org/10.1109/TSG.2018.2798039
https://doi.org/10.1049/iet-rpg.2016.0094
https://doi.org/10.1109/TSG.2020.3035127
https://doi.org/10.1038/s41598-024-59287-x
https://doi.org/10.3390/en14051290

	Introduction 
	Materials and Methods 
	Identification Phase 
	Screening Phase 
	Eligibility and Inclusion Phase 
	Synthesis Phase 

	Results and Discussions 
	Reinforcement Learning and Multi-Agent Systems 
	Current Context 
	Research Opportunities and Future Directions 
	Shortcomings in Reinforcement Learning and Multi-Agent Systems 

	Intelligent Control and Predictive Modeling 
	Current Context 
	Research Opportunities 
	Shortcomings of Intelligent Control and Predictive Modeling 

	Energy Storage and Stochastic Optimization 
	Current Context 
	Research Opportunities 
	Shortcomings of Energy Storage and Stochastic Optimization 

	Optimal Operation and Power Management 
	Current Context 
	Research Opportunities 
	Shortcomings of Optimal Operation and Power Management 

	Real-Time Scheduling and Multi-Scale Energy Management 
	Current Context 
	Research Opportunities 
	Prospective Topics for Future Research Papers of Real-Time Scheduling and Multi-Scale Energy Management 
	Shortcomings of Real-Time Scheduling and Multi-Scale Energy Management 

	Day-Ahead Scheduling and Optimization Algorithms 
	Current Context 
	Research Opportunities 
	Policy and Practical Recommendations 
	Prospective Topics for Future Research Papers 
	Shortcomings of Day-Ahead Scheduling and Optimization Algorithms 


	Conclusions 
	References

