
Citation: Zhang, Y.; Li, F.; Xu, H.; Li,

X.; Jiang, S. Efficient Convolutional

Neural Networks Utilizing Fine-

Grained Fast Fourier Transforms.

Electronics 2024, 13, 3765. https://

doi.org/10.3390/electronics13183765

Academic Editor: Maciej Ławryńczuk

Received: 6 August 2024

Revised: 9 September 2024

Accepted: 19 September 2024

Published: 22 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Efficient Convolutional Neural Networks Utilizing Fine-Grained
Fast Fourier Transforms †

Yulin Zhang 1,2, Feipeng Li 1,2, Haoke Xu 3, Xiaoming Li 3 and Shan Jiang 1,2,*

1 Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance, Ministry of Education,
Minzu University of China, Beijing 100081, China; yzhang@muc.edu.cn (Y.Z.)

2 School of Information Engneering, Minzu University of China, Beijing 100081, China
3 Electrical & Computer Engineering, University of Delaware, Newark, DE 19716, USA
* Correspondence: jshan@muc.edu.cn
† This paper is an extended version of our paper published in Zhang, Y.; Li, X. Fast Convolutional Neural

Networks with Fine-Grained FFTs. In Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques (PACT ’20), Virtual Event, GA, USA, 3–7 October 2020;
pp. 255–265.

Abstract: Convolutional Neural Networks (CNNs) are among the most prevalent deep learning
techniques employed across various domains. The computational complexity of CNNs is largely
attributed to the convolution operations. These operations are computationally demanding and signif-
icantly impact overall model performance. Traditional CNN implementations convert convolutions
into matrix operations via the im2col (image to column) technique, facilitating parallelization through
advanced BLAS libraries. This study identifies and investigates a significant yet intricate pattern
of data redundancy within the matrix-based representation of convolutions, a pattern that, while
complex, presents opportunities for optimization. Through meticulous analysis of the redundancy
inherent in the im2col approach, this paper introduces a mathematically succinct matrix representa-
tion for convolution, leading to the development of an optimized FFT-based convolution with finer
FFT granularity. Benchmarking demonstrates that our approach achieves an average speedup of
14 times and a maximum speedup of 17 times compared to the regular FFT convolution. Similarly,
it outperforms the Im2col+GEMM approach from NVIDIA’s cuDNN library, achieving an average
speedup of three times and a maximum speedup of five times. Our FineGrained FFT convolution
approach, when integrated into Caffe, a widely used deep learning framework, leads to significant
performance gains. Evaluations using synthetic CNNs designed for real-world applications show an
average speedup of 1.67 times. Furthermore, a modified VGG network variant achieves a speedup of
1.25 times.

Keywords: GPU; fast Fourier transform; convolutional neural network; algorithm optimization

1. Introduction

In recent years, deep convolutional neural networks (CNNs) have emerged as a
powerful tool within deep learning, significantly impacting computer vision applications.
CNNs excel in image processing and pattern recognition tasks, revolutionizing fields from
image classification to object detection and semantic segmentation. For instance, in image
classification, models like EfficientNet [1] and ResNet [2] achieve top performance on
benchmarks like ImageNet [3]. In object detection and localization, architectures such as
Faster R-CNN [4], YOLO (You Only Look Once) [5], and EfficientDet [6] accurately identify
objects and their boundaries across various scales and contexts. Semantic segmentation
tasks extensively utilize CNNs for pixel-level classification, with notable architectures like
U-Net [7] and DeepLab [8], incorporating with attention mechanisms and advanced feature
aggregation techniques to achieve state-of-the-art results in segmenting complex scenes.
CNNs have also made significant strides in generating realistic images and enhancing image

Electronics 2024, 13, 3765. https://doi.org/10.3390/electronics13183765 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13183765
https://doi.org/10.3390/electronics13183765
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13183765
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13183765?type=check_update&version=1

Electronics 2024, 13, 3765 2 of 28

quality. Generative Adversarial Networks (GANs) like StyleGAN [9] and BigGAN [10]
utilize CNN architectures to generate high-resolution images with detailed and coherent
structures. In autonomous vehicles [11,12], CNNs are crucial for perception tasks such as
lane detection, object recognition, and path planning, designed to operate efficiently in
real-time scenarios. Figure 1 illustrates the diverse applications where CNNs have made
significant advancements. However, as CNNs increase in complexity, their computational
demands and the associated memory requirements increase exponentially. This can pose
challenges when deploying the model on embedded devices with limited available memory.
Furthermore, in the context of real-time interactive applications, it demands a smooth and
seamless user experience, where interactions and responses occur almost instantaneously.
In such applications, long latency can significantly disrupt the user experience, leading
to frustration and disengagement. Therefore, optimizing the computational performance
of CNNs is critical for both their development in research and their practical deployment
across various applications.

!""#$%&'$()*(+*,--

./01%'*

21'1%'$()

34&51

,&"'$()$)5
! 6((71) '&/#1

8$''$)5 $) +9()' (+

& 6$)7(6:

34&51

;1541)'&'$()

!<'()(4(<8

29$=$)5

Figure 1. CNNs have extensive applications across diverse real-world scenarios, including image
captioning, autonomous driving, object detection, and image segmentation.

Convolutional neural networks (CNNs) comprise a series of stacked layers, each play-
ing a specific role in the learning process. However, convolutional (CONV) layers [13–19]
consume a significant portion of the computation. Despite its relatively low parameter
count, convolution is the most time-consuming operation in convolutional neural networks,
significantly impacting the overall computational workload during network training and
inference. Several studies, including [17,18], have empirically demonstrated that convolu-
tional layers are the computational bottleneck in CNNs. These layers can consume about
90% of the execution time during both the forward and backward passes. This substantial
computational cost becomes even more pronounced with the growing depth and complex-
ity of modern CNNs. Consequently, prior research has extensively focused on developing
techniques to optimize the convolution process.

Considering the computational demands of CNNs, a common solution leverages the
parallel processing capabilities of Graphics Processing Units (GPUs). GPU acceleration
has significantly impacted the performance of CNNs, enabling faster computations, larger
models, and real-time applications. Among various implementations of CNNs on GPUs,
NVIDIA’s cuDNN library [20] provides a highly compatible solution for deep learning

Electronics 2024, 13, 3765 3 of 28

acceleration on their hardware. Since most deep learning frameworks integrate GPU
support by default [21–26], achieving high-performance convolution on GPUs becomes
a critical factor for maximizing overall CNN performance. On the other hand, to reduce
computational complexity and enhance the speed of convolutional layers, various studies
have concentrated on employing approximation algorithms or quantization techniques,
though these methods may lead to some accuracy degradation. They are considered
orthogonal and complementary to our direction of optimizing convolution algorithms.
For instance, Sabir et al. [27] introduce TiQSA, a method that combines tile quantization
and symmetry approximation with a Particle of Swarm Convolution Layer Optimization
algorithm to significantly reduce computational workload without substantial accuracy loss.
Additionally, Gysel et al. [28] propose Ristretto, a framework for model approximation
that quantizes CNN layers into fixed point arithmetic to compress models and reduce
execution time. Furthermore, Limonova et al. [29] and Cintra et al. [30] introduce methods
to transform convolutional network structures and approximate convolutional neural
networks for reduced computational complexity while maintaining accuracy.

Optimizing the fundamental execution of convolution constitutes another area of
research, highlighted by two key methods: (1) Utilizing FFT for performing convolutions
in the Fourier domain [31–33], with studies [16] demonstrating that larger kernels can
lead to greater improvements. However, as CNNs often utilize smaller kernels [34,35], the
Winograd algorithm has been introduced to decrease multiplications at the expense of more
additions. This trade-off may not provide sufficient benefits for larger kernels. (2) Direct
calculation of convolution through matrix–matrix multiplication is another method [32],
converting convolution into matrix multiplication to leverage the capabilities of optimized
GEMM libraries for efficient computation. In addition to these main methods, another
effective approach is auto-tuning [36]. This technique automatically selects the optimal
convolution algorithm based on real-time performance measurements on the actual hard-
ware. Given that each convolution algorithm is best suited to specific scenarios, and the
optimal choice can vary depending on the particular layer parameters and hardware capa-
bilities, auto-tuning offers a tailored optimization strategy that enhances computational
efficiency. This study focuses on investigating performance optimization for the convo-
lution process within CNNs on the backend implementation level. A critical observation
in this work is the presence of significant yet intricately patterned redundancies within
the matrix representation used in CNN convolutions. This pattern, previously overlooked
in the field, presents an opportunity for computational optimization. A thorough exam-
ination of this redundancy uncovers a doubly block Hankel matrix data structure. By
leveraging this newly identified matrix structure, we propose a novel FFT-based convolu-
tion algorithm that utilizes this data pattern. Unlike regular approaches that utilize a 2D
FFT across the entire feature map, our algorithm leverages fine-grained FFTs. Compared
with existing state-of-the-art implementations, our fine-grained FFT approach delivers
substantial performance enhancements. Extensive comparisons confirm the advantage of
our fine-grained FFT approach, demonstrating its outperformance on both synthetic and
real-world benchmarks.

From the point of view of accelerating the performance of CNNs, this work offers the
following key contributions:

(1) We introduce an optimization of the CNN’s convolution process by identifying
and leveraging hidden redundancy within unrolled feature maps and present a new FFT-
based convolution method that reduces computational complexity and improves CNN
performance. Our method achieves a maximum speedup of up to 17 times compared to
cuDNN convolution methods.

(2) A salient aspect of our proposed algorithm is the ability to operate directly on the
input images without unfolding the images into column vectors, namely im2col. We can
avoid the significant redundancy that arises from im2col transformations. Our approach
enables more efficient data reuse and minimizes memory usage. Specifically, the memory
savings scale asymptotically with the kernel size.

Electronics 2024, 13, 3765 4 of 28

(3) In order to further optimize the performance, we implement an auto-tuning frame-
work to automatically tune the CUDA parameters of the implementation. By intelligently
searching the design space, we are able to find a configuration that yields additional
improvements beyond the base fine-grained FFT implementation.

(4) The proposed method can be easily applied in a deep learning framework by
replacing the current convolutions with our method.

On the other hand, the work in this paper is an extension of our previous publication [37].
Here, compared with our previous work, we also present new contributions that extend
the understanding and applicability of our method:

(1) In-depth method description: Due to space limitations in the conference paper
format, the original method description was concise. In this work, we address this gap
by expanding every section from the conference version, providing a comprehensive and
detailed explanation of our method.

(2) Broader performance evaluation: We expand the evaluation by including experi-
ments on additional GPUs. This broader range of testing strengthens the algorithm’s high
performance and generalizability across different hardware platforms.

2. Overview and Background

In this part, we begin by delving into the core concept of convolution and then provide
an overview of convolutional neural networks (CNNs), followed by a detailed examination
of various convolution algorithms. To ensure clarity throughout the paper, a summary of
notations used in this study is provided in Table 1.

Table 1. Summary of notations used in this work.

Name Description

C Input channels

H Input height

K Number of kernels

N Mini-batch size

P Padding

Q Output width

R Output height

S Stride

U Kernel height

V Kernel width

W Input width

2.1. Convolution

In the context of convolutional neural networks (CNNs), convolution refers to the
fundamental operation of applying a filter (also known as a kernel) to input data. This
process involves element-wise multiplication of the filter with the corresponding receptive
field in the input, followed by summation to generate a feature map. This localized
computation captures spatial relationships between pixels, enabling the network to capture
features such as edges, textures, or more complex structures within the data. Through this
process, it progressively assembles them into higher-level representations. Convolution
operations play a crucial role in feature detection within CNNs, enabling the network to
acquire hierarchical representations of input data, ultimately leading to the extraction of
essential higher-level features for accurate classification and prediction tasks in the fields of
machine learning and computer vision.

A two-dimensional (2D) convolution is the core operation in CNNs, which is a math-
ematical operation that extracts local features and patterns from input data. It involves

Electronics 2024, 13, 3765 5 of 28

performing a dot product between the filter and the corresponding values in the feature
map. This operation systematically moves the kernel across the input image in both hori-
zontal and vertical directions. As the kernel slides, the 2D convolution operation is applied
at each position. Initially, the kernel is placed over the top-left corner of the input image.
It moves one step at a time across the image horizontally until it reaches the rightmost
position, and then the kernel resets to the leftmost position of the next row down. The
process is repeated, and the kernel continues moving from left to right and then from
top to bottom until the bottom right corner is covered. The convolution process within
CNNs fundamentally consists of batched 2D convolutions. This involves executing a 2D
convolution for each input channel against the filter, subsequently aggregating the out-
comes from all channels. When multiple filters are used, the resulting output is formed by
concatenating the individual output matrices generated by convolving the input with each
corresponding filter.

2.2. Convolutional Neural Network

In a conventional CNN architecture, each stage consists of a convolutional layer
followed by a non-linearity layer and a pooling layer. This structure enhances the robustness
and invariance of the learned features to small shifts and distortions within the data.
Convolutional layers, equipped with various kernels, act as feature extractors, identifying
specific patterns within the input. Each kernel in a convolutional layer targets a specific
feature, allowing multiple kernels to extract a diverse set of feature maps. These feature
maps progress from representing low-level details in the early layers to capturing more
abstract and complex features in the higher layers. The inputs and outputs of these layers
are known as feature maps, where each neuron connects only to a localized region of the
previous layer, known as the local receptive field. This sparse connectivity [38] significantly
reduces the number of connections needed between layers. Another defining characteristic
of CNNs is parameter sharing [38], where a single set of weights is applied across all
spatial positions of the input feature maps to generate the output feature maps. This
approach not only accelerates computations but also minimizes the memory footprint of
the network’s parameters. The number of output feature maps in a convolutional layer
directly corresponds to the number of kernels used, with each kernel generating a specific
extracted feature. In the final stage, a fully-connected layer integrates the high-level features
extracted by the convolutional layers to perform the classification task.

2.3. Direct Convolution

Direct convolution, as the name suggests, involves the straightforward application
of the convolution operation between the input data and kernels. It involves the explicit
computation of the dot product between the elements of the kernels and the input data. It
can be computationally expensive, especially for large input sizes and many filters, due to
the high number of multiplications and additions required.

A naive implementation of convolution can be implemented using seven nested for
loops, as illustrated in Algorithm 1. The outer loops traverse the input image, while
the inner loops traverse the kernel and perform accumulation. This direct method of
convolution does not require extra memory overhead; however, it suffers from low perfor-
mance due to non-sequential data access. Executing direct convolution on GPUs essentially
translates to parallelizing the execution of for-loops. The loops outlined in lines 1–4 of
Algorithm 1 are independent, making them highly suitable for parallel execution on GPUs.
However, lines 5–7 are not independent and present a shared data dependency. Due to
loop-carried dependencies across iterations, sufficient parallelism is not exposed, making it
challenging to fully utilize GPU resources when implementing the convolution on GPUs.
Cuda-convnet [39] stands as an early example of a CNN framework utilizing direct con-
volution. It demonstrates high efficiency with larger batch sizes [20], yet this efficiency
diminishes for batch sizes of 64 or below. Georganas et al. [40] address this limitation by
exploring optimization techniques for direct convolution on SIMD architectures. They focus

Electronics 2024, 13, 3765 6 of 28

on improving computational efficiency and reducing latency in convolution execution.
In contrast, Lavin et al. [41] take a different approach, developing maxDNN, an efficient
convolution leveraging SGEMM implementations from an open-source assembler designed
for NVIDIA Maxwell GPUs [42]. By exploiting hardware-specific optimizations available
within the Maxwell architecture, maxDNN achieves high-performance gains. However, this
optimization comes at the cost of portability, as it is not applicable to other architectures.

Algorithm 1 Direct convolution by seven nested for loops (see Table 1 for notations)

1: for n = 0 to N − 1 do
2: for k = 0 to K − 1 do
3: for c = 0 to C − 1 do
4: for r = 0 to R − 1 do
5: for q = 0 to Q − 1 do
6: for u = 0 to U − 1 do
7: for v = 0 to V − 1 do
8: Output[n, k, r, q] += Kernel[k, c, u, v] · Input[n, c, r + u, q + v]

2.4. Im2col+MM Convolution

Im2col+GEMM is a widely used technique for performing convolution efficiently.
First, image patches are extracted based on the kernel size and then reshaped into column
vectors. These column vectors are subsequently concatenated to form a single matrix.
This process, commonly referred to as lowering or unrolling, effectively transforms the
convolution operation into a general matrix multiplication (GEMM). Im2col unrolls the
input images into 2D matrices, while the kernel remains in its original matrix form (kernel
matrix). As a result, the convolution process is simplified to a single GEMM operation,
with each row in the resulting output matrix corresponding to a unique output feature map.
The width of the output feature map can be determined using the following formula.

Q = (W − V + 2P)/S + 1 (1)

where Q, W, V, P, and S are defined in Table 1. The last set of three hyper-parameters
determines the width of output feature maps. While our focus here is on width, the con-
cept can be easily extended to height as well. Figure 2 demonstrates the im2col+MM
convolution method. The kernel matrix contains four different kernels, with each row
representing a distinct kernel. The unrolled input matrix is created through the im2col pro-
cess. Multiplying these two matrices results in each row of the output matrix representing
an output feature map corresponding to a specific kernel. This method leverages highly
optimized general matrix multiplication routines, which are well-supported and optimized
in most hardware architectures, offering a significant speedup in computation. Moreover,
it leverages highly optimized linear algebra libraries. However, it is worth noting that
this method can increase memory usage due to the duplication of data in the im2col step.
Despite increasing the memory footprint, the gains in computational efficiency make this
approach highly attractive for implementing CNNs.

By multiplying the unrolled input with the kernel matrix, each row in the resulting
output matrix corresponds to the convolution of the input with its respective kernel. CNNs
use kernels of size K×CUV to analyze data, and the input data (NCHW format) is flattened
into N slices, each with size CUV×NRQ (see Table 1 for notations). It is important to note
that this process can introduce redundancy, with each element potentially being replicated
up to UV times. As a result, larger kernel sizes cause more duplication and increase the tem-
porary memory needed to store the unrolled input data. The core idea behind Im2col+MM
lies in transforming the convolution operation into a well-established matrix multiplication
by unrolling and duplicating the input. Thus, this method is largely dependent on the effi-
ciency of the underlying GEMM implementation. However, the performance of the cuBLAS
matrix multiplication routine does not always increase linearly with slight variations in

Electronics 2024, 13, 3765 7 of 28

matrix dimensions [43]. This is because cuBLAS selects an optimized implementation from
a pre-defined set based on the specific input matrix dimensions. In some cases, the unrolled
matrix dimensions generated by Im2col might not align perfectly with these optimized
implementations, potentially leading to sub-optimal performance in cuBLAS.

! "

Kernel Unrolled input Output

K

UVC RQ

Figure 2. The kernel matrix has four different patterns with distinct colors, each row representing
one kernel with dimension UVC. By multiplying the unrolled matrix, each row in the output matrix
represents an output feature map. Refer to Table 1 for notations.

The Im2col technique, which transforms convolution operations into matrix multipli-
cations, has been shown to improve CNN performance. This concept was first identified
in [32] and independently discovered by Yanqing et al. [21] in their work on the Caffe deep
learning framework. A significant advantage of this approach is its ability to exploit highly
optimized linear algebra libraries like cuBLAS, leading to performance improvements.
However, it is important to consider the resource consumption associated with im2col. The
image-to-column transformation process introduces a substantial memory overhead, which
can be a limiting factor in certain scenarios. Vasudevan et al. [44] discuss an alternative
to im2col that avoids its high memory footprint by applying convolution kernels directly
to input images, demonstrating the inefficiency in memory usage of the im2col approach.
Similarly, Wang et al. [45] present a parallel convolution algorithm that aims to reduce
memory footprints and improve packing efficiency compared to im2col+GEMM methods.
Zhao et al. [46] propose a method saving over 60% of hardware storage space compared to
im2col, highlighting the method’s inefficiency in large-scale convolutions.

2.5. FFT Convolution

FFT-based convolution [16,31] leverages the mathematical properties of the Fourier
transform to transform the convolution operation in the spatial domain into a simpler
element-wise multiplication in the frequency domain, thus significantly reducing the num-
ber of operations required for convolution and accelerating the processing time. It utilizes
the Fast Fourier Transform (FFT) to efficiently compute element-wise multiplications in
the frequency domain, which, according to the convolution theorem, are equivalent to
spatial convolutions.

F (f ∗ g) = F (f) · F (g) (2)

Here, F denotes the Fourier transform, ∗ denotes the convolution operation, and
· denotes element-wise multiplication. Inverse Fourier transforming the product of the
Fourier transforms of f and g yields the convolution of f and g in the spatial domain. A key
aspect of this approach is the prerequisite of equal-sized input and weight tensors. To satisfy
this requirement, zero padding is employed on the tensors before transformation. This
method involves converting both the input and weight tensors from the spatial domain
to the frequency domain using the Fast Fourier Transform (FFT). Once transformed, a
pointwise multiplication is performed, which involves multiplying the corresponding
elements of the transformed input with the complex conjugate of the transformed kernel.
The final step involves applying the inverse FFT, which transforms the data back into the
spatial domain.

Electronics 2024, 13, 3765 8 of 28

The FFT-based approach significantly decreases the algorithmic complexity of per-
forming convolution in the spatial domain. It reduces the computational complexity of
convolutions from O(n2) in the spatial domain to O(nlogn) in the frequency domain, where
n is the size of the input. However, a significant drawback of this approach is its high
memory footprint. This primarily arises due to the requirement for the input and weight
tensors to have identical sizes. The process involves padding the weight tensor to match
the dimensions of the input tensor. When the input tensor is considerably larger than
the weight tensor, this padding can lead to substantial memory overhead. This excessive
padding can also negatively impact the efficiency of FFT-based convolution. Moreover,
the overhead associated with performing FFT and inverse FFT (IFFT) can outweigh the
computational savings. To overcome this limitation, a tiling strategy [47] is often imple-
mented. Tiling essentially decomposes the large convolution into a sequence of smaller
convolutions. By processing these smaller convolutions individually, the memory footprint
is reduced, enabling more efficient computations. Additionally, extra memory is needed
to store the FFT coefficients, which can significantly increase the memory footprint, es-
pecially for high-dimensional data. In our work, we leverage the inherent symmetry of
real inputs within the Fourier domain to decrease the required storage for FFT coefficients
by half. Additionally, this symmetry is used to lower the computational expense of the
pointwise multiplication.

FFT convolution remains a compelling approach, particularly for applications where
computational resources are a bottleneck. Abtahi et al. [48] evaluate FFT-based convolution
against direct and overlap-add methods, demonstrating substantial performance benefits
on embedded platforms. FFT-based convolution methods apply the Fourier transform
to accelerate the convolution operation itself but may not maintain the entire network’s
operations within the Fourier domain. In contrast, the Fourier Convolutional Neural
Networks (FCNNs) [49] framework is designed to operate entirely within the Fourier
domain, meaning that both the forward and backward passes of the network are conducted
in this domain. The proposed FCNNs significantly speed up the training process without
sacrificing effectiveness.

2.6. Winograd Convolution

Winograd Convolution [33], based on the Winograd minimal filtering algorithm [50],
is designed to minimize the arithmetic complexity of convolutions by minimizing the
number of multiplicative operations. It starts by applying linear transformations to the
input feature map and the convolutional kernel. After both the input and the kernel have
been transformed, the algorithm proceeds with an element-wise multiplication of the
transformed representations. Unlike traditional convolution, which involves numerous
multiplicative operations, the Winograd algorithm substantially reduces the number of
these operations. The last step converts the data back from the Winograd-specific rep-
resentation to the original spatial domain. The Winograd algorithm’s efficiency stems
from the fact that the computational savings on multiplications outweigh the overhead
introduced by the additional additions and transformations. However, reshaping both the
kernel and image patch into matrices requires additional memory. Pre-computed constants
further increase the memory footprint. This can be a significant concern for large CNNs or
resource-constrained environments. Additionally, the matrix multiplication approach in
Winograd can introduce rounding errors compared to the standard convolution.

3. Motivation

In this section, we explore how data redundancy is identified in the im2col-based
convolution and how this new insight inspires a more efficient approach to performing
convolutions. Recall that the im2col operation restructures the input feature map into a
sequence of columns, each representing local patches of the input, while the kernel data
are already formatted into a matrix. It transforms convolution operations into matrix
multiplications to leverage the power of optimized GEMM libraries. During im2col, due to

Electronics 2024, 13, 3765 9 of 28

the overlapping of receptive fields, certain elements are repeated across multiple columns,
creating redundancy. Additionally, the im2col process sometimes replicates zeros when
the input feature map is padded with zeros to maintain spatial dimensions and preserve
border information. By understanding the distribution of zeros, we can avoid unnecessary
multiplications that yield zero. For instance, Figure 3 shows how a 3 × 3 input, with a zero
padding of 1, is expanded into a large output featuring redundancy. This expansion is
achieved using the im2col process with a 2 × 2 kernel. However, the specific amount of
redundancy introduced by this im2col process is unknown.

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

im2col

Figure 3. A 3 × 3 input matrix is padded with zeros of size one (shown in blue). The matrix on
the right is generated using a 2 × 2 kernel through the im2col process and exhibits redundancy, the
details of which are unspecified.

To analyze and leverage the redundancy to develop a more efficient convolution
strategy, several fundamental questions naturally arise: (1) Which elements in the output
matrix are essential, and which are duplicates? (2) How can we mathematically describe
the redundancy in the output matrix? In the following sections, we introduce a recursive
data pattern to characterize the observed redundancy. This pattern allows us to design a
new convolution algorithm that avoids unnecessary computations and data storage. This
approach ultimately leads to our “fine-grained FFT convolution”.

4. A New Data Pattern

This section first analyzes how the im2col process works in detail and then explores
two main types of redundancy that occur during this process caused by the way im2col
iterates over the feature map with the kernel. After revealing the zero distribution within
the output matrix, we will introduce a concise mathematical framework to describe these
redundancies. This framework reveals a connection between the redundancy and a specific
type of matrix structure—the doubly block Hankel matrix [51]. These insights establish a
theoretical foundation to optimize convolutional operations in CNNs.

4.1. Im2col Process

Before understanding the redundancy and subsequently diving into the specifics of
the new data pattern, let us revisit the im2col operation, as it serves as the foundation for
this pattern. The im2col operation stands for “image to column”, and it stretches the local
receptive field or patch in the original image into column vectors. Specifically, im2col takes
each local patch, defined by the size of the convolutional kernel, and stretches it out into a
column. Consequently, an input image is transformed into a matrix where each column
corresponds to one local receptive field or patch. As shown in Figure 4, the im2col process
transforms a patch containing elements numbered from one to nine into a column vector.
This involves transposing and concatenating each row, distinguished by different colors,
into a single extended column. Each row from the patch is sequentially transposed and
aligned to create a continuous vertical array.

In the im2col process, the kernel slides across the feature map both horizontally and
vertically, allowing each row of the kernel to function independently. This means that a two-
dimensional kernel can be conceptualized as a collection of separate one-dimensional row
kernels. As the kernel traverses the feature map, each individual row kernel interacts with
corresponding sections of the feature map to compute outputs. The final output generated

Electronics 2024, 13, 3765 10 of 28

by im2col is a combination of the results from each of these row kernels. This process
creates a specific type of redundancy within each row, referred to as intra-row redundancy.

1 2 3
4 5 6
7 8 9

im2col

2

3

4

5

1

7

8

9

6

Figure 4. The im2col process reshapes a 3 × 3 input patch into a column vector by stacking each row
column-wise into a single column vector.

4.2. Intra-Row Redundancy

Figure 5 demonstrates the occurrence of intra-row redundancy as a row kernel tra-
verses a single-row feature map. Let us consider that the feature map has a length m and
the kernel has a length n, with a stride of 1. As the kernel slides across the feature map
from one position to the next, specifically from position N (indicated with a black rectangle)
to N + 1 (indicated with a red rectangle), there are n − 1 elements that overlap between
the two positions, which are highlighted by a green stripe. This overlap results in only the
leftmost element of position N and the rightmost element of position N + 1 being different.
As the kernel moves horizontally, the im2col operation systematically rearranges these
elements into columns. This rearrangement places the elements side by side, resulting
in each new column sharing n − 1 overlapping elements with its predecessor, but each
overlapped element is shifted upwards by one position. As a result, the elements along the
skew diagonals remain constant in the generated matrix.

Position N

Position N+1

Figure 5. The schematic representation of how intra-row redundancy occurs. In the upper diagram,
the black rectangle symbolizes the row kernel at position N, while the red rectangle represents the
row kernel at position N + 1. The green stripe highlights the overlapping elements between these
two positions. In the lower part, the green stripe illustrates the identical elements found in adjacent
columns of the resulting matrix.

Electronics 2024, 13, 3765 11 of 28

Let us mathematically express the intra-row redundancy discussed above. The size of
the row kernel is V. It is used to generate the unroll matrix G with dimensions of V by Q.
Considering the elements of G, we can denote the element at row i and column j as Gi,j.
Here, we focus on the case where i ≤ j. In this scenario, we observe that Gi,j = Gi+k,j−k for
all valid values of k = 0, ..., j − i.

4.3. Inter-Row Redundancy

During the convolution operation, the kernel starts at the top-left corner of the feature
map and moves across the feature map from left to right. Throughout this movement,
each row of the kernel experiences a pattern of redundancy, as depicted in Figure 5. Upon
reaching the feature map’s right edge, the kernel moves downward by one row, where
a different form of redundancy occurs due to the overlapping traversal of elements by
successive row kernels, which we term inter-row redundancy. This pattern continues until
the kernel reaches the bottom right corner of the feature map. In the example shown
in Figure 6, the kernel consists of four differently colored rows, and the feature map is
zero-padded with a width of one. As the kernel moves across and down the feature map,
each row of the kernel (k1, k2, k3 and k4) contributes to generating separate output rows,
corresponding to the first through the fourth rows in the resulting output matrix on the
right in Figure 6. Within this output matrix, the blocks on the skew diagonal are identical,
while each block displays intra-redundancy. Since the padding consists of zeros with a
width of one, the top left and bottom right blocks of the matrix are zero matrices.

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0

0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

0

𝑘3

𝑘2

𝑘4

𝑘1
𝑘1

𝑘2

𝑘3

𝑘4

Figure 6. The schematic representation of inter-row redundancy. The kernel comprises four rows
labeled k1 to k4. The feature map is zero-padded with a size of one on all sides. This padding results in
the top-left and bottom-right blocks of the matrix being zero matrices, as illustrated. The blocks along
the skew diagonal are identical, highlighted by the same pattern to denote inter-row redundancy. It
also exhibits intra-row redundancy within each block.

Next, we mathematically summarize the inter-row redundancy within the generated
matrix G, which has dimensions UV × QR. Let Gi,j represent the block located at the i-th
row and j-th column within G. We focus on the case where i ≤ j. Under these conditions,
it is observed that Gi,j is equal to Gi,j = Gi+k,j−k for all k ranges from 0 to j − i. Each
individual block within G also exhibits intra-row redundancy, as discussed in Section 4.2.
This inter-row redundancy builds upon the intra-row redundancy within each block.

4.4. Im2col-Based Convolution Redundancy

In convolutional neural networks (CNNs), the convolutional layers perform batched
2D convolutions. In this process, each input feature map is convolved with the corre-
sponding channel of the kernel, and the results from these batched 2D convolutions are
aggregated to form the output feature map. To facilitate this, the im2col method is uti-
lized, which replicates each feature map uniformly and generates expanded matrices. As
illustrated in Figure 7 on the right, these matrices exhibit both intra-row and inter-row
redundancy. This redundancy follows a consistent data pattern, characterized by identical
elements or blocks along the skew diagonals.

Electronics 2024, 13, 3765 12 of 28

Im2col-based
redundancyInput

Kernel

Figure 7. Illustration of the im2col process for a three-channel input and kernel. It emphasizes
the resulting redundancies in the unrolled output matrix. Each channel of the output shows inter-
row redundancy, characterized by identical blocks along skew diagonals. Furthermore, each block
within the output matrix exhibits intra-row redundancy. The combination of inter-row and intra-row
redundancies is collectively referred to as Im2col-based convolution redundancy.

In this section, we adopt a systematic bottom-up approach to explore the redundancy
inherent in the im2col operation as it is applied within CNNs. Our analysis begins by ex-
amining the basic 1D convolution, where we identify patterns of intra-row redundancy. We
then progress to analyzing 2D convolutions, revealing the presence of inter-row redundancy.
Since CNNs typically employ batched 2D convolutions, our examination extends to these,
where we observe im2col-based convolution redundancy, which effectively integrates both
inter-row and intra-row redundancies. While redundancy motivates us to design novel
algorithms to minimize memory usage, its greater significance lies in providing an avenue
for optimizing convolutions within CNNs. By meticulously identifying and addressing
these redundancy patterns, we enable the design of more efficient computational strategies.

4.5. Doubly Block Hankel Matrices

Now that we have identified repetitive patterns within the data, specifically intra-
redundancy and inter-redundancy. We are equipped to address the questions from Section 3
about how these redundancy patterns are represented and how we can use them. The
redundancy pattern, characterized by both intra-row and inter-row redundancies, can be
qualitatively described as follows: Each block along the skewed diagonals in Figure 8 is
identical. Within these blocks, there is intra-row redundancy, with elements along these
diagonals remaining constant. Building on this qualitative description, our next step
involves a quantitative analysis to define the structure of these redundancy patterns.

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

0 0 0 0 0

0 1 2 3 0

0 4 5 6 0

0 7 8 9 0

0 0 0 0 0

im2col

Figure 8. On the left side of the figure is the original feature map, and on the right side is the unrolled
matrix generated by the im2col operation. Each row within the original feature map is highlighted
with a specific color, and elements in these rows correspond to blocks of the same color in the unrolled
matrix. Each block of the same color is identical, and elements along the skew diagonals within these
blocks remain constant. Notably, the elements bounded by the red lines on the right correspond to
each row in the original feature map.

Electronics 2024, 13, 3765 13 of 28

In the im2col operation, the output matrix generated by the process displays a pattern
of inter-row redundancy. Additionally, each individual block within this matrix exhibits
intra-row redundancy. The zero elements, which are added to handle the boundaries of
the input feature map, are primarily located in the top-left and bottom-right corners of the
matrix. The zero elements also appear in the corresponding corners within each non-zero
block. With these insights, we can track every element of the input data more effectively. It
allows for a comprehensive analysis of the data structure created by the im2col process,
facilitating convolution operations in neural networks. To define this process more formally,
let us consider a feature map of size m × m and a kernel of size n × n. The feature map is
zero-padded with size p. The im2col operation then reshapes the feature map into a matrix
with dimensions n2 × (m − n + 2p + 1)2, where each individual block in the resulting
matrix has dimensions of n × (m − n + 2p − 1).

To formalize the im2col operation process, let us consider a feature map of size m × m
and a kernel of size n × n. The feature map is zero-padded with size p, and the stride for
the convolution is set to one. The im2col operation then reshapes this padded feature map
into a matrix with dimensions n2 × (m − n + 2p + 1)2, where each individual block in the
resulting matrix has dimensions of n × (m − n + 2p + 1). The mathematical definitions for
intra-row and inter-row redundancy can be described as follows:

Outputintra|inter[i][j] = Outputintra|inter[i − 1][j + 1] (3)

i > 0, j > 0 and i < n, j < m − n + 2p − 1. The padded zero distribution follows the equation.

Outputintra|inter[i][j] = 0 (4)

such that i < p, j < p or i > n − p − 1, j > m − n + p. i and j denote the indices for the
elements and blocks in intra-row and inter-row redundancy, respectively.

We have made a significant discovery in our analysis of the im2col operation. The
patterns we observed, captured by Equation (3), demonstrate intra-row and inter-row
redundancy and align with the definition of a Hankel matrix [51]. In a Hankel matrix, each
skew-diagonal contains constant values. This characteristic implies that for any given skew-
diagonal, all elements in that diagonal are identical. When we apply the im2col operation
to an input feature map, the resulting output matrix is not just any matrix, but specifically
a doubly block Hankel matrix. This means the matrix exhibits a Hankel structure at two
levels: (1) Individual block structure: each block within the matrix is a Hankel matrix.
Within each block, the elements along any skew-diagonal are constant. (2) Overall matrix
structure: the entire matrix, when considering all the blocks collectively, also adheres to the
Hankel structure.

To illustrate this, an n × n Hankel matrix can be represented in the following form:

H =

a b c · · · g
b c d · · · h
c d e · · · i
...

...
...

. . .
...

g h i · · · m

 (5)

In this matrix, each ascending skew-diagonal from the bottom-left to the top-right has
the same value. For example, the first skew-diagonal from the bottom-left corner consists
of the element g, the next skew-diagonal consists of h, and so on. The elements of an n × n
Hankel matrix are determined by a sequence of length 2n − 1. In the matrix HBlock, all Hij
are Hankel matrices. This means that each sub-matrix within HBlock maintains the Hankel
property of constant skew-diagonals. This dual-level Hankel structure results in a doubly
block Hankel matrix.

Electronics 2024, 13, 3765 14 of 28

HBlock =

H11 H12 · · · H1N
H12 H22 · · · H2N

...
...

...
...

H1N H2N · · · HNN

 (6)

By exploiting this doubly block Hankel structure, the convolution operation is ef-
fectively translated into a multiplication between a Hankel matrix and a vector. This
translation takes advantage of the inherent redundancy within Hankel matrices, allowing
for a more computationally efficient multiplication compared to standard matrix-vector
multiplication. To harness this efficiency, the Fast Fourier Transform (FFT) is utilized to
significantly optimize the computation of Hankel-matrix-vector multiplication, resulting in
substantial performance improvements for convolutions in CNNs. Detailed information
about the proposed fine-grained FFT-based convolution method will be presented in the
next section.

4.6. Data Correspondence

As discussed in Section 4.5, the unrolled matrix generated by the im2col process is
indeed a doubly Hankel matrix. This indicates that each block within the matrix is a Hankel
matrix in itself, and collectively, these blocks contribute to forming a larger Hankel matrix
structure. Equally important, we identify the data correspondence between the original
feature map and the expanded output. As illustrated in Figure 8, the elements bounded
by the red lines on the right correspond to each row in the original feature map. This
visualization demonstrates the data correspondence between the data before and after the
im2col operation, highlighting how the im2col operation rearranges the elements in the
feature map into the expanded output. Due to this clear data correspondence, it is not
necessary to fully unroll the input feature map since all the elements can be retrieved from
the input feature map. By exploiting this structure, it becomes possible to optimize memory
usage by storing only unique elements or blocks, reducing redundancy, and avoiding the
need to replicate data unnecessarily.

5. Fine-Grain-FFT-Based Convolution Algorithm

In this section, we delve into how the unique structure of Hankel matrices can be
exploited to utilize the Fast Fourier Transform (FFT) for a more efficient matrix multipli-
cation process. By recognizing the redundant data patterns within the Hankel matrices,
we can transform the convolution into a more computationally efficient operation. We
introduce an algorithm that leverages FFT to optimize the Hankel matrix-vector multi-
plication specifically for convolution operations in neural networks. This approach not
only enhances computational efficiency but also significantly reduces memory overhead.
Traditional methods require fully unrolling the input data, leading to substantial memory
usage. Our fine-grained FFT-based convolution algorithm circumvents this by replacing the
need for full data unrolling with an implicit element-wise matrix multiplication approach.
Moreover, the theoretical analysis provided will demonstrate that our method offers a
dual advantage: it reduces computational complexity by harnessing the power of FFT
and minimizes memory overhead by eliminating the necessity of complete data unrolling.
This results in a more efficient convolution operation, ultimately leading to performance
improvements in convolutional neural networks (CNNs).

5.1. Hankel Matrix-Vector Multiplication

The core of our fine-grained-FFT convolution lies in the efficient multiplication of a
kernel vector v with a Hankel matrix H. Hankel matrices, characterized by their structured
format where each ascending skew-diagonal from left to right is constant, offer a more
concise representation than general n× n matrices. To efficiently perform the multiplication
involving a Hankel matrix, the Hankel matrix can be embedded into a larger circulant
matrix. This transformation allows us to leverage the properties of circulant matrices to

Electronics 2024, 13, 3765 15 of 28

simplify the computation. Specifically, a circulant matrix is fully determined by its first row,
referred to as the generating vector x. Each subsequent row in the circulant matrix is a cyclic
right shift of the row above it, wrapping around at the end. One advantageous property
of the circulant matrix C is that it is diagonalized by the Discrete Fourier Transform (DFT)
matrix. The columns of the DFT matrix are eigenvectors for the circulant matrix, and the
eigenvalues of the circulant matrix are obtained by taking the DFT of the generating vector
x. The circulant matrix C is diagonalized by the Discrete Fourier Transform (DFT) matrix
F [52], and it can be expressed as follows:

C = F−1∆F (7)

where ∆ is a diagonal matrix containing the eigenvalues of C, such that ∆ = diag(Fx).
Therefore, the multiplication of the circulant matrix C with the kernel vector v is performed
through a series of operations utilizing the Discrete Fourier Transform (DFT) and its inverse
(IDFT). Specifically, it involves computing:

Xv = F−1(Fx ◦ Fv) (8)

The multiplication process can be summarized as follows: (1) DFT of the generating
vector x. This step transforms x into the frequency domain, yielding the eigenvalues of
the circulant matrix C. (2) DFT of the vector v. Apply the DFT to the vector v, resulting in
Fv. (3) Element-wise multiplication. Perform the Hadamard (element-wise) multiplication,
and this operation combines the transformed representations of x and v in the frequency
domain. (4) Inverse DFT. Compute the inverse DFT of the product from the previous step
to transform the result back into the spatial domain. This step yields the final result of the
matrix-vector multiplication. These operations can be efficiently computed using the Fast
Fourier Transform (FFT). It significantly reduces the computational complexity from O(n2)
in the direct approach to O(n log n) due to the efficiency of the FFT.

5.2. Hankel Matrices to Circulant Matrices

As previously discussed, circulant matrix-vector multiplication can be efficiently
computed using the Fast Fourier Transform (FFT). Given the computational advantages
offered by this method, it is natural to explore how we can transform Hankel matrices,
which do not inherently possess a circulant structure, into circulant matrices. In this
subsection, we will delve into the specifics of this transformation process.

Transforming a Hankel matrix into a circulant matrix involves initially converting
the Hankel matrix into a Toeplitz matrix. This conversion can be achieved by applying a
permutation matrix, which reorders the columns of the Hankel matrix from left to right,
thus forming a Toeplitz matrix. The permutation matrix P used in this process features
a unique structure with all entries set to zero except for a single anti-diagonal filled with
ones. While this permutation facilitates the transformation from Hankel to Toeplitz, it
introduces unnecessary computational steps. However, for operations such as matrix-
vector multiplication where only the outcome is needed, one can simply permute both the
Hankel matrix and the vector concurrently, thereby preserving the result while effectively
transforming the matrix’s form to Toeplitz. Once in Toeplitz form, the matrix can be
embedded into a larger circulant matrix to utilize efficient FFT computation methods. The
embedding process involves combining the first column and the first row of the Toeplitz
matrix to form the generating vector for the circulant matrix, which then becomes the first
row of the new matrix C. Each subsequent row of C is a rightward cyclic shift of the row
above. Figure 9 above serves as a simple example to illustrate the concept where a Toeplitz
matrix is embedded into a circulant matrix.

Notably, for FFT-based computations, it is sufficient to focus solely on the generating
vector of the circulant matrix; constructing the entire matrix explicitly is unnecessary. By
focusing solely on the generating vector, we can bypass the redundant steps involved in
creating and manipulating the full circulant matrix.

Electronics 2024, 13, 3765 16 of 28

! " #

$ % "

& $ %

a b ' ()

d ! * ' (

e) ! * '

c () ! *

b ' () !

! * ') (+ ,

Figure 9. On the left is a Toeplitz matrix, where the generating vector g is formed by combining
the first row and first column of the Toeplitz matrix. The squared circulant matrix is created by
right-shifting the generating row, while the Toeplitz matrix remains unchanged, marked by the red
square on the right.

5.3. Implicit Element-Wise Blocked Matrix Multiplication

The input feature map is unrolled into a doubly block Hankel matrix, which naturally
takes the form of a blocked matrix defined by its doubly Hankel structure. For multiplying
this structure with the kernel matrix, a blocked matrix multiplication strategy is employed.
Each Hankel block matrix multiplication is efficiently conducted using the Fast Fourier
Transform (FFT). After transforming each Hankel block into the Fourier domain, the inher-
ent linearity properties of the Discrete Fourier Transform (DFT) are utilized. This involves
performing a direct summation of element-wise products within the Fourier domain for
each block multiplication. Importantly, this method allows us to defer the Inverse Discrete
Fourier Transform (IDFT) operations until after the summation for blocked matrix multipli-
cation is complete. This strategy not only optimizes computational efficiency by reducing
the number of IDFT operations required but also simplifies the entire processing workflow.

Traditional im2col-based convolution methods in convolutional neural networks typi-
cally involve unrolling the feature map either entirely or partially to perform matrix opera-
tions. This unrolling process leads to significant data redundancy, which in turn increases
the memory footprint. However, since we have already established data correspondence
in Section 4.6 and only require the generating vector for the circulant matrix, the need for
a fully unrolled input matrix is eliminated, thus saving memory. Consequently, we can
implement implicit blocked matrix multiplication without unrolling the matrix, where we
utilize a unique indexing scheme that efficiently retrieves the necessary Fourier coefficients
directly computed from the input feature maps. Figure 10 demonstrates the blocked matrix
multiplication, where each block in the output is the summation of corresponding block
matrix multiplications between the kernel matrix and the input matrix. Due to the Hankel
matrix property, we do not need to compute the Discrete Fourier Transform (DFT) of identi-
cal blocks, as the blocks on the anti-diagonal are identical. Therefore, it suffices to compute
the DFT for only the first column and last row of the doubly Hankel matrix. By eliminating
redundant calculations for these identical Hankel blocks, this method significantly reduces
the number of repetitive FFTs, thereby optimizing computational efficiency.

! "d

Kernel Input Output

K[i, :] I[:, j] O[i, j]

Figure 10. The process of blocked matrix multiplication involving the kernel matrix and the unrolled
input matrix. The output O[i, j] is derived from the summation of products obtained by multiplying
the corresponding blocks in K[i, :] and I[:, j]. Particularly, for the doubly blocked Hankel matrix in
the unrolled input matrix, the first column and last row of Hankel blocks, marked by red rectangles
are unique, while the other blocks are duplicates.

Electronics 2024, 13, 3765 17 of 28

5.4. FFT Hermitian Symmetry and Gauss’s Multiplication Formula

Hermitian symmetry, also known as conjugate symmetry, refers to a specific symmetric
relationship in the Fourier transform of real-valued signals, where each coefficient is the
complex conjugate of another coefficient at a symmetrically opposite position in the Fourier
domain. In our implementation, the input data are real-valued, and the resulting frequency
domain representation (Fourier coefficients) exhibits Hermitian symmetry. This means that
for a discrete Fourier transform (DFT) of a real signal of length N, the Fourier coefficients
will satisfy the following relationship: X[k] = X[N − k]∗ for all k, where X[k] represents
the Fourier coefficient at position k, and ∗ denotes the complex conjugate. This implies
that: (1) X[0] and X[N/2] (for even N) are both real values (no imaginary component).
(2) The coefficients from X[1] to X[N/2 − 1] are the complex conjugates of the coefficients
from X[N − 1] down to X[N/2 + 1]. In the implementation, we zero-pad both inputs
and kernels to the next power of two to have the best performance of cuFFT. Because
of Hermitian symmetry, we only need to store nearly half of the coefficients, effectively
reducing the memory requirements by nearly half. Additionally, leveraging this symmetry,
we can nearly halve the number of multiplications needed for element-wise multiplications.
The second set of element-wise multiplications can be derived from the first by taking the
complex conjugate.

Gauss’s multiplication formula [53] offers a computationally efficient approach for
multiplying complex numbers, which is particularly advantageous in the Fourier do-
main. Traditionally, the multiplication of two complex numbers, represented as a + ib
and c + id, requires four real multiplications. Gauss’s method, however, reduces this re-
quirement to three real multiplications. The algorithm computes three intermediate terms:
t1 = c × (a + b), t2 = a × (d − c), and t3 = b × (c + d). From these intermediates, the
real and imaginary components of the product are subsequently derived from these in-
termediates as t1 − t3 for the real component and t1 + t2 for the imaginary component,
respectively.

5.5. Entire Workflow Description

The proposed convolution method is implemented in four steps:

Step 1 Input transform. In this initial step, the convolution method leverages the
structure of the input feature maps, where the generating vector of the circulant matrix
is contained within each row. Accordingly, one-dimensional FFTs are applied to the
generating vector.

Step 2 Kernel transform. The kernel matrix is segmented into tiles, with each tile
corresponding to the width of the kernel. A one-dimensional FFT is then performed on
each of these tiles. The cuFFT library, specifically its batch mode capability, is employed to
execute these FFTs efficiently. This step is critical as it prepares the kernel by translating it
into the Fourier domain.

Step 3 Element-wise multiplication. Following the kernel transformation, the next
step involves performing element-wise multiplication within the predefined doubly block
Hankel matrix. Element-wise multiplication is carried out within each Hankel block. This
step leverages the structured nature of the data for efficient matrix multiplication.

Step 4 Inverse transform. The output from this operation typically yields a 1 × 2Q
matrix. However, for the purposes of this specific convolution method, only the 1 × Q
elements of this matrix are relevant. These elements represent the actual product of the
convolution between the 1 × Vvector and the V × Q Hankel matrix. The remainder of the
output is discarded, as it does not contribute to the final desired outcome.

Our methodology relies heavily on FFT operations, for which we employ the cuFFT
library, an NVIDIA proprietary tool designed specifically for this purpose. An important
factor to consider for achieving optimal performance with the cuFFT library is its sensitivity
to FFT size. Even slight variations in FFT dimensions can significantly impact performance
due to the specific algorithms employed by cuFFT. To mitigate this sensitivity, we utilize
input padding techniques. The cuFFT programming guide [54] suggests using power-of-

Electronics 2024, 13, 3765 18 of 28

two sizes for FFT dimensions to achieve optimal performance. Moreover, cuFFT operates
as a “black box” due to its proprietary nature, meaning that its internal mechanisms are
not accessible for modification or optimization by external users. This restriction can lead
to less-than-optimal performance, especially when our implementation involves a limited
range of power-of-two 1D FFTs, where the library’s generalized approach may not be
perfectly aligned with specific computational needs. As future work, we plan to develop
our own custom FFT implementation to address these specific cases and potentially achieve
further performance gains.

5.6. Arithmetic Complexity Comparison

The FFT-based approach from cuDNN and our fine-grained FFT approach share
similar steps, including input transform, kernel transform, element-wise multiplication, and
inverse transform. However, the primary difference lies in how the transformed data are
processed: FFT-based convolution utilizes batched complex general matrix multiplication
(Cgemm), whereas fine-grained FFT convolution involves matrix multiplication with an
element-wise product. For analytical comparison, we can consider both methods under
the umbrella of matrix multiplication. In this subsection, we will compare the arithmetic
complexity of both convolution methods side by side.

Assuming we have inputs with dimensions (N, C, H, W) and kernels with dimensions
(K, C, U, V), Table 2 outlines the arithmetic complexities associated with each step for both
our fine-grained FFT and FFT-based convolution methods. The table indicates that the
number of operations required for the input transform and the final inverse transform
are comparable; however, our fine-grained FFT method requires fewer operations for the
kernel transformation step. Conversely, our approach involves more operations during the
matrix multiplication step. In FFT-based convolution, the kernel is zero-padded to match
the dimensions of the input before performing the FFT. Consequently, the performance of
the FFT-based method remains unaffected by the kernel’s spatial dimensions, specifically
parameters U and V. This approach may yield better performance with larger kernels. In
contrast, the complexity of our method scales directly with the kernel size. This is because
the size of the unrolled input matrix increases quadratically with the kernel size, making
it more suited for convolutions with smaller kernels. A significant advantage of our fine-
grained FFT method lies in its finer FFT granularity. Unlike conventional FFT approaches
that perform a 2D FFT on each feature map with an FFT granularity of HW, our method
leverages a finer granularity through the 2Q FFT. However, there is a notable trade-off in
kernel size between the fine-grained FFT and FFT-based convolution methods; if the kernel
size is large, the increased cost of matrix multiplication might negate the efficiency gains
from the fine-grained FFT method.

Table 2. Arithmetic complexity comparison between FineGrainedFFT convolution and FFT-based
convolution from cuDNN (refer to Table 1 for the notations used).

FFT-Based FineGrainedFFT

Input transform 2W2 · log W · N · C 2W · log 2W · Q · N · C

Kernel transform 2W2 · log W · K · C 2W · log 2W · K · C · V

Matrix multiplication W2 · N · K · C 2W · Q · N · K · C · V

Inverse transform 2W2 · log W · N · K 2W · log 2W · Q · N · K

5.7. Memory Consumption Comparison

Our fine-grained FFT technique avoids the full unrolling of input feature maps, which
is a common practice in the im2col+GEMM method, leading to more efficient memory
usage. In this analysis, we compare the memory footprints of our method with that of the
im2col+GEMM approach to highlight the improvements in memory efficiency.

Electronics 2024, 13, 3765 19 of 28

The im2col+GEMM method involves a complete unrolling of the input feature maps,
where, as the kernel traverses the feature maps, it transforms the local patches into columns,
which are then aligned side by side to form an unrolled matrix. This process leads to a
significant increase in memory requirements, as the space needed for these unrolled feature
maps grows quadratically with the size of the kernel. In contrast, our fine-grained FFT
method does not require the full unrolling of the input feature maps. This is because the
original feature map already contains the necessary elements for generating vectors for
matrix-vector multiplication using FFTs. To efficiently compute FFTs in our approach, it
is only necessary to pad each row in the feature maps to 2Q. More precisely, the padded
size is calculated using the NextPowerTwo(2Q), a function that determines the nearest
power of two. For an input with the format NCHW, the im2col+GEMM method requires a
memory consumption of NCUVRQ, whereas our method necessitates only 2NCHQ for its
memory footprint. Furthermore, due to the Hermitian symmetry of the Fourier transform
of a real-valued input, we only need to store half of the complex entries, each of which is
twice the size of a float type. In summary, our method saves nearly (UVR)/(2H) times
more memory than the im2col+GEMM method. To make the comparison presented in
this subsection more clear, let us consider an illustrative example where the kernel size
(U × V) is set to 3 × 3 and the input height (H) is 254. According to Equation (1), which
determines output dimensions based on input and kernel sizes, the output height (R) is 254.
In the expression UVR/2H, both H and R are eliminated during the calculation, resulting
in UV/2, which gives a value of 4.5.

5.8. Auto-Tuning

Auto-tuning, also known as automatic performance tuning, optimizes software for ef-
ficient operation on specific hardware platforms. Particularly useful in GPU programming,
our implementation employs auto-tuning to dynamically select optimal CUDA thread and
block parameters. This selection process considers the specific constraints imposed by
the input settings and available hardware resources. The identified optimal configuration
can be stored locally, enabling reuse for subsequent executions with similar input configu-
rations. Our auto-tuning strategy is crucial, especially as the fine-grained FFT approach
it supports comprises four distinct steps, each benefiting from tailored optimization of
CUDA parameters. For example, during the third step of element-wise multiplication,
auto-tuning determines the best thread block size and number of blocks by exploring
various combinations and executing only the most promising ones. It avoids an exhaustive
search, reducing the time it takes to find the optimal setup. We implement the autotuner
through a code generator that produces parameterized kernel variants, which are then
compiled, executed, and benchmarked to determine the best option. Overall, auto-tuning
provides a speedup of approximately 5% compared to versions without auto-tuning.

6. Evaluation and Performance Analysis
6.1. Experimental Methodology

To establish clarity in our discussion, let us define the naming convention used here:
our method is termed “FineGrainedFFT”, distinguishing it from the FFT method provided
by cuDNN, which we refer to as “RegularFFT”. The evaluation comprises two levels: At
the low level, we compare it with other current convolution methods head-to-head. At the
high level, we replace the convolution methods used in a leading deep learning framework
with our FineGrainedFFT method and compare the performance on real-world benchmarks
before and after the replacement. Specifically, we evaluate the proposed method across
four dimensions: (1) accuracy of result. (2) Kernel-level performance comparison. We
compare our performance with NVIDIA’s cuDNN library [20], which features a variety of
state-of-the-art convolution implementations. We utilize the cuFFT [54] library to compute
FFTs and employ both a synthetic benchmark and the 2017 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) for an object localization benchmark, the latter being
widely used as the input for performance evaluation in a prior study on CNNs. Parameters

Electronics 2024, 13, 3765 20 of 28

are organized into a 2-tuple (U, N), with commonly used benchmarking values assigned
to other parameters (K, C, H). For kernel timing comparisons, the initial cuFFT library
call, which incurs significant setup costs, is excluded from total execution time through
a preliminary warmup call that isolates these costs. Each performance measurement is
averaged over five runs. (3) Application-scenario performance comparison. We replace
Caffe’s [21] convolution method and measure inference times for several synthetic CNNs,
comparing these against cuDNN in Caffe. In addition, we measure the layer-wise execu-
tion times for each convolution layer. (4) Performance profiling is conducted to analyze the
sources of performance improvements. Both RegularFFT and FineGrainedFFT approaches
invoke FFTs and element-wise multiplication, and the theoretical arithmetic complexity
is analyzed in Section 5.6. The empirical timings provide the details of the performance
breakdown of the algorithms, thus explaining the source of the performance gain of our
optimization. To demonstrate that our algorithm’s performance gains are consistent across
different hardware configurations, we ran experiments on two Nvidia GPUs: a Titan Xp
(Pascal architecture) and a Tesla T4 (Turing architecture). The Titan Xp utilizes cuDNN
v7.1, while the Tesla T4 employs cuDNN v8.9. The version of Caffe used is 1.0. For our
experiments, the CPU primarily functions as a command processor, having a negligible
effect on overall performance.

6.2. Accuracy

Initially, it is crucial to assess the accuracy of our FineGrained FFT method, as it
provides a quantitative metric to measure its effectiveness and reliability. We conduct a
comparative analysis with the im2col+MM approach from cuDNN, which serves as the
ground truth. For parameter configurations (U, K) set to (3, 10), (5, 32), and (4, 10), the abso-
lute element errors are found to be 4.73× 10−11, 3.00× 10−11, and 2.38× 10−11, respectively.
These results indicate that the error magnitude is approximately 10−11, demonstrating that
our optimization technique effectively preserves the numerical integrity of the convolution
process. This preservation of accuracy is critical, especially in applications where even mi-
nor deviations can significantly impact the overall system performance. Thus, our method
ensures that the enhancement in efficiency does not compromise accuracy, underscoring its
robustness and suitability for practical applications.

6.3. Kernel Performance Comparison

To rigorously assess the kernel-level performance of our proposed method, we di-
rectly measure pure GPU kernel execution times and compare them against the FFT-based
and im2col+GEMM convolution implementations within cuDNN. This comparative anal-
ysis is conducted across varying kernel and batch sizes to comprehensively evaluate the
strengths and weaknesses of each approach under different parameter settings. In our
analysis, illustrated in Figure 11, we compare the FineGrained FFT algorithm with the
Regular FFT algorithm using both a synthetic benchmark and the 2017 ILSVRC object
localization benchmark on Nvidia Titan Xp and Tesla T4 GPUs, respectively. For the
synthetic benchmark, we generate random input data and kernels sampled uniformly
from the range [−1, 1]. The results indicate that the execution time for the RegularFFT
convolution remains relatively constant and unaffected by changes in kernel size. This
stability is due to the method’s use of zero padding to match the kernel size to the feature
map size, making the kernel size nearly irrelevant to its performance. Such consistency is
maintained across different GPU architectures. Conversely, the performance of our pro-
posed method declines as the kernel size increases, primarily due to its direct dependency
on the kernel size, despite our approach not requiring full matrix unrolling. This trend is
consistent in both Figure 11a,b. Given that our experimental measurements are obtained at
approximately 4 milliseconds, we notice variations in the outcomes across various datasets.
These variations fell within the reasonable fluctuation range, leading to an intersection in
Figure 11a but not in Figure 11b. While the curves representing FineGrained FFT convo-
lution in both Figure 11c,d appear visually straight, a closer look reveals that they have

Electronics 2024, 13, 3765 21 of 28

a small but non-zero slope. This indicates that the execution time actually grows with
increasing kernel size, despite being seemingly constant. This behavior is due to the larger
values of regular FFT, and FineGrained FFT seems small by comparison. It is worth noting
in the cuDNN release notes that convolutions in cuDNN version 8.9.6, which is employed
in Tesla T4, may experience performance regressions [55], resulting in larger gaps between
curves in Figure 11c,d. Overall, our FineGrained FFT convolution consistently delivers
high performance. In Figure 12, we compare the FineGrained FFT algorithm with the
im2col+GEMM algorithm from cuDNN. As the kernel size increases from 5 to 30, the
execution time for both algorithms rises; however, the im2col+GEMM algorithm exhibits
a more pronounced increase. Our approach achieves higher performance primarily due
to its strategy of not fully unrolling the feature maps. In contrast, the im2col+GEMM
method requires a quadratic growth in unrolled matrix size with increasing kernel size.
By avoiding a full unrolling of feature maps, our approach minimizes memory footprint,
allowing it to achieve better performance.

3 4 5 6 7 8

Kernel Size

2.5

3

3.5

4

4.5

3 4 5 6 7 8

Kernel Size

2.5

3

3.5

4

4.5

(a) Synthetic benchmark on Titan Xp (b) ILSVRC2017 benchmark on Titan Xp

3 4 5 6 7 8
0

5

10

15

20

3 4 5 6 7 8
0

5

10

15

20

(c) Synthetic benchmark on Tesla T4 (d) ILSVRC2017 benchmark on Tesla T4

Figure 11. RegularFFT and FineGrainedFFT performance comparison as the kernel size varies
from 3 to 8.

We proceed to evaluate performance across different batch sizes, as depicted in
Figure 13. At a batch size of 20, as shown in Figure 13a, the two curves intersect, in-
dicating that the FineGrained FFT surpasses the regular FFT for smaller batch sizes. In the
case of regular FFT, the convolution operation is transformed into point-wise multiplication
in the spatial domain. This process is efficiently executed as batched matrix multiplication,
which is particularly well-suited for the highly optimized cuBLAS library. As the batch size
increases, regular FFT matrix multiplication begins to outperform FineGrained FFT. Conse-
quently, for FineGrained FFT, an increase in batch size impacts element-wise multiplication
negatively, potentially negating the benefits provided by FFT. Across Figures 11 and 13a,

Electronics 2024, 13, 3765 22 of 28

the FineGrained FFT exhibits consistently better performance than the regular FFT on
Tesla T4. Meanwhile, the FineGrained FFT convolution performs particularly well for
small kernels and batches, demonstrating an advantage over the RegularFFT approach in
Figures 11c,d and 13b. Overall, when considering the parameter space of convolutions,
FineGrained FFT convolution demonstrates particular advantages for scenarios involving
small kernel sizes and batch sizes.

5 10 15 20 25 30

Kernel Size

0

10

20

30

40

50

5 10 15 20 25 30
0

4

8

12

16

(a) Titan Xp (b) Tesla T4

Figure 12. Im2col+GEMM and FineGrainedFFT performance comparison on ILSVRC2017 benchmark.

1 11 21 31

Batch Size

0

2

4

6

1 11 21 31
0

5

10

15

20

25

30

(a) Titan Xp (b) Tesla T4

Figure 13. Performance comparison of RegularFFT and FineGrainedFFT with varying batch sizes
(1 to 31) on the ILSVRC2017 benchmark.

6.4. Performance in Applications

Caffe is widely recognized as a popular platform for creating deep learning applica-
tions. In our experiment, we replace the convolutional implementation in Caffe with our
FineGrained approach.

Synthetic Benchmark: We construct four convolutional neural networks (CNNs), each
consisting of five convolutional layers, with configurations detailed in Table 3. These
networks incorporate pooling and rectified linear unit (ReLU) layers, concluding with a
fully connected layer with 10 outputs for prediction. The batch sizes used are 5, 10, 1, and 3,
respectively. As illustrated in Figure 3, our FineGrained FFT convolution outperforms the
Regular FFT convolution across all tested configurations during a single CNN inference
iteration. It achieves speed improvements of 2.12×, 1.19×, 1.92×, and 1.46× over the
Regular FFT convolution.

SqueezeNet Benchmark: SqueezeNet [56] is a deep convolutional neural network
(CNN) architecture known for its efficiency and compact size. The core building block of
SqueezeNet is the “Fire” module, which consists of two types of layers: squeeze layers and
expand layers. Squeeze layers are compact 1 × 1 convolutional layers designed to reduce

Electronics 2024, 13, 3765 23 of 28

the number of feature maps, while expand layers utilize larger 3 × 3 and 1× 1 convolutions
to expand the feature maps. Due to its architectural efficiency, SqueezeNet significantly
reduces the number of parameters compared to larger networks, making it highly suitable
for resource-constrained environments such as embedded systems and mobile applications.
Given the exceptional performance of our FineGrained FFT algorithm for small kernel sizes,
SqueezeNet emerges as a highly suitable network architecture. When the input size of (N,
C, H, W) is (1, 3, 254, 254), our FineGrained FFT algorithm outperforms the Regular FFT
algorithm in terms of inference speed, demonstrating a running time of 40.54 ms compared
to the Regular FFT’s 44.31 ms. This results in a performance improvement of approximately
9 percent.

VGG-16 Benchmark: We also assess the effectiveness of our method using a variant of
the VGG-16 model [34]. VGG-16 is a popular benchmark for CNNs due to its improvements
over previous CNN architectures. It achieves this by incorporating thirteen convolutional
layers, each using 3 × 3 filters. In our evaluation, we compare the performance of this
VGG-16 variant using two convolution implementations: our FineGrained FFT convolution
and the Regular FFT convolution. We configure both approaches to utilize 38 kernels and
a batch size of 3. The FineGrained FFT version achieves a faster forward-only inference
time of 65.96 ms, demonstrating a 1.25× speedup compared to the Regular FFT-based
convolution, which takes 82.76 milliseconds.

Table 3. Configuration of four synthetic networks with execution time for each convolution layer.
Each network is composed of convolutional layers labeled ConvX-Y, where X denotes the kernel size
and Y denotes the number of kernels. The execution times for each convolutional layer are measured
in milliseconds (ms).

Conv. Layer RegularFFT FineGrainedFFT Speedup

Network1

Conv3-10 3.86 1.83 2.11×
Conv3-5 4.43 1.29 3.43×
Conv3-8 4.81 1.44 3.34×
Conv3-7 4.09 1.45 2.82×
Conv3-10 4.05 1.74 2.33×

Network2

Conv3-5 3.93 2.81 1.40×
Conv4-10 4.55 4.97 0.92×
Conv3-5 6.71 4.13 1.62×
Conv5-5 4.18 3.47 1.20×
Conv3-5 3.93 2.98 1.32×

Network3

Conv3-10 3.67 2.01 1.84×
Conv3-8 4.50 1.52 2.96×
Conv5-5 4.49 1.35 3.33×
Conv3-10 4.05 1.49 2.72×
Conv3-5 4.28 1.37 3.12×

Network4

Conv3-5 3.56 2.64 1.34×
Conv3-7 3.34 2.54 1.31×
Conv3-10 4.36 2.43 1.79×
Conv3-8 3.63 3.21 1.13×
Conv3-7 3.73 2.13 1.75×

To understand the source of the performance improvement observed in VGG-16, we
perform a detailed layer-wise comparison between our FineGrained FFT and Regular FFT
implementation. This analysis focuses on the seven layers within VGG-16 that account for
roughly 60% of the overall execution time. The results, illustrated in Figure 14, demonstrate
a layer-by-layer comparison. On average, FineGrained FFT outperforms Regular FFT by a
factor of 1.7, with a maximum speedup of 2.86.

Electronics 2024, 13, 3765 24 of 28

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

Figure 14. Layer-wise performance comparison between FineGrainedFFT and RegularFFT convolu-
tions across the seven most computationally intensive layers of the VGG-16 network.

6.5. Performance Profiling Analysis

To gain deeper insights into the performance improvements achieved by our algorithm,
we employ the nvprof profiling tool to analyze GPU kernels. Specifically, we compare the
execution times of the FFTs and matrix multiplications for both algorithms, presenting the
results in Figure 15. This comprehensive performance profiling offers a detailed breakdown
of execution times, enabling us to identify the steps that contribute most significantly to the
overall performance gain. In RegularFFT convolution, both the FFT and matrix multiplica-
tion steps exhibit relatively constant execution times as the kernel size increases. This is
because the kernel is zero-padded to match the size of the input feature map. This padding
strategy leads to a constant amount of computations, independent of the kernel size. Con-
versely, the time it takes for the matrix multiplication in FineGrained FFT grows as the size
of the kernel size increases. This is because our method is dependent on an unrolled matrix
similar to im2col. As the kernel size grows, this matrix becomes larger, leading to more
computations. Additionally, the matrix multiplication for RegularFFT is essentially a series
of batched matrix multiplications that involve transposition operations to align the tensors
for the multiplication process, adding to the computational steps. Consequently, matrix
multiplication in RegularFFT has higher execution times than FineGrained convolution.
The FFT step in the FineGrained FFT generally maintains constant execution time, as the
FFT size is tailored to the nearest power of two that corresponds to the input size.

Electronics 2024, 13, 3765 25 of 28

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Regular FineGrained Regular FineGrained Regular FineGrained Regular FineGrained Regular FineGrained Regular FineGrained

KernelSize=3 KernelSize=4 KernelSize=5 KernelSize=6 KernelSize=7 KernelSize=8

m
s

Performance profiling of different kernel sizes

FFT MM

Figure 15. Profiling results for varying kernel sizes, illustrating the breakdown of execution time into
FFT (Fast Fourier Transform) and MM (Matrix Multiplication).

7. Conclusions

In this study, we conducted a comprehensive analysis of data redundancy that arises
from the im2col process, which is important in high-performance implementations of
convolution. Our investigation identified two novel forms of redundancy: intra-row and
inter-row, observed within im2col+GEMM convolution operations. These insights have
driven us to formulate a more mathematically efficient representation of the data structure
within convolutions, leading to the development of a doubly block Hankel matrix data
pattern description. This paper presents a theoretical complexity analysis that compares
our method with the FFT convolution used in NVIDIA’s cuDNN library. Empirical results
validate the theoretical analysis, demonstrating that our FineGrained FFT convolution
consistently surpasses the FFT-based method across most convolution parameter settings.
Specifically, our approach achieves an average speedup of 14 times and a maximum of
17 times compared to the regular FFT convolution, and an average speedup of 3 times and
a maximum of 5 times over the im2col+GEMM method used in cuDNN.

Our efforts contribute to the diverse array of convolution techniques in CNNs. Fur-
thermore, given the absence of a “one-size-fits-all” convolution implementation across the
entire parameter space, our work enhances the overall performance of convolutions. By con-
tributing FineGrained FFT convolutions with performance gain, we increase the envelope of
optimal options available across the parameter space. In addition to enhancing convolution
performance, one avenue for future work is the adaptive selection of optimal convolu-
tion algorithms based on specific configuration parameters. Alternatively, convolution in
CNNs might be further optimized by leveraging the double Hankel matrix representation
of the unrolled im2col matrix from a different perspective. Through this approach, the
convolution operation is reinterpreted as a polynomial multiplication problem.

Author Contributions: Conceptualization, Y.Z. and X.L.; methodology, H.X. and S.J.; software, Y.Z.
and F.L.; validation, F.L., H.X. and S.J.; investigation, H.X.; writing—original draft preparation, Y.Z.
and S.J.; writing—review and editing, Y.Z., X.L. and S.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Electronics 2024, 13, 3765 26 of 28

References
1. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
3. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June 2009;
pp. 248–255. [CrossRef]

4. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 1137–1149. [CrossRef] [PubMed]

5. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

6. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

7. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

8. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

9. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.

10. Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018, arXiv:1809.11096.
11. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.

End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316.
12. Chen, C.; Seff, A.; Kornhauser, A.L.; Xiao, J. DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving. In

Proceedings of the 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015;
pp. 2722–2730. [CrossRef]

13. Hadjis, S.; Abuzaid, F.; Zhang, C.; Ré, C. Caffe con Troll: Shallow Ideas to Speed Up Deep Learning. In Proceedings of the Fourth
Workshop on Data analytics in the Cloud, DanaC 2015, Melbourne, VIC, Australia, 31 May–4 June 2015; Katsifodimos, A., Ed.;
ACM: New York, NY, USA, 2015; pp. 2:1–2:4. [CrossRef]

14. Cong, J.; Xiao, B. Minimizing Computation in Convolutional Neural Networks. In Proceedings of the Artificial Neural Networks
and Machine Learning—ICANN 2014, Hamburg, Germany, 15–19 September 2014; Springer International Publishing: Cham,
Switzerland, 2014; pp. 281–290.

15. Park, H.; Kim, D.; Ahn, J.; Yoo, S. Zero and data reuse-aware fast convolution for deep neural networks on GPU. In Proceedings
of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES 2016,
Pittsburgh, PA, USA, 1–7 October 2016; ACM: New York, NY, USA, 2016; pp. 33:1–33:10. [CrossRef]

16. Vasilache, N.; Johnson, J.; Mathieu, M.; Chintala, S.; Piantino, S.; LeCun, Y. Fast Convolutional Nets with fbfft: A GPU Performance
Evaluation. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015.

17. Jia, Y. Learning Semantic Image Representations at a Large Scale. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2014.
18. Li, X.; Zhang, G.; Huang, H.H.; Wang, Z.; Zheng, W. Performance Analysis of GPU-Based Convolutional Neural Networks. In

Proceedings of the 45th International Conference on Parallel Processing, ICPP 2016, Philadelphia, PA, USA, 16–19 August 2016;
pp. 67–76. [CrossRef]

19. Perkins, H. cltorch: A Hardware-Agnostic Backend for the Torch Deep Neural Network Library, Based on OpenCL. arXiv 2016,
arXiv:1606.04884.

20. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cuDNN: Efficient Primitives for Deep
Learning. arXiv 2014, arXiv:1410.0759.

21. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.B.; Guadarrama, S.; Darrell, T. Caffe: Convolutional
Architecture for Fast Feature Embedding. In Proceedings of the ACM International Conference on Multimedia, MM ’14, Orlando,
FL, USA, 3–7 November 2014; Hua, K.A., Rui, Y., Steinmetz, R., Hanjalic, A., Natsev, A., Zhu, W., Eds.; ACM: New York, NY,
USA, 2014; pp. 675–678. [CrossRef]

22. Yu, D.; Eversole, A.; Seltzer, M.L.; Yao, K.; Guenter, B.; Kuchaiev, O.; Seide, F.; Wang, H.; Droppo, J.; Huang, Z.; et al.
An introduction to computational networks and the computational network toolkit (invited talk). In Proceedings of the
INTERSPEECH 2014, 15th Annual Conference of the International Speech Communication Association, Singapore, 14–18
September 2014.

23. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; OSDI ’16, pp. 265–283.

http://doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.1109/ICCV.2015.312
http://dx.doi.org/10.1145/2799562.2799641
http://dx.doi.org/10.1145/2968456.2968476
http://dx.doi.org/10.1109/ICPP.2016.15
http://dx.doi.org/10.1145/2647868.2654889

Electronics 2024, 13, 3765 27 of 28

24. Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller, C.; Bahdanau, D.; Ballas, N.; Bastien, F.; Bayer, J.; Belikov, A.; Belopolsky, A.;
et al. Theano: A Python framework for fast computation of mathematical expressions. arXiv 2016, arXiv:1605.02688.

25. Collobert, R.; Kavukcuoglu, K.; Farabet, C. Torch7: A Matlab-like Environment for Machine Learning. In Proceedings of the
BigLearn, NIPS Workshop, Granada, Spain, 12–14 December 2011.

26. Shen, M.; Wang, J.; Du, H.; Niyato, D.; Tang, X.; Kang, J.; Ding, Y.; Zhu, L. Secure Semantic Communications: Challenges,
Approaches, and Opportunities. IEEE Netw. 2024, 38, 197–206. [CrossRef]

27. Sabir, D.; Hanif, M.A.; Hassan, A.; Rehman, S.; Shafique, M. TiQSA: Workload Minimization in Convolutional Neural Networks
Using Tile Quantization and Symmetry Approximation. IEEE Access 2021, 9, 53647–53668. [CrossRef]

28. Gysel, P.; Motamedi, M.; Ghiasi, S. Hardware-oriented Approximation of Convolutional Neural Networks. arXiv 2016, arXiv:1604.03168.
29. Limonova, E.; Sheshkus, A.; Ivanova, A.A.; Nikolaev, D. Convolutional Neural Network Structure Transformations for Complexity

Reduction and Speed Improvement. Pattern Recognit. Image Anal. 2018, 28, 24–33. [CrossRef]
30. Cintra, R.; Duffner, S.; Garcia, C.; Leite, A. Low-Complexity Approximate Convolutional Neural Networks. IEEE Trans. Neural

Netw. Learn. Syst. 2018, 29, 5981–5992. [CrossRef] [PubMed]
31. Mathieu, M.; Henaff, M.; LeCun, Y. Fast Training of Convolutional Networks through FFTs. In Proceedings of the 2nd International

Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014.
32. Chellapilla, K.; Puri, S.; Simard, P. High Performance Convolutional Neural Networks for Document Processing. In Proceedings

of the Tenth International Workshop on Frontiers in Handwriting Recognition, La Baule, France, 23–26 October 2006; Lorette, G.,
Ed.; Université de Rennes 1: La Baule, France, 2006.

33. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 4013–4021. [CrossRef]

34. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

35. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; JMLR Workshop
and Conference Proceedings; Bach, F.R., Blei, D.M., Eds.; Volume 37, pp. 448–456.

36. Tollenaere, N.; Iooss, G.; Pouget, S.; Brunie, H.; Guillon, C.; Cohen, A.; Sadayappan, P.; Rastello, F. Autotuning convolutions is
easier than you think. ACM Trans. Archit. Code Optim. 2023, 20, 1–24. [CrossRef]

37. Zhang, Y.; Li, X. Fast Convolutional Neural Networks with Fine-Grained FFTs. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques, New York, NY, USA, 3–7 October 2020; PACT ’20, pp. 255–265.
[CrossRef]

38. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
39. Krizhevsky, A. cuda-Convnet: High-Performance c++/Cuda Implementation of Convolutional Neural Networks. 2012. Available

online: https://github.com/akrizhevsky/cuda-convnet2 (accessed on 23 January 2019).
40. Georganas, E.; Avancha, S.; Banerjee, K.; Kalamkar, D.; Henry, G.; Pabst, H.; Heinecke, A. Anatomy of high-performance

deep learning convolutions on simd architectures. In Proceedings of the SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, Dallas, TX, USA, 11–16 November 2018; pp. 830–841.

41. Lavin, A. maxDNN: An Efficient Convolution Kernel for Deep Learning with Maxwell GPUs. arXiv 2015, arXiv:1501.06633.
42. Gray, S. Maxas: Assembler for Nvidia Maxwell Architecture. 2014. Available online: https://github.com/NervanaSystems/

maxas (accessed on 8 February 2019).
43. Oyama, Y.; Nomura, A.; Sato, I.; Nishimura, H.; Tamatsu, Y.; Matsuoka, S. Predicting statistics of asynchronous SGD parameters

for a large-scale distributed deep learning system on GPU supercomputers. In Proceedings of the 2016 IEEE International
Conference on Big Data, BigData 2016, Washington, DC, USA, 5–8 December 2016; pp. 66–75. [CrossRef]

44. Vasudevan, A.; Anderson, A.; Gregg, D. Parallel Multi Channel convolution using General Matrix Multiplication. In Proceedings
of the 2017 IEEE 28th International Conference on Application-Specific Systems, Architectures and Processors (ASAP), Seattle,
WA, USA, 10–12 July 2017; pp. 19–24. [CrossRef]

45. Wang, Q.; Mei, S.; Liu, J.; Gong, C. Parallel convolution algorithm using implicit matrix multiplication on multi-core CPUs. In
Proceedings of the 2019 IEEE International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019;
pp. 1–7.

46. Zhao, Y.; Lu, J.; Chen, X. An Accelerator Design Using a MTCA Decomposition Algorithm for CNNs. Sensors 2020, 20, 5558.
[CrossRef] [PubMed]

47. Highlander, T.; Rodriguez, A. Very Efficient Training of Convolutional Neural Networks using Fast Fourier Transform and
Overlap-and-Add. arXiv 2016, arXiv:1601.06815.

48. Abtahi, T.; Shea, C.; Kulkarni, A.; Mohsenin, T. Accelerating Convolutional Neural Network With FFT on Embedded Hardware.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1737–1749. [CrossRef]

49. Pratt, H.; Williams, B.M.; Coenen, F.; Zheng, Y. FCNN: Fourier Convolutional Neural Networks. In Proceedings of the ECML
PKDD 2017, Skopje, Macedonia, 18–22 September 2017; pp. 786–798. [CrossRef]

50. Winograd, S. Arithmetic Complexity of Computations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1980.
51. Partington, J. An Introduction to Hankel Operators; London Mathematical Society Student Texts; Cambridge University Press:

Cambridge, UK, 1988.

http://dx.doi.org/10.1109/MNET.2023.3327111
http://dx.doi.org/10.1109/ACCESS.2021.3069906
http://dx.doi.org/10.1134/S105466181801011X
http://dx.doi.org/10.1109/TNNLS.2018.2815435
http://www.ncbi.nlm.nih.gov/pubmed/29993843
http://dx.doi.org/10.1109/CVPR.2016.435
http://dx.doi.org/10.1145/3570641
http://dx.doi.org/10.1145/3410463.3414642
https://github.com/akrizhevsky/cuda-convnet2
https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas
http://dx.doi.org/10.1109/BigData.2016.7840590
http://dx.doi.org/10.1109/ASAP.2017.7995254
http://dx.doi.org/10.3390/s20195558
http://www.ncbi.nlm.nih.gov/pubmed/32998366
http://dx.doi.org/10.1109/TVLSI.2018.2825145
http://dx.doi.org/10.1007/978-3-319-71249-9_47

Electronics 2024, 13, 3765 28 of 28

52. Gray, R.M. Toeplitz and circulant matrices: A review. Found. Trends® Commun. Inf. Theory 2006, 2, 155–239. [CrossRef]
53. MacLaren, M.D. The art of computer programming. Volume 2: Seminumerical algorithms (Donald E. Knuth). SIAM Rev. 1970,

12, 306–308. [CrossRef]
54. NVIDIA. Programming Guide, CUSPARSE, CUBLAS, and CUFFT Library User Guides. Available online: https://docs.nvidia.

com/cuda/ (accessed on 15 February 2019).
55. NVIDIA. cuDNN Release Notes. 2023. Available online: https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-897/

release-notes/ (accessed on 9 April 2024).
56. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <1MB model size. arXiv 2016, arXiv:1602.07360.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1561/0100000006
http://dx.doi.org/10.1137/1012065
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-897/release-notes/
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-897/release-notes/

	Introduction
	Overview and Background
	Convolution
	Convolutional Neural Network
	Direct Convolution
	Im2col+MM Convolution
	FFT Convolution
	Winograd Convolution

	Motivation
	A New Data Pattern
	Im2col Process
	Intra-Row Redundancy
	Inter-Row Redundancy
	Im2col-Based Convolution Redundancy
	Doubly Block Hankel Matrices
	Data Correspondence

	Fine-Grain-FFT-Based Convolution Algorithm
	Hankel Matrix-Vector Multiplication
	Hankel Matrices to Circulant Matrices
	Implicit Element-Wise Blocked Matrix Multiplication
	FFT Hermitian Symmetry and Gauss's Multiplication Formula
	Entire Workflow Description
	Arithmetic Complexity Comparison
	Memory Consumption Comparison
	Auto-Tuning

	Evaluation and Performance Analysis
	Experimental Methodology
	Accuracy
	Kernel Performance Comparison
	Performance in Applications
	Performance Profiling Analysis

	Conclusions
	References

