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Abstract: This study provides a nuanced understanding of AI’s impact on productivity and employ-
ment using machine learning models and Bayesian Network Analysis. Data from 233 employees
across various industries were analyzed using logistic regression, Random Forest, and XGBoost,
with 5-fold cross-validation. The findings reveal that high levels of AI tool usage and integration
within organizational workflows significantly enhance productivity, particularly among younger
employees. A significant interaction between AI tools usage and integration (β = 0.4319, p < 0.001)
further emphasizes the importance of comprehensive AI adoption. Bayesian Network Analysis
highlights complex interdependencies between AI usage, innovation, and employee characteristics.
This study confirms that strategic AI integration, along with targeted training programs and ethical
frameworks, is essential for maximizing AI’s economic potential.

Keywords: Artificial Intelligence (AI); employee productivity; AI integration; machine learning
models; Bayesian Network Analysis

1. Introduction

Artificial Intelligence (AI) is emerging as a pivotal technology with the potential to
revolutionize productivity and reshape the employment landscape across various economic
sectors. Since the commercial release of advanced models like ChatGPT in late 2022, there
has been heightened anticipation of a transformative shift comparable to the advent of the
internet. However, this optimism is tempered by the reality of persistently low productivity
growth in many advanced economies, which raises critical questions about the actual
economic impact of AI and the mechanisms through which it influences productivity and
employment [1].

AI’s economic impact is multifaceted and complex. Theoretically, AI can be seen both
as a complement and a substitute for human labor. When viewed as a complement, AI
enhances human productivity by augmenting decision-making processes and operational
efficiency [2]. Conversely, when viewed as a substitute, AI can automate tasks traditionally
performed by humans, potentially leading to job displacement but also contributing to
productivity gains [3,4]. Empirical evidence supports both perspectives, with studies indi-
cating that AI-using firms often experience positive productivity effects without necessarily
observing significant negative impacts on overall employment [5].

The challenge of measuring AI’s economic impact is compounded by its intangible
nature and rapid technological evolution. Traditional economic metrics and national
accounting frameworks struggle to capture the full value generated by AI, often leading
to an underestimation of its contributions [6]. This measurement difficulty contributes to
what is known as the productivity paradox—where the rapid advancements in technology
do not immediately translate into observable productivity gains [7]. Recent advancements
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in AI have explored the integration of machine learning models to better understand user
sentiment and predict outcomes in various domains [8].

To tackle these challenges, this study aims to address these challenges by leveraging
advanced machine learning models and Bayesian Network Analysis to analyze firm-level
data and provide a more nuanced understanding of AI’s impact on productivity and
employment. Specifically, the research employs Random Forest and Gradient Boosting
Machine (GBM) models to identify key predictors of productivity changes and assess
their relative importance. By designing the questionnaire to gather granular data on AI
tools usage, integration, and organizational factors, we address the issue of AI’s intan-
gibility by converting it into measurable constructs, such as AI_Integration_Level and
AI_Tools_Complexity”. Additionally, Bayesian Network Analysis is used to explore the
probabilistic dependencies between various features, offering a comprehensive view of
the dynamics at play. The Bayesian Network was constructed using the HillClimbSearch
algorithm with Bayesian Information Criterion (BIC) to determine the optimal structure,
balancing model complexity, and goodness-of-fit. Parameters were estimated via Maximum
Likelihood Estimation (MLE), ensuring accurate representation of conditional probability
distributions. Inference was conducted using Variable Elimination, a method suitable for
capturing the intricate dependencies in the data. The performance of the models was
rigorously evaluated using 5-fold cross-validation to mitigate overfitting and ensure robust
performance metrics.

The research hypotheses are grounded in existing literature and empirical findings.
First, it is hypothesized that AI integration significantly enhances productivity at the firm
level, with AI integration being the most critical predictor of productivity change (Hypothe-
sis 1). This is supported by studies showing substantial productivity gains in firms adopting
AI technologies [9]. Second, it is hypothesized that the impact of AI on employment is
complex, with positive productivity effects at the firm level not necessarily translating
into negative employment effects at the aggregate level (Hypothesis 2). This hypothesis is
informed by research indicating that AI can complement human labor, leading to new job
creation and task augmentation rather than straightforward job displacement [3,4]. Third,
it is hypothesized that the benefits of AI integration are moderated by factors such as AI
complexity, areas of AI utilization, and employee characteristics (Hypothesis 3). This is
supported by evidence that the impact of AI varies significantly across different contexts
and applications [1,5].

By employing sophisticated analytical techniques and building on a robust theoretical
foundation, this study seeks to contribute to the ongoing discourse on AI’s economic impact.
The findings will provide valuable insights for policymakers and business leaders, helping
them to harness AI’s potential for economic growth while mitigating potential adverse
effects on employment. Through detailed feature importance analysis and the exploration
of probabilistic dependencies, this research aims to offer a comprehensive understanding
of AI’s role in shaping the future of work and productivity.

The key contributions of this paper are multifaceted. First, it utilizes a unique dataset
derived from a survey of 233 employees across various industries, providing valuable
empirical insights into the ways AI tools impact productivity. The study goes beyond
simplistic measures by considering the complexity of AI integration and its interaction with
demographic factors such as age. Second, the research applies a diverse range of analytical
techniques, including logistic regression with interaction terms, Random Forest, XGBoost,
and Bayesian Network Analysis. This multi-method approach allows for a more nuanced
and robust exploration of how AI influences employee productivity.

Third, the findings highlight the critical role of AI integration into organizational
workflows, showing that merely adopting AI tools is insufficient without strategic and
comprehensive integration. Moreover, this study uncovers generational differences in
adaptability to AI tools, with younger employees experiencing greater productivity gains
compared to their older counterparts. These generational insights suggest that adapt-
ability to AI technologies may vary significantly across age groups. Finally, the paper
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offers practical recommendations for policymakers and business leaders, advocating for
targeted training programs and the establishment of ethical frameworks to maximize AI’s
economic potential.

The remainder of this paper is structured as follows: Section 2 reviews the existing
literature on AI’s impact on productivity, focusing on both theoretical perspectives and
empirical studies. Section 3 outlines the research methodology, including data collection,
preprocessing, and the machine learning models employed in the analysis. Section 4
presents the findings, highlighting the results of the logistic regression, Random Forest,
XGBoost, and Bayesian Network Analysis. Section 5 discusses the broader implications
of these findings, particularly concerning AI’s potential to enhance productivity and its
differential effects across employee demographics. Finally, Section 6 concludes with recom-
mendations for future research and strategies to optimize AI’s role in the workplace.

2. Literature Review

AI holds significant promise for enhancing economic growth and efficiency, but its
actual outcomes depend on various factors, including industry context, regulatory frame-
works, and the complementary nature of human labor. The literature on AI’s economic
impacts is extensive, reflecting diverse perspectives on how AI technologies influence pro-
ductivity, employment, and overall economic growth. This section provides an overview
of the key perspectives and empirical findings regarding AI’s influence on productivity,
highlighting gaps that this study aims to address.

2.1. Theoretical Perspectives on AI’s Economic Impact

AI is increasingly seen as a general-purpose technology capable of fundamentally
transforming industries and economies [2]. From a theoretical perspective, AI and big data
are not ideologically neutral. They serve as tools within the capitalist framework, reshaping
labor, value, and production relations. Walton and Nayak (2021) [10] argue that AI exac-
erbates labor precarity while redefining traditional Marxist concepts of bourgeoisie and
proletariat in an information-driven society [5,10]. This shift necessitates a reevaluation of
established economic theories, particularly regarding labor value and production relations
in the context of AI and big data-driven economies [6].

Furthermore, the potential for AI to enhance productivity through automation and
decision-making optimization [3] contrasts with concerns about its impact on labor dis-
placement and inequality [4]. Liu et al. (2024) [11] highlight AI’s dual role in the workplace,
where its usage can boost employee technological self-efficacy but also trigger workplace
anxiety [5,11]. This highlights the need for a more nuanced understanding of AI’s implica-
tions for labor and productivity.

AI can also automate tasks traditionally performed by humans, potentially leading to
job displacement but contributing to productivity gains [3,12].

Cornelli et al. [13] examined AI-related investments across 86 countries, reporting a
shift from mid-skill to high-skill and managerial positions, a decline in the labor share of
income, higher total factor productivity (TFP), and increasing inequality. Baily, Brynjolfsson
et al. [7] argue that AI could increase aggregate productivity by 33% over 20 years through
its impact on knowledge workers’ productivity. Korinek [14] considered the transition to
Artificial General Intelligence (AGI), highlighting its potential to automate a wide range of
tasks and its complex effects on wages.

Empirical Evidence and Productivity Gains

Empirical studies provide mixed results on AI’s economic impacts. Comunale and
Manera [15] found that AI’s productivity gains are not uniformly distributed across indus-
tries. For example, a PricewaterhouseCoopers (PwC) report predicted that AI could increase
global GDP by $15.7 trillion between 2018 and 2030, with varying regional impacts [16].

Eisfeldt et al. [17] constructed a firm-level measure of workforce exposure to AI in the
US and studied the impact of ChatGPT’s release on equity returns. Rammer et al. [18] found
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that AI increased the probability of German firms introducing new products or processes
by about 8%. Babina et al. [19] reported significant increases in patents and trademarks
associated with AI but no increase in sales per worker. Conversely, ref. [20] estimated a
6.8% increase in sales per worker for firms innovating in AI technologies, while [5] put this
number at 4.4%.

2.2. Measurement Challenges and the Productivity Paradox

Rapid technological advancements do not immediately translate into observable
productivity gains, a paradox highlighted by [7]. Parteka and Kordalska (2023) [21] present
evidence of a productivity paradox where, despite advances in AI technology, measurable
gains in macroeconomic productivity remain limited [8,21]. This phenomenon is often
attributed to the slow diffusion of AI technologies and the time lag between adoption and
tangible productivity benefits [10].

Regulatory approaches must align with AI technologies to maximize benefits and
mitigate adverse effects [13].

2.3. The Need for Task-Level and Sector-Level Productivity Data

To truly understand how AI impacts productivity and jobs in different sectors, we
need specific data at both the task level (what exact tasks AI replaces or enhances) and the
industry level (whether the company is in manufacturing, healthcare, etc.). These details
are critical for analyzing how AI affects employment and productivity in different contexts.
AI exacerbates inequalities within the labor market, disproportionately affecting low-skilled
workers while benefiting those with advanced technical skills [10]. Hunt et al. (2021) [22]
report that AI is more likely to be associated with both job creation and destruction, with the
overall net effect dependent on organizational strategies and industry contexts [18,22]. This
highlights the importance of organizational policies and managerial strategies in shaping
the outcomes of AI integration.

Precise productivity estimates are important for analyzing employment effects. Re-
search on text-generating AI’s productivity impact is silent on image generation, despite its
significant labor market effects [23]. Bridging the gap between theoretical predictions and
empirical findings requires addressing measurement challenges and aligning AI adoption
with human capabilities [1].

Practical examples of AI’s effect on productivity are seen in customer service and
professional tasks. For instance, chatbots (AI-powered tools) in customer service allow
support agents to handle more inquiries. Chatbots have enhanced productivity in customer
service, with AI-assisted support agents handling 13.8% more inquiries per hour [24].
Automation tools like robotic process automation (RPA) significantly improve operational
efficiency, enabling business professionals to produce 59% more documents per hour and
programmers to code 126% more projects per week [20,21].

2.4. Measuring beyond Output

Xie and Yan (2024) [25] found that AI enhances the agglomeration of productive ser-
vices in industries such as manufacturing and IT by boosting productivity [24]. However,
their study also reveals regional differences in AI’s effects, with more dynamic and innova-
tive industries reaping greater benefits. This aligns with previous research that suggests
AI’s productivity impact is contingent on industry-specific factors such as capital intensity,
technological infrastructure, and innovation ecosystems [25].

Moreover, Khanna and Sharma (2024) [26] highlight the network spillovers associated
with AI investments, particularly in industries with high levels of digital infrastructure.
Their findings suggest that firms in these sectors are better positioned to capitalize on
AI technologies, leading to superior productivity gains compared to those in more tradi-
tional industries.

Traditional productivity metrics, such as lines of code per day, fail to capture down-
stream costs like technical debt and overlook essential elements of software develop-
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ment [27,28]. Holistic metrics that focus on end-to-end outcomes, project completion times,
and comprehensive development pipeline views are essential [27,28].

2.5. Measuring AI’s Business Impact

Tangible business outcomes like user adoption, revenue, and customer satisfaction
should be prioritized. Predicting development bottlenecks, automating routine tasks for
more predictable release cycles, enhancing code reliability, and reducing bugs are important
for improving software quality and customer satisfaction [29].

While AI’s theoretical models predict transformative impacts, empirical findings are
mixed and vary across industries and contexts. Addressing measurement challenges and
aligning AI adoption with complementary human capabilities is essential for realizing AI’s
full economic potential.

In conclusion, the literature indicates that AI’s potential for improving productivity
is evident, but its realization depends on several contextual factors, including industry,
regulation, and labor dynamics. This study aims to build on these insights by addressing
the gaps related to how AI integration, usage complexity, and employee characteristics
influence productivity across various organizational contexts.

3. Materials and Methods

In our study, we employed an anonymous survey to gather data from participants.
Given that our survey was conducted anonymously, obtaining formal informed consent
was not necessary. However, ethical guidelines were strictly adhered to by informing
participants about the nature and purpose of our research prior to their participation.
Participants were clearly notified that their responses would remain anonymous, ensuring
that individual privacy and confidentiality were preserved throughout the study.

The dataset utilized in this study was derived from a survey in which we applied a
questionnaire administered to employees across various industries. To ensure the validity
and reliability of the data collected, several measures were implemented:

1. Questionnaire Design: The questionnaire was meticulously designed to cover a broad
spectrum of variables related to employee demographics, AI tool usage, productivity
changes, and organizational factors. Each question was crafted to align with the
research objectives, ensuring content validity. The goal was to capture a comprehen-
sive set of factors that influence the relationship between AI usage and employee
productivity, while also addressing organizational factors like AI-related training,
ethical considerations, and company culture. Table 1 presents a summary of the
questions included in the questionnaire and in our analysis, along with the response
options. The questionnaire covered a wide range of variables, including employee
demographics, job characteristics, organizational attributes, and AI usage patterns.
This breadth ensured that the survey could capture not only the technical aspects of
AI usage (e.g., integration level and complexity of AI tools) but also the contextual
factors like job creation, organizational structure changes, and ethical considerations.
The questionnaire was specifically structured to capture how AI technologies impact
employee productivity and organizational workflows. AI tools usage and integration
levels were measured through specific questions to convert these abstract concepts
into measurable constructs. These AI-related questions provided the foundation for
analyzing how AI adoption influences productivity, job creation, and changes in orga-
nizational structure. By focusing on factors such as AI training, ethical implications,
and job opportunities, the survey ensured that the complex, intangible benefits of AI
could be rigorously analyzed using machine learning models and Bayesian Network
Analysis. The inclusion of AI-related factors supports the study’s aim to explore
generational differences in AI adaptability and provides a framework for evaluating
how AI technologies contribute to overall business innovation and competitiveness.

2. Pilot Testing: Prior to full-scale deployment, the questionnaire underwent pilot testing
with a smaller subset of the target population. Feedback from the pilot test was used
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to refine the questions, improve clarity, and eliminate ambiguities, thereby enhancing
face validity.

3. Reliability Assessment: Polychoric alpha, an extension of Cronbach’s alpha, was
used for evaluating the internal consistency of scales composed of ordinal data. This
approach was particularly useful when dealing with mixed data types, including
ordinal, categorical, and numeric variables.

4. Data Preprocessing: The dataset columns were renamed for clarity and consistency,
and categorical data were cleaned to ensure uniformity. Ordinal columns were en-
coded to numerical values based on predefined mappings, and gender was binary
encoded to numerical values. Categorical variables such as Residence, Industry, and
Position were transformed into dummy variables to handle categorical data in the
analysis. Boolean columns were converted to numeric values, ensuring all data were
in a suitable format for analysis. Numeric variables, specifically ‘AI_Integration_Level’
and ‘AI_Tools_Complexity’, were standardized using the StandardScaler to ensure
comparability.

5. Feature Engineering: Each question was crafted to ensure that it directly related to
the research questions and hypotheses. For example, questions on AI usage and
its frequency were tied to measuring the degree of AI integration and its impact on
productivity. By doing this, the questionnaire was able to translate complex, intangible
concepts (like AI integration or innovation impact) into measurable constructs that
could be statistically analyzed. Important questions, identified as relevant to the study,
were combined with the numeric variables for analysis. These important questions
included: AI Tools Usage, Years Using AI, Job Opportunities Creation, Org Structure
Changes, Partnerships Experience, Innovation and Competitiveness Improvement,
Communication and Collaboration Changes, Company Culture Engagement, Ethical
Considerations, Ethical Policies Implementation, Future Preparedness, AI Training
Provided, and Customer Satisfaction Changes.

6. Interaction terms and polynomial features for the numerical variables were created to
capture potential non-linear effects.

7. A function was defined to calculate the polychoric alpha, involving factor analysis to
determine the communalities (h2), calculating the average variance extracted (AVE),
and finally computing the polychoric alpha using the formula:

αpoly =
N × AVE

1 + (N − 1)× AVE
(1)

where N is the number of items. The polychoric alpha for the combined set of
important questions and numeric variables (‘AI_Tools_Usage’, ‘Years_Using_AI’,
‘Job_Opportunities_Creation’, ‘Org_Structure_Changes’, ‘Partnerships_Experience’,
‘Innovation_and_Competitiveness_Improvement’, ‘Communication_and_Collaboration
_Changes’, ‘Company_Culture_Engagement’, ‘Ethical_Considerations’, ‘Ethical_Policies
_Implementation’, ‘Future_Preparedness’, ‘AI_Training_Provided’, ‘Customer
_Satisfaction_Changes’) was calculated to be 0.84. This high value suggested a good
level of internal consistency among the items.

8. Construct validity was assessed by examining the relationships between different
variables in the dataset. Factor analysis (Table 2) was employed to identify underlying
constructs and ensure that the questionnaire items accurately represent the theoretical
constructs they were intended to measure. The results indicated a single-factor
solution with substantial factor loadings, suggesting a coherent underlying construct.
Construct validity was assessed by examining the relationships between different
variables in the dataset through factor analysis, which confirmed the hypothesized
factor structure with significant factor loadings. The questionnaire was shared through
Prolific, ensuring a high response rate and engagement. We received 233 responses,
which is adequate for this type of statistical analysis. This sample size provides a
sufficient basis for reliable and valid statistical analysis, ensuring the generalizability
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of the results. Additionally, there were no missing values (NaNs) in the responses,
which further enhanced the robustness and reliability of the dataset. Efforts were made
to achieve a diverse and representative sample by distributing the questionnaire across
multiple industries and ensuring participation from various employee demographics,
thus mitigating response bias and enhancing external validity.

9. Response Rate and Representativeness: The response rate to the questionnaire was
carefully monitored to ensure representativeness. Efforts were made to achieve a
diverse and representative sample by distributing the questionnaire across multiple
industries and ensuring participation from various employee demographics. The
sample size of 233 responses was deemed sufficient based on power analysis for
logistic regression, which is a suitable method for classification problems. The required
sample size for logistic regression can be calculated using the formula for minimum
sample size estimation in logistic regression.

N =

(
Z α

2
+ Zβ

)2
× p × (1 − p)

(log(OR))2 (2)

where

• Z α
2

is the Z-value for the desired level of confidence (e.g., 1.96 for 95% confidence).
• Zβ is the Z-value for the desired power (e.g., 0.84 for 80% power).
• p is the estimated proportion of the outcome.
• OR is the anticipated odds ratio.

Table 1. Questionnaire’s items considered in this study.

Question Included in the Questionnaire Variable Option Percentage

What is your age? Age (1–6 scale, 6 for 41+)

18–20 2.58%

21–25 22.75%

26–30 22.75%

31–35 21.03%

36–40 12.02%

41+ 18.88%

Rate the level of AI integration in your daily
operations on a scale of 1–10 (1 being minimal and 10

being extensive).
AI_Integration_level (scale 1–10) scale numeric

On a scale of 1–10, how would you rate the complexity
of AI tools and systems used in your organization (1

being very simple and 10 being highly complex)?
AI_Complexity_level (scale 1–10) scale numeric

What is your highest level of education? Education (1–4 scale, 4 for
Doctorate)

High school 18.88%

Undergraduate 20.60%

Graduate 53.22%

Doctorate 7.30%

You currently use artificial intelligence tools that
support you in carrying out your daily work processes.

These include, among others: Chat GPT, Google
BARD, ChatSonic, Claude, Google LaMDA, Perplexity

AI, Neuroflash, GitHub Copilot, or Jasper Chat.

AI_Tools_Usage (scale 1–4 scale,
4 for All the time)

Never 17.17%

Occasionally 42.06%

Often 31.76%

All the time 9.01%



Electronics 2024, 13, 3758 8 of 29

Table 1. Cont.

Question Included in the Questionnaire Variable Option Percentage

What percentage increase in productivity has been
observed since the implementation of AI?

Productivity_Change_Percentage
(1–5 scale, 5 for 80–100%)

0–20% 46.78%

20–40% 26.18%

40–60% 18.45%

60–80% 7.73%

80–100% 0.86%

For how many years have you been with the
company?

Years_with_Company (1–4 scale,
4 for longer than 10 years)

0–2 years 39.91%

2–4 years 22.32%

4–10 years 23.61%

longer than 10 years 14.16%

How long has your company been using AI or
AI-based technologies?

Years_Using_AI (1–4 scale, 4 for
more than 5 years)

less than a year 52.36%

1–2 years 32.62%

2–5 years 12.02%

more than 5 years 3.00%

Has your organization provided any AI-related
training or education programs for its employees?

AI_Training_Provided (0–2 scale,
2 for Yes)

No 63.95%

currently in
development 12.88%

Yes 23.18%

To what extent do you agree with the following
statement: “AI has created new job opportunities

within our organization”.

Job_Opportunities_Creation (1–5
scale, 5 for Strongly agree)

Strongly disagree 15.88%

Disagree 28.76%

Neither agree nor
disagree 36.48%

Agree 14.16%

Strongly agree 4.72%

Has the implementation of AI led to any changes in
the organizational structure or reporting lines in

your company?

Org_Structure_Changes (0–2
scale, 2 for Yes)

No 72.53%

unsure 23.18%

Yes 4.29%

Has your organization experienced any collaborations
or partnerships with other companies or industries as

a result of AI adoption? (e.g., joint ventures and
strategic partnerships)

Partnerships_Experience (0–2
scale, 2 for Yes)

No 66.95%

unsure 27.47%

Yes 5.58%

To what extent do you agree with the following
statement: “AI has improved our organization’s

ability to innovate and stay competitive”.

Innovation_and_Competitiveness
_Improvement (1–5 scale, 5 for

Strongly agree)

Strongly Disagree 5.15%

Disagree 12.45%

Neither agree nor
disagree 38.20%

Agree 36.91%

Strongly agree 7.30%

Has the implementation of AI changed the nature of
communication and collaboration within your

organization?

Communication_and_
Collaboration_Changes (0–2 scale,

2 for Yes)

No 73.39%

unsure 17.17%

Yes 9.44%
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Table 1. Cont.

Question Included in the Questionnaire Variable Option Percentage

How has the adoption of AI affected the overall
company culture and employee engagement within

your organization?

Company_Culture_Engagement
0–4 scale, 4 for significant

improvement)

No change 59.23%

Slight improvement 33.48%

Significant
improvement 3.00%

Slight decline 4.29%

To what extent has your organization considered the
ethical implications of AI adoption, such as potential

bias and transparency?

Ethical_Considerations (0–3 scale,
3 for extensively)

Not at all 23.61%

Minimally 33.05%

Moderately 33.91%

Extensively 9.44%

Has your organization implemented any policies or
guidelines to address the ethical implications of

AI use?

Ethical_Policies_Implementation
(0–2 scale, 2 for Yes)

No 63.09%

Currently in
development 19.31%

Yes 17.60%

In your opinion, how well-prepared is your
organization to adapt to future AI-driven changes in

the workforce and the potential ripple effects?

Future_Preparedness (scale 1–5,
5 for Very well-prepared)

Very unprepared 9.44%

Somewhat
unprepared 23.18%

Neutral 27.47%

Somewhat prepared 31.33%

Very well-prepared 8.58%

How has the implementation of AI affected customer
satisfaction and relationships?

Customer_Satisfaction_Changes
(1–5, 5 for Significant

improvement)

Significant decline 0.00%

Slight decline 2.15%

No change 56.65%

Slight improvement 34.76%

Significant
improvement 6.44%

What is your gender? Gender (Male-1, Female-2. Prefer
not to say-minus1)

Male 56.65%

Female 42.49%

Prefer not to say 0.86%

What is your current place of residence? (If you work
in another place than you live, please fill in only the

country in which you are currently employed)
Residence

Austria 0.86%

Belgium 4.29%

Canada 3.00%

Croatia 0.43%

Denmark 0.43%

Finland 1.29%

France 4.29%

Freelancer 0.43%

Germany 4.29%

Greece 5.58%

Hungary 4.29%

Ireland 1.29%

Italy 8.58%

The Netherlands 2.15%
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Table 1. Cont.

Question Included in the Questionnaire Variable Option Percentage

What is your current place of residence? (If you work
in another place than you live, please fill in only the

country in which you are currently employed)
Residence

Poland 14.59%

Portugal 18.45%

Romania 16.74%

Slovenia 1.72%

Spain 2.15%

Sweden 0.86%

Switzerland 0.86%

The Netherlands 0.86%

United Kingdom 2.58%

In which industry does your company or the company
you work in operate?

Industry

Arts and culture 0.43%

Automotive 3.00%

Banking 0.43%

Chemical industry 0.86%

Construction 4.29%

Design and publicity 0.86%

Education 11.16%

Electrical industry 3.00%

Energy sector 1.72%

Environmental
conservation 0.43%

Film industry 0.43%

Finance 2.58%

Financial 0.86%

Food and beverage 1.72%

Game development 0.43%

Gymnasium
reception 0.43%

Health service 6.44%

Hospitality 0.43%

Human resources 0.43%

Insurance 0.43%

Interior
design_architecture

_construction
0.43%

IT industry 32.62%

Legal 0.43%

Logistics and supply
chain 0.86%

Management 0.43%

Media and
entertainment 0.86%

Online publishing 0.43%
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Table 1. Cont.

Question Included in the Questionnaire Variable Option Percentage

In which industry does your company or the company
you work in operate?

Industry

Pharmacy 0.43%

Public service 6.87%

Real estate 1.72%

Retail 1.72%

Sales 0.86%

Service industry 9.44%

Social 0.43%

Supply chain 0.43%

Telecommunications 0.43%

Tourism 0.43%

Transportation and
distribution 0.86%

What position do you hold in this company? Position

Lower or operative
management 28.76%

Manager 0.43%

Middle management 0.86%

Project management 0.86%

Software engineer 0.43%

Workforce 68.67%

Table 2. Factor loadings and communalities.

Item Loading Communality

AI_Tools_Usage (ordinal) 0.430 0.184

Years_Using_AI(ordinal) 0.474 0.224

Job_Opportunities_Creation (ordinal) 0.578 0.333

Org_Structure_Changes (ordinal) 0.220 0.048

Partnerships_Experience (ordinal) 0.299 0.089

Innovation_and_Competitiveness_Improvement (ordinal) 0.702 0.492

Communication_and_Collaboration_Changes (ordinal) 0.265 0.070

Company_Culture_Engagement (ordinal) 0.491 0.241

Ethical_Considerations (ordinal) 0.626 0.391

Ethical_Policies_Implementation (ordinal) 0.485 0.234

Future_Preparedness (ordinal) 0.533 0.284

AI_Training_Provided (ordinal) 0.492 0.242

Customer_Satisfaction_Changes (ordinal) 0.572 0.327

AI_Integration_Level (numerical) 0.598 0.358

AI_Tools_Complexity (numerical) 0.600 0.359

Assuming an anticipated proportion p of 0.5 (which maximizes the required sample
size) and an odds ratio OR of 2, the calculation would yield a sample size requirement of
approximately 168. The actual sample size of 233 responses provides a robust basis for
analysis, ensuring reliable and generalizable results.
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Data Collection and Preprocessing

The dataset comprised 233 responses from employees across various industries. The
data were collected via a questionnaire distributed through Prolific, ensuring a high re-
sponse rate and engagement.

1. Preprocessing Steps:

• Ordinal Encoding: Categorical variables were encoded to ordinal scales.
• Binary Encoding: Gender was encoded as 1 for Male, 0 for Female, and −1 for

Prefer not to say.
• Dummy Variables: Categorical variables such as Residence, Industry, and Posi-

tion were transformed into dummy variables.
• Scaling: Numerical columns were standardized using the StandardScaler.
• Interaction Terms: Interaction terms between AI Tools Usage and AI Integration

Level and AI Tools Usage and AI Tools Complexity were created.

2. Logistic Regression Model: The target variable, Productivity_Change_Percentage,
was re-encoded into a binary outcome, Productivity_Change_Binary, defined as 1
for notable productivity change (≥40%) and 0 for lesser changes (<40%). Feature
selection was performed using LassoCV, identifying significant predictors such as
Age, Innovation, and Competitiveness Improvement, and interaction terms involving
AI tools. A logistic regression model was fit using the selected features, and its
performance was evaluated using classification metrics, including precision, recall,
F1-score, and the ROC AUC score.

3. Random Forest and XGBoost Models were implemented to capture non-linear re-
lationships and interactions between features. Hyperparameter tuning and 5-fold
cross-validation were used to optimize model performance and ensure robustness.

4. Bayesian Network Modeling: A Bayesian Network was constructed using the Hill-
ClimbSearch algorithm and Bayesian Information Criterion (BIC) for structure learn-
ing. Maximum Likelihood Estimation (MLE) was used for parameter learning, and
inference was performed using Variable Elimination.

5. Bayesian logistic regression with Markov Chain Monte Carlo (MCMC) sampling
was also employed, with priors assumed to follow a normal distribution. Posterior
predictive checks and 5-fold cross-validation were used to validate the model.

Analyses were conducted using Python 3.8 and key libraries such as Pandas for data
manipulation, scikit-learn for machine learning models, PyMC and Arviz for Bayesian
inference, and pgmpy for probabilistic graphical models. Correlations between variables
were computed using the polycor library in RStudio.

The analyses were performed on Google Colab Pro with an NVIDIA A100 GPU and
L4 GPU, leveraging 25 GB of RAM and high-speed cloud storage for efficient handling of
large datasets and computationally intensive tasks.

4. Results

To understand the demographics, AI usage, and organizational impacts among respon-
dents, a detailed questionnaire was administered. The detailed distribution of responses
for each question (Table 1) helps in understanding the demographic and professional
background of the respondents, as well as their experiences and perceptions related to
AI implementation. Table 3 provides descriptive statistics for the numerical variables,
offering insights into the central tendencies and variability within the dataset. The variable
AI_Integration_Level refers to the extent to which AI tools are embedded into the organiza-
tional workflows. The variable AI_Tools_Complexity refers to the sophistication and func-
tionality of the AI tools employed within the organization. The variables were measured
on a continuous numerical scale, with higher values representing a more comprehensive
and advanced integration of AI within the organization. These numerical summaries help
contextualize the findings and validate the robustness of the subsequent analyses.
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Table 3. Descriptive statistics for numerical variables.

Variable Mean Std Min 25% 50% 75% Max

AI_Integration_Level 4.090 2.587 1 2 4 6 10

AI_Tools_Complexity 3.773 2.341 1 2 3 6 9

4.1. Logistic Regression Model

To focus on the predictors of significant productivity changes, the target variable,
‘Productivity_Change_Percentage’, was re-encoded into a binary outcome, ‘Productiv-
ity_Change_Binary’. This binary outcome was defined as 1 for notable productivity change
(≥40%) and 0 for lesser changes (<40%). This threshold was chosen to distinguish between
minor and substantial productivity improvements, thus providing a clearer understanding
of the factors contributing to significant productivity enhancements.

Feature selection was performed using LassoCV, a regularization technique, to identify
significant predictors. LassoCV was chosen for its ability to handle multicollinearity and
select the most relevant features, thereby improving the model’s performance. Interaction
terms were included to capture the combined effect of AI tools usage with integration levels
and tool complexity. The LassoCV feature selection identified the following key predictors:
Age, Innovation and Competitiveness Improvement, AI Tools Usage * AI Integration Level,
and AI Tools Usage * AI Tools Complexity.

A logistic regression model was fit using the selected features (Table 4). The model’s
performance was evaluated using classification metrics, including precision, recall, F1-score,
and the ROC AUC score.

Table 4. Logistic regression results for predicting productivity change (features selected with
Lasso first).

Feature Coefficient Std.
Error z-Value p-Value (95% Confidence

Interval)
Odds
Ratio

Lower
CI

Upper
CI

Age −0.4079 0.109 −3.752 0.000 −0.621 to −0.195 0.665051 0.537433 0.822973

AI Integration Level 1.2208 0.206 5.914 0.000 0.816 to 1.625 3.390040 2.261944 5.080749

Innovation and
Competitiveness

Improvement
0.0606 0.117 0.519 0.604 −0.168 to 0.289 1.062446 0.845212 1.335513

Model Summary

Dependent Variable Productivity_Change_Binary Number of Observations 233

Method Maximum Likelihood Estimation
(MLE) Log-Likelihood −100.98

Pseudo-R-squared 0.2575 LLR p-value 6.222 × 10−16

Classification Metrics Value

Precision (Class 0) 0.83 Precision (Class 1) 0.65

Recall (Class 0) 0.90 Recall (Class 1) 0.49

F1-score (Class 0) 0.86 F1-score (Class 1) 0.56

Accuracy 0.79 Macro avg F1-score 0.71

Weighted avg F1-score 0.78 ROC AUC Score 0.835

Confusion Matrix Predicted Negative Predicted Positive

Actual Negative 153 17

Actual Positive 32 31
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We also included interaction terms and fit the second logistic regression model. The
interaction terms between AI Tools Usage and AI Integration Level and AI Tools Usage
and AI Tools Complexity were included to explore potential multiplicative effects. The
rationale was that the productivity impact of AI tools might not only depend on their usage
or complexity alone but also on how these tools are integrated within the organization.
High levels of integration can enhance the utility and effectiveness of AI tools, amplifying
their impact on productivity.

Table 5 presents the logistic regression results with interaction terms, including the
odds ratios for the significant predictors. The model showed a good fit with a pseudo-
R-squared value of 0.2687 and a log-likelihood of −99.453. Notably, the interaction term
between AI Tools Usage and AI Integration Level demonstrated a significant positive
association (β = 0.4319, p < 0.001), indicating that increased usage and higher integration
levels collectively enhance productivity.

Table 5. Logistic regression results for predicting productivity change (features selected with Lasso
first and Interaction Terms).

Feature Coefficient Std.
Error z-Value p-Value (95% Confidence

Interval)
Odds
Ratio

Lower
CI

Upper
CI

Age −0.4520 0.109 −4.161 0.000 −0.665 to −0.239 0.636346 0.514312 0.787336

Innovation and
Competitiveness

Improvement
0.0366 0.117 0.312 0.755 −0.193 to 0.266 1.037267 0.824525 1.304901

AI Tools Usage * AI
Integration Level 0.4319 0.081 5.358 0.000 0.274 to 0.590 1.540144 1.315084 1.803720

Model Summary

Dependent Variable Productivity_Change_Binary Number of Observations 233

Method Maximum Likelihood Estimation
(MLE) Log-Likelihood −99.453

Pseudo-R-squared 0.2687 LLR p-value 9.380 × 10−16

Classification Metrics Value

Precision (Class 0) 0.84 Precision (Class 1) 0.66

Recall (Class 0) 0.90 Recall (Class 1) 0.52

F1-score (Class 0) 0.87 F1-score (Class 1) 0.58

Accuracy 0.80 Macro avg F1-score 0.73

Weighted avg F1-score 0.79 ROC AUC Score 0.837

Confusion Matrix Predicted Negative Predicted Positive

Actual Negative 153 17

Actual Positive 30 33

Main findings

• Age: A negative coefficient (β = −0.4520, p < 0.001) suggests that older age groups are
associated with lower productivity changes.

• AI Tools Usage * AI Integration Level: This interaction term had a positive coeffi-
cient (β = 0.4319, p < 0.001), indicating that the combined effect of frequent AI tool
usage and high integration levels significantly increases the likelihood of productivity
improvement.

• AI Tools Usage * AI Tools Complexity: Although this interaction term was positive
(β = 0.0840), it was not statistically significant (p = 0.264).
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• The inclusion of interaction terms revealed important insights into how AI tools usage,
when combined with high integration levels, can substantially enhance productivity.
This underscores the importance of not only adopting AI tools but also ensuring
their comprehensive integration within organizational workflows. The model’s (with
interaction terms) overall accuracy was 80%, with a macro average F1-score of 0.73.
The ROC AUC score of 0.837 indicates a strong discriminative ability of the model.
However, the relatively lower recall for the positive class (0.52) suggests that further
refinement is needed to improve the model’s sensitivity.

• The model achieved an overall accuracy of 80%, with a ROC AUC score of 0.837,
indicating good discriminative ability.

The findings suggest that age and the interaction between AI Tools Usage and AI
Integration Level are significant predictors of notable productivity changes. Specifically,
younger employees and those working in environments where AI tools are heavily used
and well-integrated are more likely to experience significant productivity gains. These
insights highlight the importance of targeted training and integration strategies to maximize
the benefits of AI adoption.

Further, LassoCV and RidgeCV were employed to handle multicollinearity and select
the most relevant features. The selected features by Lasso included Age, Innovation and
Competitiveness Improvement, Communication and Collaboration Changes, AI Tools
Usage * AI Integration Level, AI Tools Usage * AI Tools Complexity, and AI Tools Usage
Squared. Ridge selected a more comprehensive set of features, including various demo-
graphic and organizational attributes. The final combined set of features from both Lasso
and Ridge included Age, Innovation and Competitiveness Improvement, AI Tools Usage *
AI Integration Level, AI Tools Usage * AI Tools Complexity, AI Tools Usage Squared, and
several additional features from the Ridge selection.

The logistic regression model with interaction terms and polynomial features for
the numerical variables, validated through 5-fold cross-validation, exhibits satisfactory
performance with a 0.7512 ± 0.0369 accuracy and a 0.7692 ± 0.0409 ROC AUC score. The
model is proficient in distinguishing between the two classes, though enhancements in
predicting notable productivity changes are needed.

The complexity and variety of the dataset variables justify the use of advanced ensem-
ble methods like Random Forest and XGBoost. Our dataset includes diverse features such
as ‘Age’, ‘Gender’, ‘Education’, ‘AI_Tools_Usage’, ‘AI_Integration_Level’, two interaction
terms, and two polynomial features. While logistic regression is useful for identifying key
predictors and understanding direct relationships, it has limitations in capturing complex
non-linear interactions and dependencies between variables.

The logistic regression analysis highlighted significant predictors like ‘Age’ and the
interaction between ‘AI Tools Usage’ and ‘AI Integration Level’, but its linear nature restricts
its ability to uncover more intricate patterns and relationships. While innovation remains a
theoretically important factor in productivity gains, the specific dynamics captured in this
study may be more closely tied to the direct influence of AI tools usage and integration.

To further improve predictive performance, we implemented Random Forests and
XGBoost models, evaluated through cross-validation. Random Forests and other tree-
based methods, like XGBoost, inherently capture interactions between features due to their
hierarchical nature. This means they can handle interactions without explicitly requiring the
interaction terms to be manually created. The interpretability techniques SHAP and LIME
were employed to gain deeper insights into model predictions, providing transparency and
understanding of feature contributions.

4.2. Random Forest and XGBoost

Random Forest and XGBoost are powerful ensemble learning methods that offer
several advantages for our analysis:

• Handling Non-Linearity and Interactions: Both models can naturally capture non-
linear relationships and interactions between variables without the need for ex-
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plicit feature engineering. This is important given the interaction terms and polyno-
mial features in our dataset, such as ‘AI_Tools_Usage * AI_Integration_Level’ and
‘AI_Tools_Usage_Squared’.

• Feature Importance: Random Forest and XGBoost provide insights into feature impor-
tance, helping to identify which variables and interactions have the most significant
impact on productivity changes. This aligns with our goal of understanding the key
factors driving productivity.

The Random Forest model was configured with 200 estimators and a random state of
42. The choice of 200 estimators strikes a balance between computational efficiency and
model performance, as increasing the number of trees typically enhances the model’s robust-
ness and generalization capabilities but also raises computational costs. The random state
ensures reproducibility of the results. The best parameters that resulted from hypertuning
were bootstrap = True, max_depth = None, min_samples_leaf = 2, min_samples_split = 2,
and n_estimators = 200. This configuration was evaluated using 5-fold Stratified Cross-
Validation (CV) to maintain class balance across folds, providing a reliable performance
estimate and minimizing the risk of overfitting by ensuring the model is tested on all
subsets of the data.

Similarly, the XGBoost model was configured with 100 estimators to maintain consis-
tency with the Random Forest model and to leverage the strength of ensemble methods in
boosting performance through multiple iterations. The use_label_encoder = False parame-
ter was set to bypass the default label encoder in XGBoost, facilitating a direct use of the
preprocessed labels and preventing potential encoding issues. The eval_metric = ‘logloss’
was chosen to align the evaluation with logistic regression settings, as log-loss provides
a robust metric for binary classification problems by penalizing false classifications pro-
portionally to their confidence. The best parameters resulted from hypertuning were
‘colsample_bytree’: 0.6, ‘gamma’: 0.1, ‘learning_rate’: 0.01, ‘max_depth’: 3, ‘n_estimators’:
100, and ‘subsample’: 0.6. This setup ensures that the model is optimized not just for
accuracy but also for the confidence of predictions, enhancing its overall reliability and
interpretability. The 5-fold Stratified Cross-Validation for the XGBoost model similarly
ensures class balance and provides a comprehensive evaluation of the model’s performance,
reducing the likelihood of overfitting and ensuring generalizability across different subsets
of the data.

The Random Forest classifier achieved a Cross-Validated ROC AUC of ROC AUC:
0.8114 ± 0.0627. This indicates that the model is relatively stable across different subsets of
the data, with the average ROC AUC indicating good discriminatory ability, though the
standard deviation suggests some variability.

The XGBoost classifier achieved a Cross-Validated ROC AUC of 0.8098 ± 0.0556. This
indicates that the model performs well across different subsets of the data, with the average
ROC AUC showing good discriminatory ability and a relatively low standard deviation
indicating consistent performance.

Both Random Forest and XGBoost classifiers show moderate to good performance
in predicting the binary productivity change outcome. The Random Forest model has a
slightly higher accuracy and cross-validated ROC AUC score compared to the XGBoost
model, indicating it might perform better on this dataset. However, both models exhibit
some variability in performance, as indicated by the standard deviations of the cross-
validated ROC AUC scores.

Both models effectively capture non-linear relationships and interactions between
features (Figures 1 and 2). The high importance of interaction terms and polynomial
features underscores this capability.
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effect of these factors is important), and AI_Tools_Usage (the standalone effect of how frequently
AI tools are used). Other Important Features: Polynomial terms like AI_Tools_Usage_Squared
show the non-linear effects of AI tools usage; Innovation_and_Competitiveness_Improvement and
Future_Preparedness indicate the importance of strategic factors in driving productivity changes. De-
mographic and categorical variables like Age, Years_with_Company, and Gender also play significant
roles, but to a lesser extent.

The consistent importance of features like AI_Integration_Level, AI_Tools_Usage, and
their interactions across both models highlights their critical roles in driving productiv-
ity changes. The importance of strategic factors (e.g., Innovation_and_Competitiveness
_Improvement, Future_Preparedness) indicates that organizations’ strategic approaches to
AI integration significantly impact productivity outcomes.

While not as critical as the top features, demographic variables like Age, Years_Using
_AI, and Years_with_Company still contribute to the model’s predictive power. This sug-
gests that personal and professional backgrounds also play a role in productivity changes.

4.3. Interpretation of LIME Values for Random Forest Model

In our analysis, we utilized LIME (Local Interpretable Model-agnostic Explanations)
to interpret the model’s predictions and gain insights into the contribution of each feature.
This technique offered detailed explanations for individual predictions, enhancing our
understanding of how different factors influenced the outcomes of our machine learn-
ing models.

Based on the aggregated LIME values, the features that have the most significant
impact on the Random Forest model’s predictions are presented in Figure 3, and the
features for the XGBoost model are presented in Figure 4.

For the Random Forest model, the most influential features include the interaction
between AI tools usage and AI integration level, AI integration level, and the squared
term of AI tools usage. This indicates that both the extent of AI integration and the
intensity of AI tools usage, especially when combined, play important roles in predicting
productivity changes. Similarly, for the XGBoost model, the key features identified are the
same interaction term, innovation and competitiveness improvement, and human resources
industry, among others. This consistency across models underscores the importance of
how extensively and intensively AI tools are used within the organization, as well as the
perceived improvements in innovation and competitiveness. These insights suggest that
organizations should focus on the comprehensive integration of AI tools and monitor their
usage to maximize productivity benefits.

LIME’s detailed feature importance with specific thresholds (e.g., “AI_Integration
_Level > 0.74”) provides a more nuanced understanding of feature impacts compared to
the aggregate nature of model-derived importance.

4.4. Bayesian Network Modeling

Logistic regression identified key predictors like ‘Age’ and the interaction between ‘AI
Tools Usage’ and ‘AI Integration Level’, but its linear nature limits its ability to capture more
complex relationships. Random Forest and XGBoost models, while effective, highlighted
the importance of non-linear interactions and feature importance, but their interpretability
can be limited. The Bayesian Network approach addresses these limitations by explicitly
modeling the probabilistic dependencies among all variables. It allows us to understand
not just the direct effects of variables like ‘Age’ and ‘AI Tools Usage’, but also their indirect
effects and interactions with other factors.

The next analysis involved the Bayesian model to understand predictors of produc-
tivity change. A Bayesian Network was constructed using the HillClimbSearch algorithm
with the Bayesian Information Criterion (BIC) as the scoring metric. This approach itera-
tively explores possible network structures to maximize data fit while balancing model
complexity and goodness-of-fit by penalizing overly complex models. Parameters were
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estimated through Maximum Likelihood Estimation (MLE), ensuring that the conditional
probability distributions (CPDs) accurately reflect the observed relationships. Inference was
performed using Variable Elimination, which enables exact probabilistic reasoning within
the network. This method effectively handles the complex dependencies among ordinal
variables, binary encodings, and interaction terms in the dataset. To evaluate the model’s
performance, a 5-fold cross-validation approach was employed, mitigating overfitting risk
and providing reliable metrics.

The learned structure of the Bayesian Network revealed significant relationships
between variables. Notably, ‘AI_Tools_Usage’ demonstrated a direct influence on P (Pro-
ductivity_Change_Binary|AI_Tools_usage). Additionally, interactions were observed be-
tween ‘Innovation_and_Competitiveness_Improvement’ and ‘Job_Opportunities_Creation’
P(Opportunities_Creation|Innovation_and_Competitiveness_Improvement), highlighting
the complex interdependencies in the data.
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Notably, the interaction between AI tools usage and AI integration level emerged as a
critical predictor, indicating that the combined effect of these two factors significantly influ-
ences productivity outcomes. This finding is supported by the high conditional probabilities
and the frequent appearance of AI-related features in the learned structure. Additionally,
features such as ethical policy implementation and future preparedness were closely linked,
suggesting that organizations with well-developed ethical considerations are better pre-
pared for future challenges and are likely to experience positive productivity changes.

Demographic and categorical variables also played a significant role in shaping pro-
ductivity outcomes. For example, the analysis showed that the residence of employees
(such as those in Romania, Greece, and Canada) and industry sectors (like IT, telecom-
munications, and environmental conservation) influenced productivity changes. This
highlights the importance of geographical and sectoral contexts in the implementation of
AI tools. The network structure also pointed to the interconnectedness of various industry
sectors, with the IT industry frequently linked to other sectors like public service and
health service, emphasizing the widespread impact of IT on different areas. Overall, the
Bayesian network provided a comprehensive view of how different factors interact and
contribute to productivity changes, emphasizing the multifaceted nature of AI integration
in the workplace.
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To evaluate the predictive capability of the network, it was queried to determine the
probability of productivity change given specific evidence. Based on the feature importance
and LIME values from the XGBoost and Random Forest models, several queries were
constructed to explore different scenarios (Table 6).

Table 6. Analysis of probabilities and interpretations of productivity change based on various factors.

Query Evidence Productivity_Change
_Binary_0

Productivity_Change
_Binary_1 Interpretation

1
{‘AI_Tools_Usage’: 3,

‘Innovation_and_Competitiveness
_Improvement’: 4}

0.392 0.608

Higher probability of
productivity change with

moderate AI tools usage and
high innovation improvement.

2
{‘Ethical_Policies_Implementation’:

2, ‘AI_Integration
_Level’: 2.289}

0.493 0.507

Slightly higher probability of
productivity change with full
ethical policy implementation
and high AI integration level.

3 {‘Education’: 4, ‘Job_Opportunities
_Creation’: 3} 0.721 0.279

Lower probability of
productivity change with high
education level and neutral job

opportunity creation.

4

{‘Company_Culture_Engagement’:
3, ‘Communica-

tion_and_Collaboration
_Changes’: 2}

0.594 0.406

Moderate probability of
productivity change with

significant culture engagement
and some collaboration changes.

5 {‘AI_Training_Provided’: 2} 0.718 0.282

Lower probability of
productivity change with

comprehensive AI
training provided.

6
{‘AI_Integration_Level’: 2.289,

‘Innovation_and_Competitiveness
_Improvement’: 5}

0.269 0.731

High probability of productivity
change with high AI integration

level and maximum
innovation improvement.

7 {‘AI_Tools_Usage’: 4, ‘Ethical
_Considerations’: 4} 0.280 0.720

High probability of productivity
change with extensive AI tools

usage and ethical considerations.

8
{‘Job_Opportunities_Creation’: 5,

‘Company_Culture
_Engagement’: 3}

0.491 0.509

Slightly higher probability of
productivity change with
maximum job opportunity

creation and significant
culture engagement.

9
{‘AI_Integration_Level’: −1.197,

‘Innovation_and_Competitiveness
_Improvement’: 1}

0.966 0.034

Very low probability of
productivity change with

minimal AI integration and low
innovation improvement.

10 {‘AI_Tools_Usage’: 3, ‘Future
_Preparedness’: 5} 0.475 0.525

Moderate probability of
productivity change with

moderate AI tools usage and
high future preparedness.

Queries involving high levels of AI tools usage and AI integration show a notable
likelihood of positive productivity change. For instance, when AI tools usage is high and
ethical considerations are extensively addressed (Query 7), there is a significant 72.0%
probability of productivity change. Similarly, a high AI integration level coupled with
maximum innovation and competitiveness improvement (Query 6) yields a 73.1% proba-
bility of productivity change. These findings underscore the importance of comprehensive
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AI adoption and strong ethical frameworks in driving productivity enhancements within
organizations. Additionally, the interaction between AI integration and innovation appears
important, as seen in the moderate probabilities of productivity change even with substan-
tial AI tools usage and future preparedness (Query 10), emphasizing the need for balanced
and well-integrated AI strategies.

Conversely, scenarios with minimal AI integration and low innovation improvement
exhibit low probabilities of productivity change. Query 9, for instance, demonstrates a
starkly low 3.4% probability of productivity change when AI integration is minimal and
innovation improvement is low. This highlights the potential stagnation in productivity
when AI tools and innovative practices are underutilized. Moreover, the findings suggest
that even with high education levels and moderate job opportunity creation (Query 3),
the probability of productivity change remains relatively low at 27.9%, indicating that
factors like AI integration and ethical considerations may play more important roles in
driving productivity. Overall, the results advocate for robust AI integration, ethical policy
implementation, and continuous innovation as critical levers for enhancing productivity in
modern workplaces.

The Bayesian Network model effectively captures the intricate relationships between
variables, providing a robust framework for predicting productivity outcomes. These
insights can guide organizations in optimizing their AI adoption strategies by focusing on
key factors such as AI tools usage, innovation, ethical policies, education, company culture,
and AI training.

In order to validate the robustness and generalizability of the Bayesian Network
model constructed to predict productivity changes based on various organizational and
individual factors, a k-fold cross-validation approach was employed. A 5-fold cross-
validation (k = 5) was implemented using the KFold method from scikit-learn, ensuring
that the dataset was split into 5 equal parts with shuffling enabled (random_state = 1).
For each fold, the training subset was used to learn the structure and parameters of the
Bayesian Network using the HillClimbSearch algorithm and BicScore for scoring. The
MaximumLikelihoodEstimator was employed for parameter learning, and inference was
performed using the VariableElimination method. State names for each variable were
obtained, and evidence values were mapped to valid states within the range for each
variable to ensure accurate inference. The cross-validation ROC results across the 5 folds
were averaged to provide a comprehensive evaluation of the model’s performance. The
ROC AUC score of 0.7970 ± 0.0832 and the accuracy of 0.7817 ± 0.0694 demonstrate a strong
ability of the model to discriminate between significant and non-significant productivity
changes, highlighting the model’s overall discriminative power.

These results validate the Bayesian Network model as a robust predictive tool for
assessing productivity changes based on the provided evidence. The high recall and
ROC AUC scores are particularly noteworthy, suggesting the model’s potential utility in
applications where identifying significant productivity changes is critical.

4.5. ROC Curve Comparison for Predictive Models

To evaluate the performance of the machine learning models used in this study, we
generated ROC curves for Logistic Regression, Random Forest, XGBoost, and Bayesian
Network (Figure 5). ROC curves provide a visual representation of the models’ ability to
discriminate between productivity changes and non-changes by plotting the True Positive
Rate (Sensitivity) against the False Positive Rate (1—Specificity) across various threshold
values. The Area Under the Curve (AUC) serves as a summary metric of the model’s
performance.
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As illustrated in Figure 5, the Random Forest model outperformed the others with
an AUC of 0.94, indicating excellent performance in distinguishing between significant
and non-significant productivity changes. XGBoost followed closely behind with an AUC
of 0.92, confirming its ability to model complex relationships in the data. The Bayesian
Network model achieved an AUC of 0.86, which reflects strong performance but is lower
than the tree-based models. Logistic Regression, while effective, had the lowest AUC at
0.84, consistent with its more linear assumptions about the relationships between features
and productivity changes.

The close proximity of the ROC curves for Random Forest and XGBoost models
emphasizes the strength of ensemble methods in capturing non-linear interactions and
complex feature dependencies in the dataset. Notably, the Bayesian Network model
also exhibited a good ability to predict productivity changes, highlighting its strength
in modeling probabilistic dependencies between variables. Logistic Regression, though
slightly outperformed, still showed an adequate level of discrimination, particularly given
its simplicity compared to the other methods.

The comparative analysis suggests that Random Forest and XGBoost, with their higher
AUCs, are better suited for predicting significant productivity changes in this context,
especially when complex interactions between AI tools usage and organizational factors
are present.

5. Discussion

The findings of this study provide important insights into the economic impacts of AI
on productivity across various organizational contexts. Several key observations emerge
from the analysis, highlighting the significance of AI integration and its interplay with
other organizational factors in driving productivity changes.

5.1. Key Findings and Their Implications

The most critical finding is that the interaction between AI tools usage and AI in-
tegration level significantly enhances productivity. The logistic regression model with
interaction terms demonstrated that high levels of AI tools usage, combined with thorough
integration within organizational workflows, result in substantial productivity improve-
ments. This underscores the importance of not only adopting AI tools but also ensuring
their comprehensive integration within organizational systems. The positive coefficient
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(β = 0.4319) for this interaction term signifies that increased usage and higher integration
levels collectively enhance productivity.

Additionally, the age of employees emerged as a significant predictor of productivity
changes, with older age groups associated with lower productivity improvements. This
suggests that younger employees might be more adaptable to AI tools or that there might be
generational differences in how AI technologies are utilized and embraced in the workplace.
These insights highlight the need for targeted training programs that cater to different age
groups to maximize AI’s benefits.

5.2. Comparison with Previous Studies

While this study contributes valuable insights into the impact of AI tools on employee
productivity, it is important to situate the findings within the broader context of existing
research. A significant body of literature has examined the ways AI technologies influence
productivity across various industries and sectors. Authors such as Brynjolfsson and
McAfee (2014) [12] have extensively studied the “productivity paradox” in AI adoption,
where rapid advancements in technology have not immediately translated into observable
productivity gains in many sectors. In contrast, more recent studies, such as those by
Czarnitzki et al. (2023) [5], found evidence of AI-driven productivity growth at the firm
level, particularly in technology-intensive industries.

The results align with the theoretical perspectives proposed by [2,3], which suggest
that AI can enhance productivity by improving decision-making and operational efficien-
cies. The shift from mid-skill to high-skill and managerial positions reported by [13] also
supports our findings that AI integration fosters higher productivity, particularly in more
complex and strategic roles.

However, our study presents a more nuanced view compared to the mixed empirical
results reported in the previous literature. For instance, while [19] found significant
increases in patents and trademarks associated with AI but no increase in sales per worker,
our findings highlight the critical role of AI integration in realizing productivity gains. This
suggests that the benefits of AI may not solely depend on innovation outputs but also on
how well AI tools are embedded within organizational processes.

Unlike some studies that suggest AI’s productivity gains are mainly concentrated in
specific high-tech industries (Calvino and Fontanelli, 2023) [9], our research reveals that AI’s
positive impact extends across a diverse range of sectors. This suggests that AI’s influence
on productivity is not limited to technology-heavy fields but can be observed in traditional
industries as well, provided that AI tools are well-integrated into daily operations.

The “productivity paradox” has been a central theme in AI research, where advance-
ments in AI technology often do not translate into immediate productivity improvements at
the macroeconomic level. Studies by Parteka and Kordalska (2023) [21] have discussed this
phenomenon in depth, pointing to the slow diffusion of AI technologies across industries
and the time lag before benefits materialize. Our study addresses this by focusing on firm-
level data and examining productivity changes that occur once AI tools are fully integrated
into workflows. The interaction terms between AI tools usage and AI integration in our
models demonstrate that productivity gains are realized when there is comprehensive,
rather than superficial, AI adoption.

This study applies Bayesian Network Analysis to explore probabilistic dependen-
cies and predict AI’s impact on employee productivity, highlighting the value of robust
forecasting in AI-driven environments. This aligns with other authors’ approaches [30].

While there is substantial literature on AI and productivity, this study makes original
contributions by using advanced analytical techniques such as Bayesian Network Analysis
and machine learning models, including Random Forest and XGBoost, to explore complex
interdependencies. Unlike many studies that rely solely on traditional econometric meth-
ods, our approach captures non-linear relationships between variables, revealing that the
interaction between AI tools usage and organizational AI integration levels is a critical
driver of productivity.
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Additionally, our study highlights generational differences in AI adaptability—an
area that remains underexplored in the current literature. As our analysis shows, younger
employees experience greater productivity gains from AI tools compared to their older
counterparts. This suggests that future research should examine not only the technical
aspects of AI adoption but also the demographic factors that influence how AI impacts
productivity across various employee groups.

5.3. Strengths and Limitations

One of the strengths of this study is the comprehensive dataset obtained from a
diverse sample of employees across various industries. The use of advanced modeling
techniques, such as logistic regression with interaction terms, Random Forest, and XGBoost,
provides robust insights into the factors driving productivity changes. The inclusion of
interpretability techniques like SHAP and LIME further enhances the transparency and
understanding of model predictions.

However, the study also has limitations. The reliance on self-reported data from the
questionnaire may introduce biases related to respondents’ perceptions and experiences.
Despite efforts to ensure a representative sample, there may be inherent biases in the
data that could affect the generalizability of the findings. Additionally, the cross-sectional
nature of the data limits the ability to infer causal relationships between AI usage and
productivity changes. While the sample size of 233 responses provides a solid basis for
statistical analysis, it may not fully represent the broader workforce. Certain industries or
employee groups might be underrepresented, limiting the ability to generalize the findings
to other sectors or populations. Additionally, the global diversity of respondents introduces
potential regional variations in AI adoption and impact, which may not be fully accounted
for in this analysis. Finally, the study does not delve deeply into the potential ethical
concerns or organizational challenges associated with AI integration, such as data privacy,
transparency, or employee resistance. These factors could significantly affect the success of
AI implementation and its overall productivity outcomes, highlighting a need for future
research to address these complexities.

5.4. Unexpected Outcomes and Inconclusive Results

Some unexpected outcomes include the relatively low probability of productivity
change even with high education levels and moderate job opportunity creation. This
suggests that factors like AI integration and ethical considerations may play more important
roles in driving productivity than initially anticipated. Furthermore, the relatively lower
recall for the positive class (0.52) in the logistic regression model indicates that there may
be other unobserved factors influencing productivity changes that were not captured in the
study.

The Bayesian Network analysis provided additional insights by capturing the intricate
relationships between variables and offering a robust framework for predicting productivity
outcomes. Queries involving high levels of AI tools usage and integration consistently
showed high probabilities of productivity change, emphasizing the importance of a well-
rounded AI strategy.

6. Conclusions

The study successfully addresses and provides evidence for the hypotheses through
comprehensive data analysis and advanced modeling techniques. Below is a breakdown of
how each hypothesis was supported:

Hypothesis 1. High levels of AI tool usage and comprehensive integration within organizational
workflows significantly enhance productivity.

Evidence
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1. Logistic Regression Analysis: The logistic regression model with interaction terms
identified significant predictors of productivity change, including the interaction
between AI tool usage and AI integration level. The positive coefficient for this
interaction term (β = 0.4319, p < 0.001) demonstrates that frequent AI tool usage
combined with high integration levels significantly increases productivity.

2. Random Forest and XGBoost Models: These models captured non-linear relationships
and interactions between features, consistently highlighting the importance of AI
integration level and AI tools usage as top predictors of productivity change.

3. LIME Interpretation: The Local Interpretable Model-agnostic Explanations (LIME)
provided detailed insights, confirming that the interaction between AI tools usage
and integration level plays an important role in enhancing productivity.

Hypothesis 2. The impact of AI on employment is complex, with positive productivity effects at
the firm level not necessarily translating into negative employment effects at the aggregate level.

Evidence

1. Descriptive and Inferential Statistics: The study presented mixed results on AI’s
impact on employment, reflecting its complexity. While some firms experienced
productivity gains, these did not uniformly translate into job losses.

2. Empirical Studies: The literature review cited studies indicating that AI-using firms
often experience positive productivity effects without significant negative impacts on
overall employment [5]. This supports the hypothesis that AI can complement human
labor, leading to job augmentation rather than straightforward job displacement.

Hypothesis 3. The benefits of AI integration are moderated by factors such as AI complexity, areas
of AI utilization, and employee characteristics.

Evidence

1. Logistic Regression with Interaction Terms: The analysis included interaction terms
between AI tools usage, AI integration level, and AI tools complexity. The results
showed that these interactions significantly impact productivity outcomes, with the
interaction between AI tools usage and integration level being particularly influential.

2. Bayesian Network Analysis: This analysis revealed significant relationships between
various factors, including AI tools usage, innovation, competitiveness improvement,
and demographic variables such as age. The Bayesian network highlighted how these
factors interact and collectively influence productivity changes.

3. Feature Importance Analysis: Techniques like SHAP and LIME were used to interpret
the models, identifying key factors that moderated the benefits of AI integration, such
as the complexity of AI tools and the context in which they are used.

This study confirms the hypothesis that AI holds significant promise for enhancing
economic growth and productivity, with its outcomes influenced by factors such as industry
context, regulatory frameworks, and human labor complementarity. Key findings indicate
that high levels of AI tools usage and comprehensive integration within organizational
workflows significantly enhance productivity. Younger employees tend to experience
greater productivity gains from AI tools compared to older age groups, highlighting
generational differences in adaptability. Additionally, organizations with robust ethical
policies and innovative practices are better positioned to realize AI’s productivity benefits.

6.1. Major Findings and Contributions

The study’s major findings include:

1. Enhanced Productivity: The interaction between AI tools usage and integration levels
significantly boosts productivity.
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2. Generational Impact: Younger employees adapt more effectively to AI tools, resulting
in higher productivity gains.

3. Ethical Frameworks: Ethical policy implementation and continuous innovation are
critical for maximizing AI’s benefits.

These findings contribute to existing knowledge by aligning with theoretical perspec-
tives on AI’s potential to improve decision-making and operational efficiencies. The study
provides empirical evidence supporting the critical role of AI integration in productivity
gains. It also addresses measurement challenges and emphasizes the need for refined frame-
works to capture AI’s intangible benefits and align AI adoption with human capabilities.

6.1.1. Theoretical Significance

This research provides a critical contribution to the theoretical understanding of AI’s
role in modern economies. By combining traditional economic theories of productivity with
advanced machine learning techniques, such as Random Forest, XGBoost, and Bayesian
Network Analysis, this study extends existing frameworks to account for the complex
and dynamic interactions between AI adoption and productivity. The findings also sup-
port theoretical perspectives that suggest AI, when well-integrated, complements human
labor, fostering greater innovation and decision-making capabilities. Furthermore, the
study highlights the moderating effects of demographic and organizational factors on AI’s
productivity gains, adding depth to existing labor theories in the AI context.

6.1.2. Practical Significance

On a practical level, this research offers actionable insights for business leaders and
policymakers. By demonstrating the critical importance of comprehensive AI integration
and tailored employee training programs, the findings provide a roadmap for organiza-
tions seeking to maximize the benefits of AI adoption. The generational differences in
adaptability to AI tools underscore the need for targeted strategies to ensure all employee
groups benefit from AI technologies. Additionally, the emphasis on ethical AI frameworks
and continuous innovation points to the broader organizational changes necessary for sus-
tained productivity gains. Policymakers can draw from these insights to support AI-driven
economic growth while addressing potential societal challenges, such as employment shifts
and income inequality.

However, the study has certain limitations. The reliance on self-reported questionnaire
data may introduce biases related to respondents’ perceptions and experiences. Addition-
ally, the cross-sectional design limits the ability to infer causal relationships between AI
usage and productivity changes.

Future research should focus on conducting longitudinal studies that track the long-
term effects of AI adoption on productivity and employee engagement. Longitudinal data
would help establish causal relationships and provide insights into the sustainability of
AI-driven productivity gains over time. Additionally, exploring the role of organizational
culture, leadership practices, and employee morale in shaping AI adoption outcomes
would offer a more holistic understanding of AI’s influence in the workplace. Further
studies could also investigate how AI impacts different sectors and industries to develop
industry-specific strategies for AI implementation. Addressing the ethical implications
of AI adoption, including issues such as bias, transparency, and accountability, would
further enrich the discourse and guide policymakers in regulating AI to ensure fair and
responsible usage.

As AI technologies continue to evolve, their integration into more complex and strate-
gic roles could further amplify productivity gains and reshape labor markets. Future
regulatory frameworks may need to adapt to ensure ethical AI usage and mitigate potential
adverse effects on employment and income distribution.

This study confirms the hypothesis that AI significantly enhances productivity, par-
ticularly when AI tools are extensively used and well-integrated within organizational
workflows. The findings emphasize the importance of strategic AI integration, targeted
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training programs for different age groups, and robust ethical frameworks to maximize
AI’s economic potential. Future research should address the identified limitations and
explore broader contextual factors to provide a more comprehensive understanding of AI’s
impacts on productivity and economic growth. These conclusions are directly linked to the
original research question and supported by the study’s results.
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