YOLOv8s-DDA: An Improved Small Traffic Sign Detection Algorithm Based on YOLOv8s
Abstract
:1. Introduction
- In order to solve the multi-scale issues and lower the number of parameters, distributed objects, and complicated scenes in traffic sign detection, the C2f-DWR-DRB structure is presented.
- The ASF-YOLO neck network’s implementation greatly improves the ability to detect small objects in traffic signs.
- The algorithm’s detection capacity is further enhanced using the Wise-IoU loss function.
2. Related Works
2.1. Feature Extraction
2.2. Feature Fusion
3. Methods
3.1. C2f-DWR-DRB
3.2. Improved Neck
3.3. Wise-IoU
4. Experiments
4.1. Dataset Description
4.2. Implementation Details
4.3. Evaluation Metrics
4.4. Comparison Experiments of Wise-IoU
4.5. Ablation Experiment
4.6. Comparison of Different Detectors
4.7. Generalization Experiment
5. Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lillo-Castellano, J.M.; Mora-Jiménez, I.; Figuera-Pozuelo, C.; Rojo-Álvarez, J.L. Traffic Sign Segmentation and Classification Using Statistical Learning Methods. Neurocomputing 2015, 153, 286–299. [Google Scholar] [CrossRef]
- Ruta, A.; Li, Y.; Liu, X. Real-Time Traffic Sign Recognition from Video by Class-Specific Discriminative Features. Pattern Recognit. 2010, 43, 416–430. [Google Scholar] [CrossRef]
- Vitabile, S.; Pollaccia, G.; Pilato, G.; Sorbello, F. Road Signs Recognition Using a Dynamic Pixel Aggregation Technique in the HSV Color Space. In Proceedings of the Proceedings 11th International Conference on Image Analysis and Processing, Palermo, Italy, 26–28 September 2001; pp. 572–577. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Takaki, M.; Fujiyoshi, H. Traffic Sign Recognition Using SIFT Features. IEEJ Trans. Electron. Inf. Syst. 2009, 129, 824–831. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision–ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016, arXiv:1506.02640. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; NanoCode012; TaoXie; Kwon, Y.; Michael, K.; Changyu, L.; Fang, J.; et al. Ultralytics/Yolov5: V6.0-YOLOv5n “Nano” Models, Roboflow Integration, TensorFlow Export, OpenCV DNN Support; Version 6.0; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: High Quality Object Detection and Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1483–1498. [Google Scholar] [CrossRef]
- Cao, J.; Cholakkal, H.; Anwer, R.M.; Khan, F.S.; Pang, Y.; Shao, L. D2Det: Towards High Quality Object Detection and Instance Segmentation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11485–11494. [Google Scholar]
- Soylu, E.; Soylu, T. A Performance Comparison of YOLOv8 Models for Traffic Sign Detection in the Robotaxi-Full Scale Autonomous Vehicle Competition. Multimed. Tools Appl. 2024, 83, 25005–25035. [Google Scholar] [CrossRef]
- Zhu, Z.; Liang, D.; Zhang, S.; Huang, X.; Li, B.; Hu, S. Traffic-Sign Detection and Classification in the Wild. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2110–2118. [Google Scholar]
- Gupta, R.; Kumar, P.; Sobti, P.; Kumar, B.; Shivam, Y.; Shukla, P. Efficient Real-Time Sign Detection for Autonomous Vehical in Hazy Environment Using Deep Learning Models. In Advanced Network Technologies and Intelligent Computing; Verma, A., Verma, P., Pattanaik, K.K., Dhurandher, S.K., Woungang, I., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 239–257. [Google Scholar]
- Du, S.; Pan, W.; Li, N.; Dai, S.; Xu, B.; Liu, H.; Xu, C.; Li, X. TSD-YOLO: Small Traffic Sign Detection Based on Improved YOLO V8. IET Image Process. 2024, 18, 2884–2898. [Google Scholar] [CrossRef]
- Xie, G.; Xu, Z.; Lin, Z.; Liao, X.; Zhou, T. GRFS-YOLOv8: An Efficient Traffic Sign Detection Algorithm Based on Multiscale Features and Enhanced Path Aggregation. Signal Image Video Process. 2024, 18, 5519–5534. [Google Scholar] [CrossRef]
- Han, Y.; Wang, F.; Wang, W.; Li, X.; Zhang, J. YOLO-SG: Small Traffic Signs Detection Method in Complex Scene. J. Supercomput. 2024, 80, 2025–2046. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Chen, M. SC-YOLO: A Object Detection Model for Small Traffic Signs. IEEE Access 2023, 11, 11500–11510. [Google Scholar] [CrossRef]
- Chen, Q.; Dai, Z.; Xu, Y.; Gao, Y. CTM-YOLOv8n: A Lightweight Pedestrian Traffic-Sign Detection and Recognition Model with Advanced Optimization. World Electr. Veh. J. 2024, 15, 285. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, K.; Chen, Y.; Cui, Y. A Lightweight Context Aware Traffic Sign Detection Algorithm Based on YOLOV8-n. In Proceedings of the 2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT), Jilin, China, 26–28 April 2024; pp. 1578–1583. [Google Scholar]
- Cui, Y.; Guo, D.; Yuan, H.; Gu, H.; Tang, H. Enhanced YOLO Network for Improving the Efficiency of Traffic Sign Detection. Appl. Sci. 2024, 14, 555. [Google Scholar] [CrossRef]
- Yan, B.; Li, J.; Yang, Z.; Zhang, X.; Hao, X. AIE-YOLO: Auxiliary Information Enhanced YOLO for Small Object Detection. Sensors 2022, 22, 8221. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Gu, Y.; Yan, Y.; Li, Q.; Gao, M.; Dong, Z. A Lightweight Vehicle Mounted Multi-Scale Traffic Sign Detector Using Attention Fusion Pyramid. J. Supercomput. 2024, 80, 3360–3381. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Ge, Y.; Zhao, S.; Song, L.; Yue, X.; Shan, Y. UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition. arXiv 2024, arXiv:2311.15599. [Google Scholar]
- Kang, M.; Ting, C.-M.; Ting, F.F.; Phan, R.C.-W. ASF-YOLO: A Novel YOLO Model with Attentional Scale Sequence Fusion for Cell Instance Segmentation. Image Vis. Comput. 2024, 147, 105057. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Zhang, Y.-F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and Efficient IOU Loss for Accurate Bounding Box Regression. Neurocomputing 2022, 506, 146–157. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S. Focaler-IoU: More Focused Intersection over Union Loss. arXiv 2024, arXiv:2401.10525. [Google Scholar]
- Zhaosheng, Y.; Tao, L.; Tianle, Y.; Chengxin, J.; Chengming, S. Rapid Detection of Wheat Ears in Orthophotos from Unmanned Aerial Vehicles in Fields Based on YOLOX. Front. Plant Sci. 2022, 13, 851245. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Li, J. EIoU: An Improved Vehicle Detection Algorithm Based on VehicleNet Neural Network. J. Phys. Conf. Ser. 2021, 1924, 012001. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 27 February–4 March 2020; Volume 34, pp. 12993–13000. [Google Scholar] [CrossRef]
- Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740. [Google Scholar]
- Kang, S.-H.; Park, J.-S. Aligned Matching: Improving Small Object Detection in SSD. Sensors 2023, 23, 2589. [Google Scholar] [CrossRef]
- Sun, Z.; Cao, S.; Yang, Y.; Kitani, K.M. Rethinking Transformer-Based Set Prediction for Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3611–3620. [Google Scholar]
- Sun, P.; Zhang, R.; Jiang, Y.; Kong, T.; Xu, C.; Zhan, W.; Tomizuka, M.; Li, L.; Yuan, Z.; Wang, C.; et al. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: New York, NY, USA, 2021; pp. 14454–14463. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable Transformers for End-to-End Object Detection. arXiv 2021, arXiv:2010.04159. [Google Scholar]
- Zhang, J.; Zou, X.; Kuang, L.-D.; Wang, J.; Sherratt, R.S.; Yu, X. CCTSDB 2021: A More Comprehensive Traffic Sign Detection Benchmark. Hum.-Centric Comput. Inf. Sci. 2022, 12, 1–18. [Google Scholar]
Method | Name |
---|---|
Operating system | Windows 11 |
CPU | 12th Gen Intel(R) CoreTM i5-12400F (Intel Corporation, Chengdu, China) |
GPU | NVIDIA RTX 4060 8G (NVIDIA Corporation, Santa Clara, CA, USA) |
Memory | 16 G |
Deep Learning Framework | PyTorch (2.2.2) |
Compilers | Python (3.8) |
CUDA version | 12.2 |
IoU | [email protected] | [email protected]:0.95 | P | R |
---|---|---|---|---|
Original IoU (CIoU) | 86.1 | 67.7 | 87.7 | 75.6 |
Wise-IoUv1 | 85.3 | 65.9 | 85.4 | 75.1 |
Wise-IoUv2 | 85.9 | 66.2 | 87.5 | 76.8 |
Wise-IoUv3 | 87.2 | 68.3 | 85.2 | 80.0 |
Wise-EIoUv3 | 86.7 | 66.9 | 86.7 | 78.1 |
Wise-GIoUv3 | 86.1 | 66.2 | 85.1 | 78.1 |
Wise-DIoUv3 | 87 | 66.9 | 85.9 | 78.2 |
Wise-CIoUv3 | 86.4 | 66.2 | 86.3 | 76.7 |
Wise-SIoUv3 | 86.6 | 66.9 | 85 | 77.9 |
Method | [email protected] | [email protected]:0.95 | P | R | Parm |
---|---|---|---|---|---|
YOLOv8s | 83.2 | 64.3 | 83.3 | 73.6 | 11.1M |
YOLOv8s + C2f-DWR-DRB | 84.6 | 65.0 | 82.6 | 76.5 | 10.4M |
YOLOv8s + ASF | 85.8 | 67.6 | 84.8 | 78.5 | 11.3M |
YOLOv8 + C2f-DWR-DRB + ASF | 86.1 | 67.7 | 87.7 | 75.6 | 10.5M |
YOLOv8s-DDA | 87.2 | 68.3 | 85.2 | 80.0 | 10.5M |
Method | [email protected] |
---|---|
SSD [6] | 76.3 |
SSD + AlignedMatching [43] | 84.7 |
Faster R-CNN [17] | 69.5 |
TSP-RCNN [44] | 81.2 |
Sparse R-CNN [45] | 82.0 |
Deformable DETR [46] | 77.1 |
AIE-YOLO [31] | 84.8 |
YOLO_SG [26] | 75.8 |
YOLOv3 | 81.1 |
YOLOv5s | 82.4 |
YOLOv6 | 74.2 |
YOLOv8n | 71.3 |
YOLOv8s-DDA | 87.2 |
Method | [email protected] | [email protected]:0.95 | P | R |
---|---|---|---|---|
YOLOv8s | 82.8 | 50.0 | 88.0 | 75.4 |
YOLOv8s-DDA | 85.7 | 56.1 | 89.7 | 78.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, M.; Chen, Y.; Li, J.; Qiu, X.; Cai, W. YOLOv8s-DDA: An Improved Small Traffic Sign Detection Algorithm Based on YOLOv8s. Electronics 2024, 13, 3764. https://doi.org/10.3390/electronics13183764
Niu M, Chen Y, Li J, Qiu X, Cai W. YOLOv8s-DDA: An Improved Small Traffic Sign Detection Algorithm Based on YOLOv8s. Electronics. 2024; 13(18):3764. https://doi.org/10.3390/electronics13183764
Chicago/Turabian StyleNiu, Meiqi, Yajun Chen, Jianying Li, Xiaoyang Qiu, and Wenhao Cai. 2024. "YOLOv8s-DDA: An Improved Small Traffic Sign Detection Algorithm Based on YOLOv8s" Electronics 13, no. 18: 3764. https://doi.org/10.3390/electronics13183764
APA StyleNiu, M., Chen, Y., Li, J., Qiu, X., & Cai, W. (2024). YOLOv8s-DDA: An Improved Small Traffic Sign Detection Algorithm Based on YOLOv8s. Electronics, 13(18), 3764. https://doi.org/10.3390/electronics13183764